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1 INTRODUCTION

The Sidles-Sigg (SS) radiation pressure torque is one of the limiting constraints for aLIGO
high-power operation. This effect itself dramatically complicates the lock-acquisition proce-
dure at different power levels, and the control servos to suppress it may inject a significant
amount of sensing noise which contaminates the detector sensitivity below 30 Hz.
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Figure 1: Signal flow diagram. In addition to the ASC control servo, we add a new digital
path to (partially) compensate for the Sidles-Sigg effect.

Here we propose to apply the optimal control theory (namely, the H∞-synthesis and µ-
synthesis) to stabilize the arm alignment. Furthermore, the control scheme can be combined
with a digital compensation path to cancel the SS torque via feeding-forward. The scheme
is illustrated in Fig. 1. In the figure, we use

P0 = Free pendulum torque to angle transfer function in [rad / N·m],

R = The SS radiation torque per misaligned angle in [N·m / rad],

F = Controller to turn on or off the digital compensator, dimensionless,

K = Optimal controller designed with µ-synthesis in [N·m / rad].

Further, the SS torque per angle can be written as

R = −2Parm

c

dy

dθ
, (1)
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with Parm the power circulating in the arms, c the speed of light, and dy/dθ the eigenvalues
of the matrix dY/dΘ. In the (θe, θi) basis, we have

dY

dΘ
=

−L
gegi − 1

(
gi 1
1 ge

)
. (2)

The eigenvectors of this matrix corresponds to the soft [(θe, θi) = (1, 1.15)]and hard modes
[(θe, θi) = (1, −0.87)], and numerically the eigenvalues are

dy

dθ

∣∣∣
s

= 2.07× 103 m

rad
, (3)

dy

dθ

∣∣∣
h

= −4.55× 104 m

rad
. (4)

In this note we will show that with optimal control we can simultaneously improve the
suppression of the low-frequency displacement noise to reduce the rms angular motion, and
the roll-off of the high-frequency sensing noise to achieve better sensitivity to gravitational
waves. The robustness of the control filters are examined in detail under the small gain
theorem.

2 NOISE INPUT

Here we consider both the sensing noise and the displacement noise. From Fig. 1 it is easy
to show that the physical angular motion induced by each kind of noise follows

δθ(sens) =
P0 (FR−K)

1 + P0 (R− FR +K)
δθ

(sens)
0 , (5)

δθ(disp) =
P0

1 + P0 (R− FR +K)
δτ

(disp)
0 ,

=
1

1 + P0 (R− FR +K)
δθ

(disp)
0 , (6)

where for the noise terms, we have used the subscript “0” to denote the input noise, and
δθ

(disp)
0 ≡ P0δτ

(disp)
0 . For future convenience, we further define

OL = P0 (R− FR +K) (7)

as the open-loop transfer function. Note that when F = 1, i.e., we subtract out the radiation
torque, OL = P0K, as one would expect.

The input displacement noise δθ
(disp)
0 = P0δτ

(disp)
0 is shown in Fig. 2. Here we consider both

the seismic noise and the damping noise, and assume that it is the same for the soft and
hard modes.1

For the sensing noise, we assume it to be a white noise with δθ
(sens)
0 = 5 × 10−15 rad/

√
Hz.

This is typical for the hard modes, and can be achieved for the soft mode if we use the
AC-coupled DC QPD signal in the > 0.01 Hz band.

1Note that when no control is implemented, the input noise in angular motion (in [rad]) depends on

the power in the arm Parm, as δθ(disp)(Parm) = P0δτ
(disp)
0 / [1 + P0R(Parm)] = Pss(Parm)δτ

(disp)
0 , with Pss =

P0/ [1 + P0R(Parm)]. In the figure, we show δθ
(disp)
0 = δθ(disp)(Parm = 0).
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Figure 2: Input displacement noise δθ
(disp)
0 (left; evaluated at 0 arm power) and δτ

(disp)
0

(right) used in our calculations. It includes both the seismic motion and the sensing noise
of the suspension damping loops.

3 SOFT MDOE

We consider the soft mode control with the digital compensation path on, Fs = 1. No extra
lowpass is required as the sensing noise injected in this path is sufficiently low even when
aLIGO reaches the full power with Parm = 0.75 MW. We thus have an essentially power-
independent plant. We then perform the H∞-synthesis on the plant to obtain the optimal
control filter2.

