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ABSTRACT 

Experimental Search for Avalanches of Entangled Dislocations  

as a Source of Dissipation and Mechanical Noise 

By 

Morgan B. Shaner 

Recent measurements using highly sensitive instruments have shown increased 

dissipation and the appearance of random low-frequency noise in metal flexures. These 

effects have been attributed to avalanches of entangled dislocations, a phenomenon 

believed to be controlled by self-organized criticality (SOC) statistics. This experiment is 

attempting to detect these subtle effects using a variation on the Kimball-Lovell 1927 

rotating beam experiment that was used to measure the loss angle of materials above 1 

Hz. A frequency range of 1 Hz and below was chosen to study the effects of dislocation 

entanglement. The loss angle of a piano wire has been measured with milli-radian 

precision and the feasibility of making future measurements of loss angle with micro-

radian precision has been demonstrated at arbitrarily low rotation speeds. If dislocation 

avalanches are a source of the 1/f noise in these flexures (where f is the event frequency), 

it is expected that this experiment will be capable of detecting the expected deviations in 

loss angle. 
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CHAPTER 1 

Introduction 
 

This study is composed of two parts; the study of low-frequency mechanical noise 

from dislocation avalanches, if they exist, and of the use of glassy metal flexures as a 

possible dislocation-free alternative. Recent measurements using highly sensitive 

instruments have shown increased dissipation and the appearance of random low 

frequency noise in metal flexures [1]. This transition was observed to occur below 0.5 

Hz, introducing low frequency noise into devices using metal flexures [2] [3]. These 

devices include, but are not limited to, seismic attenuators for Gravitational Wave 

Observatories, seismometers and perhaps instruments measuring the gravitational 

constant. The Virgo inverted pendulums experience a suspect random walk around their 

equilibrium point [4]. The 1/f noise (where f is the event frequency) may be appearing 

within the suspension systems of gravitational wave detectors, introducing noise into the 

extremely precise position measurements these devices make [5] [6]. Since Henry 

Cavendish devised the first experiment to measure the gravitational constant, G, in 1798, 

scientists have continued to utilize and improve upon his original design [7]. Although 

measurement precision has reached the 10-12 ppm level, the discrepancy between 

experiments is as large as ±500 ppm  [1] [8] [9]. It is clear that there are uncontrolled 

parameters, perhaps the same one as in our experiments. 

It is proposed that the cause of these instabilities are avalanches of dislocations 

within the crystal structure evolving in a self-organized critical (SOC) regime. SOC is a 

phenomenon in statistical mechanics in which loosely connected states self-correlate to 

produce emergent (non-predictable) events [8]. In this case, i.e. metal flexures, the states 
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are dislocations in the crystalline structure, which can move and entangle. SOC tries to 

establish a currently unknown, fundamental relationship linking movements of these 

entangled dislocations at the atomic level to macroscopic mechanical properties. 

Dislocations are topological defects that extend from end to end of crystals and easily 

move through the material under the changing stress field. Because they cannot cross 

each other they entangle, as it happens in work hardening [10]. These entanglements can 

disentangle in slow avalanches and cause measurable structural changes [11]. This 

experiment is attempting to detect these subtle effects using a variation on the rotating 

beam Kimball-Lovell 1927 experiment that was used to measure the loss angle of 

materials above 1 Hz. Kimball and Lovell found that the loss angle of several materials 

was constant above 1 Hz [12]. This experiment aims to study frequencies below 1 Hz, 

where slow dislocation avalanches are expected to happen, to determine if there is a new 

dissipation regime. It is expected that if disentanglement happens, larger loss angle and 

sudden deviations of the equilibrium point of the flexure will appear during the rod’s 

rotation at very low frequencies [2] [10]. 

Should the theory of SOC prove to be valid, a new non-crystalline material needs 

to be developed in order to remove the 1/f noise from high sensitivity instruments using 

metal flexures. Self-organized criticality is believed to be present in all polycrystalline 

metals; therefore, one solution is to use a glassy metal. Glassy metals are materials 

containing no dislocations, have twice the elastic limit of polycrystalline metals, are 

electrically conductive and have low mechanical losses [2]. Previous studies for a new 

material in measurements of G considered ceramic glassy materials (fused silica fibers), 

however, these fibers create a problem because they lack electrical conductivity, which is 
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important in these devices. Thus, G. Cagnoli and his team tried coating them in metals, 

only to find large mechanical losses of the thinly deposited metals [8]. Creating glassy 

metal flexures may not only remove the differences in experimental measurements of G, 

but also influence the designs of scales, seismometers, gravimeters, and other inertial 

sensors that use metal flexures or suspension wires. 
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CHAPTER 2  

Theory 
 

The source of low frequency noise detected in the seismic attenuation systems 

used in the gravitational-wave observatories is thought to originate from dislocations in a 

metal flexure’s crystalline structure at the microscopic level. These microscopic defects 

have macroscopic effects in the material through the following mechanism. Dislocations 

are highly prominent in all metals.  Maraging and high carbon steels are to be explored 

first because studies have already been conducted on these materials and shown 

equilibrium point fluctuations below 0.5 Hz where the dislocations are able to entangle 

and create a complex structure. At a low enough frequency and at a critical point the 

entangled dislocations can disentangle causing avalanches which changes the elastic 

stress distribution within the material. On the macroscopic side this would appear as a 

shift in flexure’s equilibrium point. In this section the role of self-organized criticality 

will be discussed in regard to explaining this process as well as the inspiration for a 

method to study these effects through the measurement of the material’s loss angle at low 

frequencies. 
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2.1 Self-Organized Criticality 
 

