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Objective: We aim to develop a kicked gravitational waveform model in the frequency domain
that can be used to place projected constraints on measurements of kick velocities with future
ground- and space-based gravitational wave detectors.

I. BACKGROUND

Black hole binaries are generically expected to con-
tain black holes that are unequal in both mass and spin.
These systems will display a high amount of asymmetry
such that gravitational waves (GWs) produced during
the evolution of the binary are radiated anisotropically.
This anisotropic beaming of GWs causes the center of
mass of the binary to move over time, changing as a
function of the binary properties. During the final mo-
ments of the inspiral and merger, this anisotropy imparts
some linear momentum to the black hole remnant that
will then move in some direction with respect to the line
of sight. This will cause the GWs emitted during late
inspiral and merger-ringdown to be red- or blue-shifted
according to the center of mass velocity. This velocity
is called the recoil (or kick) velocity [1]. This process
results in what is known as a “black hole kick.”

It was recently determined that black hole kicks
could be directly detected using space-based and future
ground-based GW detectors [2]. In the case of space-
based instruments, these measurements could be of par-
ticular importance to event rates for supermassive black
hole binaries mergers if the remnant black holes of these
mergers receive kicks that exceed the escape velocity of
the host galaxy [3].

II. APPROACH

In order to determine how well we will be able to mea-
sure black hole kicks, we need to begin with a GW wave-
form that encapsulates the redshifting (blueshifting) of
the GWs emitted from binaries during inspiral, merger,
and ringdown. Ref. [2] provides a model for the kick
velocity as a function of time. However, we need the ve-
locity as a function of frequency such that it can be incor-
porated into frequency-domain waveforms. In particular,
we have an analytic phenomenological frequency-domain
waveform, IMRPhenomD [4—(], that we need to modify
to include black hole kicks.

Once we have a kicked frequency-domain waveform, we
can perform a Fisher Analysis to determine constraints
on these kicks. However, this study requires derivatives
of the frequency-domain waveform with respect to binary
intrinsic and extrinsic parameters, as well as the kick ve-
locity. In the code that was used for other similar anal-
yses, these derivatives are done analytically to get rid of

numerical error that is inherent in highly oscillatory nu-
merical derivatives. Thus, it is of relative importance to
obtain the velocity analytically as a function of frequency
and binary parameters.

III. PROGRESS

At the beginning of the project, we thought that ob-
taining the time evolution of the frequency of the GW in
PhenomD would be relatively straightforward. It is easy
to obtain f(t) given a time-domain waveform by differen-
tiating the argument with respect to time, but we do not
have a waveform analytically in the time-domain. Thus
we determined that it would be reasonable to complete an
approximate analytic inverse Fourier transform (IFT) of
our frequency-domain waveform. This can be done sim-
ply in some cases using the Stationary Phase Approxi-
mation (SPA) [7]. This approach appeared promising,
but provided unphysical results in which time did not in-
crease monotonically. We determined that this was due
to a number of the assumptions that were made in order
to use the SPA. In particular, we determined that after
the inspiral regime of PhenomD, the amplitude of the
waveform was oscillating too rapidly with respect to the
phase for the SPA to be valid.

We then explored whether or not our IFT could
be completed using an asymptotic technique called the
method of steepest descents [3]. However, our integral
was too complicated to be expanded in a convergent sum,
so the method of steepest descent would not provide an
easier way to obtain our time-domain waveform.

Currently, we are trying to integrate our waveform an-
alytically using reasonable approximations to the wave-
form. This has proved successful for the merger-ringdown
section of the PhenomD waveform', but we need to com-
plete this same integration for four other waveform sec-
tions. We have also determined that we need to check
that the inclusion of the velocity as a function of fre-
quency into the frequency-domain PhenomD waveform
gives the same results as introducing the kick into the
time-domain waveform numerically and then taking the
Fourier transform. If so, then it is reasonable to continue

1 The method by which we completed the IFT is presented in
Appendix A.
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looking for a way to find the velocity as a function of fre-
quency, but if not we may have no choice but to proceed
numerically.