The resultant open loop transfer function OLs = P0 [Ks + (1− Fs)Rs] = P0Ks is shown in
Fig. 3. The blue trace is the result based on the optimal control design and the orange is
a reference which should be a typical representation of the O1 configuration (it has an 1/f
shape and a UGF' 3 Hz; there is extra roll-off starting at 8 Hz).

The OL can be translated into a noise performance, and result is shown in Fig. 4. Compared
to the reference, the µ-synthesis result provides the same amount of loop suppression around
the microseismic peak ' 0.5 Hz (the total rms is about the same), yet much better roll-off
of the sensing noise at 10 Hz.

The noise budget is derived in the nominal case with Fs = 1, i.e., a perfect subtraction of
the SS torque. In reality, however, imperfect subtraction may occur and the gain in the
subtraction path may be set to Fs, real = 1 + ∆Fs. This may potentially destabilize the loop
if the gain mismatch |∆Fs| is too large. Nevertheless, a conservative tolerance on ∆Fs can
be derived based on the small gain theorem. We show in Fig. 5 the tolerance on subtraction
gain mismatch for the case of Parm = 0.75 MW; the tolerance is greater for lower arm power.

2Actually a µ-synthesis is performed as we allow some imperfection in the digital subtraction.
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Figure 3: The open-loop transfer function for the soft mode. The blue line is the optimal
control result and the orange one is a reference control configuration.
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Figure 4: Noise budget for the soft mode. The solid lines are the total noise (blue for the
µ-synthesis result and orange for the reference OL). The dashed lines are the cumulative
rms. For the optimal control result, we also show its displacement and sensing noises in the
dotted lines.

4 HARD MODE

For the hard mode, subtraction of the SS torque appears to be challenging. This is because
the SS torque feedback for the hard mode, P0Rh, is large and extra lowpass would be nec-
essary to avoid injecting sensing noise to the sensitivity band, yet the phase delay caused
by the lowpass would make the subtraction imperfect, and the residual could still modify
the plant. On the other hand, since the hard mode torque actually tends to stabilize the

page 4



LIGO-T1800077–v3

10-1 100 101

100

101

M
ag

ni
tu

de
 (

ab
s)

From: In(1)  To: dampedout.tst.disp.P

Tolerance on subtraction mismatch

Frequency  (Hz)

Figure 5: Tolerance on the subtraction gain mismatch |∆Fs|, assuming we use the optimally
designed controller and the power circulating in the arm is 0.75 MW. For a given perturbation
with |∆Fs| < the minimum of the curve, it satisfies the sufficient condition of stability of
the perturbed plant. Therefore, the curve serves only as a conservative estimation of the
tolerance. It indicates that at least 60% DC gain mismatch in the subtraction path can be
tolerated.

plant, we will design the optimal controller with the SS torque modified plant (i.e. Fh = 0).
This means that our controller will depend on the arm power. Here we focus on the case
where Parm = 0.75 MW; the controller can be easily designed under the same principle for
any other level of arm power.

In Fig. 6 we plot the open-loop transfer function OLh = P0(Kh + Rh) for the hard mode.
Note that because of the radiation torque feedback, the closed-loop sensing noise is not
OLh/(1+OLh), but instead, it should be evaluated according to Eq. (5) with Fh = 0 (i.e. no
digital compensation). The closed-loop torque to angle transfer function and the closed-loop
sensing noise roll-off are shown in Fig. 7.

The noise budget for the hard mode is shown in Fig. 8. Once again we see that the opti-
mal control design improves both the low frequency rms and high frequency sensing noise
compared to the reference configuration.

To study the robustness, we consider two types of perturbations. First, we consider the case
where the power in the arm deviates from the nominal case by dParm. Via the SS mechanism,
it causes an extra torque-to-torque feedback with gain of [(dParm/Parm)RhP0]. Second, we
allow the controller DC gain to drift by dK|(DC). This accounts for the possible drift in
the sensing gain during a long lock stretch, which perturbs the torque-to-torque feedback
from the ASC control by

[
(dK/K)|(DC)KP0

]
. We can then use the small gain theorem to

estimate conservative tolerances on the power fluctuation and control gain drift. This result
is summarized in Fig. 9. It suggests that the loop will be stable for power drifts less than
30%, and for sensing gain drifts less than 45%.
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Figure 6: The open-loop transfer function, OLh = P0(Kh + Rh), for the hard mode. The
blue curve is the optimal controller designed with µ-synthesis and the orange one is the same
reference we used in Fig. 3.
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(a) Torque to angle in [rad/N ·m].

