

JOK I FLW ES FEKN UNIVERSITY

Astrophysical Rates of Gravitational-Wave Compact Binary Sources in O3

Tom Dent (Albert Einstein Institute, Hannover) Chris Pankow (CIERA/Northwestern) for the LIGO and Virgo Collaborations

DCC: LIGO-G1800370

Strain sensitivity for LIGO and Virgo Values are projected and representative, **but not official** Actual strain sensitivity **may be different** in O3

BNS ranges quoted for a 1.4+1.4 Mo face-on system at SNR 8 in a single instrument, averaged over binary orientations and sky location

for 03...

Expected LIGO BNS range: **120 Mpc** Expected Virgo BNS range: **65 Mpc**

GW170817 is at **1/3** (LIGO) of the sky/orientation averaged range for O3

Calculating event rates and significance

Model comparison of noise background and signal distributions of ranking statistic

Expected number of counts calibrated to surveyed space-time volume <VT>

$$V = \int f(z, \mathcal{M}_c, \cdots) \frac{1}{1+z} \frac{dV}{dz} dz$$
 $\rightarrow \mathbb{R} \sim \mathbb{N}/\langle \mathbb{VT} \rangle$

Moving pieces

VT is dependent on instrument duty cycle and SNR threshold

alerts could have smaller SNRs than "gold plated" events

all binary physics is not encoded in searches: assumed SNR loss is small

After GW170104 (N_{BBH}=3.9)

Uniform in log mass: 12 - 65 Gpc⁻³yr⁻¹

Power law (α =-2.35) *only*: **40 - 213 Gpc**⁻³**yr**⁻¹

Unified interval: 12 - 213 Gpc⁻³yr⁻¹

After GW170104 (N_{BBH}=3.9)

Uniform in log mass: 12 - 65 Gpc⁻³yr⁻¹

Power law (α =-2.35) *only*: **40 - 213 Gpc**⁻³**yr**⁻¹

Unified interval: 12 - 213 Gpc⁻³yr⁻¹

BNS/NSBH rate distributions at **end of O1**

TABLE IV: Compact binary coalescence rates per Mpc³ per Myr.^a

Source	R_{low}	$R_{ m re}$	$R_{ m high}$	R_{\max}
$NS-NS (Mpc^{-3} Myr^{-1})$	0.01 [1]	1 [1]	10 [1]	50 [16]
$NS-BH (Mpc^{-3} Myr^{-1})$	$6 \times 10^{-4} [18]$	0.03 [18]	1 [18]	
$BH-BH (Mpc^{-3} Myr^{-1})$	$1 \times 10^{-4} [14]$	0.005 [14]	0.3 [14]	

Class. Quantum Grav. 27 (2010) 173001

TABLE IV: Compact binary coalescence rates per Mpc³ per Myr.^a

Source	$R_{ m low}$	$R_{ m re}$	$R_{ m high}$	$R_{ m max}$
$NS-NS (Mpc^{-3} Myr^{-1})$	0.01 [1]	1 [1]	10 [1]	50 [16]
$NS-BH (Mpc^{-3} Myr^{-1})$	$6 \times 10^{-4} [18]$	0.03 [18]	1 [18]	
$BH-BH (Mpc^{-3} Myr^{-1})$	$1 \times 10^{-4} [14]$	0.005 [14]	0.3 [14]	

Class. Quantum Grav. 27 (2010) 173001

Living Reviews in Relativity (in press)

Epoch		2015 – 2016	2016 – 2017	2018 – 2019	2020+	2024+	
Planned run duration		4 months	9 months	12 months	(per year)	(per year)	
Expected burst range/Mpc		LIGO	40-60	60-75	75-90	105	105
		Virgo	<u> </u>	20 - 40	40 - 50	40 - 70	80
		KAGRA	_	_	_	_	100
Expected BNS range/Mpc		LIGO	40-80	80-120	120-170	190	190
		Virgo	_	20 - 65	65 - 85	65 - 115	125
		KAGRA		_	_		140
Achieved BNS range/Mpc		LIGO	60-80	60-100	_	_	_
		Virgo	_	25 - 30	_	_	_
		KAGRA	_	_	_	_	_
Estimated BNS detections		0.05 – 1	0.2 - 4.5	1-50	4-80	11-180	
Actual BNS detections		0	1	_	_	_	
90% CR	% within	5 deg ²	< 1	1-5	1-4	3-7	23-30
		20 deg^2	< 1	7 - 14	12 - 21	14 - 22	65 - 73
	median/deg ²		460-530	230 - 320	120 - 180	110 - 180	9 - 12
Searched area	% within	5 deg ²	4-6	15-21	20-26	23-29	62-67
		20 deg ²	14-17	33 – 41	42-50	44-52	87-90