IV. CHALLENGES

I have written a Mathematica script that not only com-
putes the analytic PhenomD waveform, but also that uses
the waveform to complete a Fisher analysis. However, in
the event that we need to do the analysis numerically,
it make take some time to implement the new process
in Mathematica or a new language entirely. I have con-
sidered converting my Mathematica script to Python be-
cause it would complete numerical analyses much more
quickly than Mathematica, however it may be useful to
integrate the analytic derivatives taken by Mathematica
and the numerical ones taken by Python.

We also need to consider how we will verify the kicked
waveform in either the time or frequency domain. This
can be done in the time domain by benchmarking our re-
sults with the LIGO Algorithm Library (LAL). However,
it will be important to know how the waveform is first
windowed and time-shifted in LAL in order to make accu-
rate comparisons. Having never used (let alone “simply”
downloaded) LAL, T will need to become familiar with it
while we are testing our waveforms.

V. FUTURE DIRECTIONS

In the future, we hope to find a relatively analytic way
to implement a kick in our frequency-domain waveform.
Once we do this, we will also need to redo the entire anal-
ysis for a PhenomD-type waveform model that introduces
precession. Difficulties may arise if the precessing wave-
form differs drastically from PhenomD. We also hope to
complete this analysis for a number of sources. Prefer-
ably, this analysis will be done for thousands of black
hole binaries of various masses, spins, and redshifts, and
such that we determine constraints for multiple detec-
tors. Also, we have only briefly considered stacking when
completing our parameter estimation study, but it seems
highly nontrivial to do a stacking analysis for kicked black
holes.

Appendix A

Here, we present the method through which we are able
to analytically complete the inverse Fourier transform of
the merger ringdown portion of the waveform.

Begin with a waveform of the form

h(f) = A(f)e ™) (A1)

The amplitude is
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and ~; is a constant in frequency but is a function of
system parameters. We can simplify this greatly if we
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Now let’s explore the phase, which is given as
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where all gothic letters are constants in frequency and
are found by matching coeflicients to the inspiral and
intermediate domains of the waveform.

We are attempting to find
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which is quite complicated for the amplitude and phase
that are found above. Thus, it is necessary to make some
simplifications.

In the system that we have been exploring thus far
(namely my = 10.25, mo = 10, x; = 0.001, x2 = 0.002),
it seems that the phase is completely dominated by the
term that is linear in frequency. Thus, it is straightfor-
ward to do a Taylor expansion to first order which will
provide a good approximation. If we expand about fy,
then our phase becomes
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Let us now define the constant term of the phase as

(A7)
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and the linear coefficient as
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such that the approximated phase can neatly be written
as ¥(f) ~ 1 + f ¥a. Our inverse Fourier transform then
becomes

h(t)
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which includes an easily integrable exponential function.

Now, we must concern ourselves with the amplitude
portion of the transform. We can pull out the exponential
that is constant in frequency such that
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which is looking more simple already. We can replace
the amplitude term with the Taylor series approxima-
tion. (This looks like the best approximation when the
expansion goes to 8th order in f — fy. We can look at
the errors that we get by decreasing or increasing the or-
der when we are comparing how well this model fits to

numerical models.) Then,
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where k is the order to which we evaluate the Tay-
lor series. This is essentially the final form of our in-
tegral. Note that all of the following are constants
that can be evaluated in the time domain without hav-
ing to do any manipulation in the frequency domain:
o, Y12, i, frp, and oi. Then, this final integral is an-
alytic for all k.

In order to implement Feynman’s trick here, we
must convert the integral to one of the form [(f —
fo)¥ evU=fo)df. Thus, in order to simplify out integral
at least a little, we can rewrite it as
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which is exactly of the form needed for Feynman’s Trick.
This is all implemented analytically in Mathematica.
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