10-1 100 101
10-5

10-4

10-3

10-2

10-1

100

101

M
ag

ni
tu

de
 (

ab
s)

From: dampedout.tst.disp.P  To: dampedout.tst.disp.P

-syn
ref

HARD-CL:sensing noise roll-off

Frequency  (Hz)

(b) Roll off of the sensing noise in [rad/rad].

Figure 7: Closed-loop responses for the hard loop.
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Figure 8: Noise budget for the hard mode. The solid lines are the total noise (blue for the
µ-synthesis result and orange for the reference OL). The dashed lines are the cumulative
rms. For the optimal control result, we also show its displacement and sensing noises in the
dotted lines.
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(a) Tolerance on the fractional drifts of the arm
power.
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Figure 9: Robustness of the optimal controller for the hard mode. We have assumed the nom-
inal arm power of Parm = 0.75 MW. The bounds are obtained from the small gain theorem
and thus they are sufficient conditions (i.e. conservative estimations) for loop stability.
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A H∞- AND µ-SYNTHESES

. Loosely speaking, the H∞ problem can be stated as the following:

• Given a plant P , the algorithm tries to find a controller K such that

– the controlled feedback is stable.

– the ∞-norm3 of the closed-loop transfer matrix H = [W1S, W2T ]T is minimized,
with ||H||∞ = γ for some γ > 0. Here S = (1 + PK)−1 (which characterizes
the low-frequency suppression) and T = PK(1 +PK)−1 (which characterizes the
high-frequency roll-off), and W1 and W2 are frequency-dependent weights input
by the user.

For a single-input-single-output (SISO) problem the second point can be translated to

|W1(iω)S(iω)|2 + |W2(iω)T (iω)|2 = γ2. (8)

Since S = (1 + PK)−1 is important at low frequencies and T = PK(1 + PK)−1 important
at high frequencies, we can further write

|W1(iω)S(iω)| ' γ, for small ω, (9)

|W2(iω)T (iω)| ' γ, for large ω. (10)

Furthermore, at low frequency we should have PK � 1 (i.e., S ' 1/PK) and high frequency
PK � 1 (i.e., T ' PK), which leads to

|PK| ' 1

γ
|W1|, for small ω, (11)

|PK| ' γ
1

|W2|
, for large ω. (12)

For properly set weights, γ ∼ O(1). Thus by choosing the proper weighting functions
W1(iω) and W2(iω), we can shape the open-loop transfer function PK to have the desired
(asymptotical) frequency response, and the controller K to satisfy the target in the optimal
way can be obtained in the H∞-synthesis process.

A subtlety arises when we including the effect of radiation torque. It modifies the plant
as Pss(Parm) = P0/ [1 + P0R(Parm)]. Instead of the function4 Sss = (1 + KPss)

−1, what we
are really interested in is the closed-loop torque-to-angle transfer function Pss/(1 +KPss) =
PssSss. Specifically, we want

PssSss = P0S0 = constant, (13)

where we have used S0 to denote the S function at zero arm power. Therefore we should
modify the weighting function W1 = W1(Parm) as

W1(Parm) =
W1,0

1 + P0R(Parm)
, (14)

3the largest singular value across frequencies
4Note that KPss 6= OL = (R + K)P0. Thus this quantity does not preserve the torque-to-torque open

loop function. Nonetheless, the closed-loop torque-to-angle response is preserved, as Pss/(1 + KPss) =
P0/ [1 + (K +R)P0].
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where W1,0 is the weight in the free pendulum limit.

In Fig. 10 we show the weighting functionsW1,0 andW2 used in our design. At low frequencies
we want as large gain as possible, with some extra emphasize on the microseismic peak
at around 0.5 Hz (also close to the main suspension resonance). At high frequencies, on
the hand, we want the sensing noise to roll-off as fast as possible . The H∞-synthesis
algorithm finds the optimal controller satisfying (or trying to satisfy) those requirements
while guaranteeing the internal stability. The settings already yield better performance than
the current ASC design, yet can be further improved in the future studies.
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Figure 10: The weighting functions W1,0 (blue trace; zero power limit, cf. Eq. 14) and W2

used in the design. At low frequencies |W1| ' the loop suppression of the input displacement
noise, while at high frequencies 1/|W2| ' the roll-off of the sensing noise.