Living Reviews in Relativity (in press)

Epoch		2015-2016	2016-2017	2018 – 2019	2020+	2024+	
Planned run duration		4 months	9 months	12 months	(per year)	(per year)	
Expected burst range/Mpc		LIGO	40-60	60-75	75 – 90	105	105
		Virgo	_	20 - 40	40-50	40 - 70	80
		KAGRA	_	_	_	_	100
Expected BNS range/Mpc		LIGO	40-80	80-120	120-170	190	190
		Virgo	_	20 - 65	65 – 85	65 - 115	125
		KAGRA		_	_		140
Achieved BNS range/Mpc Virgo		LIGO	60-80	60-100	_	_	_
		Virgo	_	25 - 30	_	_	_
		KAGRA		_			
Estimated BNS detections		0.05 – 1	0.2 - 4.5	1-50	4-80	11-180	
Actual BINS detections		Ū	İ	_	_	_	
	% within	5 deg ²	< 1	1-5	1-4	3-7	23-30
90% CR		20 deg^2	< 1	7 - 14	12-21	14 - 22	65 - 73
	median/deg ²		460-530	230 - 320	120-180	110 - 180	9 - 12
Searched area	% within	5 deg ²	4-6	15-21	20-26	23-29	62-67
		20 deg^2	14-17	33-41	42-50	44-52	87-90

post-GW170817: $R_{BNS} \sim 3.2 \times 10^{-7} - 4 \times 10^{-6} \, Mpc^{-3}yr^{-1}$

Phys. Rev. Lett. 119, 16110

Phys. Rev. Lett. 118, 221101

This rate distribution... $R_{BBH} \sim 1.2 \times 10^{-8} - 2.1 \times 10^{-6} \, Mpc^{-3}yr^{-1}$ Assumptions:

 $\rho_{net} > 12$ T_{obs} : 1 yr with 50% duty cycle

log-uniform: $p(m_1) \sim m^{-1}$ (5 < m_1 < 100 M $_\odot$) ...with O3 surveyed space-time volume: $VT_{BBH} \sim 7 \times 10^8 \; Mpc^3 \, yr$

Binary Neutron Star Rates (post-GW170817)

 $R_{BNS} \sim 3.2 \times 10^{-7} - 4 \times 10^{-6} Mpc^{-3}yr^{-1}$

Assumptions:

 $ho_{net} > 12$ T_{obs} : 1 yr with 50% duty cycle

Broad (uniform): 1-3 M⊙

'Milky Way-like': $1.33 \pm 0.09 \text{ M}_{\odot}$

...with O3 surveyed space-time volume:

 $VT_{BNS} \sim 2-4 \times 10^7 Mpc^3 yr$

ApJ Letters, 832, 2

NSBH Rates (much uncertainty)

p(R) limits taken from Abbott+, 2010, assumes lognormal peaked away from zero Assumptions: $\rho_{\text{net}} > 12$ $T_{\text{obs}}: 1 \text{ yr with } 50\%$ duty cycle

This rate distribution... $R_{NSBH} \sim 6 \times 10^{-10} - 1 \times 10^{-6} \text{ Mpc}^{-3} \text{yr}^{-1}$ log-uniform: $p(m_1) \sim m^{-1}$ (5 < m_1 < 100 M $_\odot$) With O3 surveyed space-time volume VT_{NSBH} $\sim 0.8-2 \times 10^8$ Mpc³ yr

NSBH Rates (much uncertainty)

p(R) limits taken from Abbott+, 2010, assumes lognormal peaked away from zero Assumptions: $\rho_{net} > 12$ T_{obs}: 1 yr with 50%

duty cycle

N

NSBH Rates (much uncertainty)

p(R) limits taken from Abbott+, 2010, assumes lognormal peaked away from zero Assumptions: $\rho_{net} > 12$ T_{obs} : 1 yr with 50% duty cycle

Source Summary

Take Aways

BBH rate will **dominate**, possibly by more than an order of magnitude, up to **~few/wk., at** least **~few/mo.**

1-10 BNS, possibly up to ~1/mo.

VT has strong mass dependence but very mild dependence on assumed spin distribution

NSBH: N=0 not ruled out in any scenario, most give ~50% N>0