The controller designed via H∞-synthesis, while optimal in the frequency response, may
not be robust against uncertainties or perturbations to the the plant. Therefore controllers
presented in this note are actually calculated based on the µ-synthesis. Approximately
speaking, it can be viewed as an extension of the H∞-synthesis with the plant P now being
a system with some uncertainty; otherwise it is sufficiently similar to the H∞-synthesis.

Lastly, standard Matlab packages exists for the optimal control. The optimal controller can
be easily obtained using hinfsyn for H∞-synthesis and dksyn for µ-synthesis. Improving the
control performance can thus be translated into the (much simplified) exercise of optimizing
the weighting functions.

B THE SMALL GAIN THEOREM AND THE CON-

TROLLER ROBUSTNESS

The small gain theorem can be a useful tool for studying the stability of a feedback system.
In a not-so-mathematically-rigorous way, it can be stated as the following:
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• Suppose that a feedback system has an open-loop gain L, then a sufficient condition
for it to be internally stable is that

||L||∞ < 1. (15)

This allows us to decompose the system as L = H∆H, with H being the nominal part
(including plant and controller) and ∆H being a perturbation. Then the small gain theorem
implies that a sufficient condition for stability of the perturbed system is

||H∆H||∞ ≤ ||H||∞ · ||∆H|| < 1, (16)

or ||∆H||∞ <
1

||H||∞
. (17)

P0

R

�RF

K

�H

�H

H

H

�

Figure 11: Left: the basic perturbation model. H is the nominal system (both plant and
controller) and ∆H is some perturbation. From the small gain theorem a sufficient condition
for the loop to be stable is the ||∆H||∞ < 1/||H||∞. Right: applying the basic perturbation
model to the ASC system. Combining the elements in the shaded region leads to H =
−1/ [1 + (R− FR +K)P0], which can be used to derive tolerance on the perturbation term
∆H.

It can be applied to the ASC system as shown in Fig. fig:pertModel. The nominal torque-
to-torque transfer function H can be written as

H =
−1

1 + (R− FR +K)P0

=
−1

1 +OL
, (18)

which can be translated to a tolerance on the torque-to-torque perturbation ∆H as

||∆H||∞ < ||1 + (R− FR +K)P0||∞. (19)

In the study of the soft mode robustness, we have treated the perturbation as due to imperfect
subtraction, with

∆H = ∆FRsP0. (20)
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Then Eq. (19) can be converted into a tolerance on ∆F , with the result shown in Fig. 5. If
∆F is flat across frequency (which is likely to be the case as we only need to set a DC gain for
the digital subtraction path), then it is sufficient to maintain the perturbed loop’s stability
if |∆F | is smaller than the minimum of the curve shown in Fig. 5. Even the estimation
is quite conservative, we can see that the controller can handle 60% gain mismatch in the
subtraction path.

In addition to the modeled perturbation, we can use the small gain theorem to derive tol-
erances on less well understood perturbations like the dP/dθ instability (which is known
phenomenologically yet a complete analytical modal is yet to be developed). Since most
perturbations are likely to couple with the suspension system, we plot the tolerance on
∆H/P0, or effectively, ||(1 +KsP0)/P0||∞ in Fig. 12. Note that the most vulnerable frequen-
cies to perturbations are the suspension resonant frequencies (0.5 Hz and 1.5 Hz). These are
consistent with the observed frequencies of instabilities. If in reality the instability happens,
the weight in W1 can be increased at the corresponding frequencies.
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Figure 12: Tolerance on the unstructured angle-to-torque perturbation, i.e., the quantity
||(1 +KsP0)/P0||∞. It can be used to estimate the tolerance on less well-understood pertur-
bations including the dP/dθ instability.

Similar robustness analysis can be applied to the hard mode as well. Here we consider two
types of torque-to-torque perturbations. The first one is due to power drift in the arms. It
changes the amount of the SS feedback, which can be viewed as a perturbation term of

∆H(dParm) =
dParm

Parm

RhP0. (21)

The second type is due to the drift in the sensing gain, which changes the controller strength
and perturbs the plant by

∆H(dK) =
dK

K

∣∣∣
DC
KP0. (22)

Plugging each ∆H back to Eq. 19 allows us to compute the conservative tolerance on
(dParm/Parm) and (dK/K)DC, respectively. The results are summarized in Fig. 9. The
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controller can maintain loop stability for . 15% power drift or . 20% variation in the sens-
ing gain. Those values are within the typical fluctuation for a long lock stretch and thus the
controller is not only optimal in the noise performance but also robust under perturbations.
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