Some characteristics of self-organized critical (SOC) systems are that their 

evolution towards a critical state is internal and is reached without outside interference 

over a long period of time.  Thus, macroscopic effects can only be studied on time scales 

much longer than the evolutionary process and their evolution is heavily dependent on 

the system’s history [10]. Per Bak uses a sandpile to explain SOC in an elegant way: 

“The canonical example of SOC is a pile of sand. A sandpile exhibits 

punctuated equilibrium behavior, where periods of stasis are interrupted 

by intermittent sand slides. The sand slides, or avalanches, are caused by 

a domino effect, in which a single grain of sand pushes one or more other 

grains and causes them to topple. In turn, those grains, not gradual 

change, make the link between quantitative and qualitative behavior, and 

form the basis for emergent phenomena” [10]. 

In this thesis SOC is used to explain dislocation behavior in order to connect the 

following observed macroscopic phenomena: “fluctuations of Young’s Modulus, drastic 

changes in dissipation modes and hysteretic properties of the material, random walk of 

equilibrium point, spontaneous de-stabilization events leading to collapse, anomalous 1/f 

transfer fluctuations and 1/f mechanical noise” [2]. 

 Dislocations are imperfections in a crystal’s atomic structure and either consist of 

an extra partial plane of atoms (edge dislocation), a spiral distortion of normally parallel 

atom planes (screw dislocation), or (more commonly) a combination of the two types 

[14]. These dislocations are free to move through the crystal structure on timescales of 

micro-seconds which causes plasticity in metals. Their motion is called slip. The vectors 
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b and l (where b defines the strength of the slip a dislocation carries (also known as the 

Burger vector) and l is a unit vector tangent to the dislocation line that defines the 

orientation of the dislocation) form what is called a glide plane on which a dislocation is 

allowed to move as shown in Figure 1 [14]. Climbing is the second mechanism of 

motion however, it is omitted because gliding is the dominant method of motion at low 

temperatures [14].  

Dislocations are topological defects that cannot cross each other, thus leading to 

complex intertwined dislocation structures. The first method of blocking the motion of a 

dislocation is when a dislocation happens upon a point-like impurity which can manifest 

as a vacancy, self-interstitial, or substitutional impurity atom (in the case of maraging 

steel, these are most likely the added precipitates). At this point of contact, the dislocation 

can either become pinned, reflected or pass through. If pinned this creates a site, which 

cannot be avoided by the other dislocations because this dislocation locks a line that 

extends across the entire crystal, causing dislocation entanglement. Since dislocations can 

pass around point-like impurities, it is thought that the more common method of 

entanglement is through dislocations interacting with each other. As this complex 

structure evolves into self-critically it will reach a point of criticality in which the 

entangled system may avalanche causing a detectable macroscopic effect in the material.  

While an individual dislocation can respond in microseconds, the complex 

disentanglement involved in avalanching can be much slower. In maraging steel, 

characteristic times observed are on the order of seconds [2]. 



 7 

 

Figure 1. Crystal lattice structures illustrating an edge dislocation, an extra half-plane of 
atoms, (top) and the way an edge dislocation slips through the structure along the glide 
plane under a shear stress (bottom). The extra half-plane of atoms appears at site A in (a) 
and then travels one atomic distance to the right to site B as shown in (b), this movement 
continues until it reaches the edge where a step forms in (c) [14]. 

In this experiment we want to study these macroscopic effects on timescales long 

enough that the avalanche evolutionary process has time to complete. Thus, a low-

frequency movement is necessary to give these dislocations time to disentangle and to 

entangle to track the macroscopic effects caused by the avalanches of these disentangling 

systems. If SOC theory proves correct in combining the outlined macroscopic effects 

(wreaking havoc on high precision measurements due to the microscopic dislocation 

motion) it would allow understanding of materials exhibiting SOC behavior.  
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2.2 Kimball and Lovell 
 

In December of 1927, A. L. Kimball and D. E. Lovell published a paper entitled 

“Internal Friction in Solids” in which they studied the bend (sag) of a revolving shaft 

usually 1.27 cm in diameter and about 1 meter long [12]. They showed that what was 

then called the “loss angle” of a material, can be measured as the angle of deviation of the 

gravitational sag of the center of rotation from the vertical, as shown in Figure 2. The 

two scientists found that the internal friction forces were not behaving exactly like a 

viscus fluid. The dissipative forces instead appeared to be the same at all rotation speeds 

[12]. This experiment allows for the adjustment to the low frequencies needed to study 

the avalanches of entangled dislocations and for the study of how dislocation movements 

affect the internal friction of a solid. 
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Figure 2. Lateral deflection of the rod’s sag due to internal friction in the solid during 
rotation. Where the forces labeled in the diagram are as follows: frictional tension (TF), 
frictional compression (CF), elastic stresses (TE and CE), upward reaction (RE) where RE 
and RF, are components of the force, which balances the weight (W) exerted on the end of 
the shaft. The other labels in the diagram are for the loss angle of the material (ie. angle of 
deflection) and d for the sag of the rod [12]. 
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Figure 3. Plot of the sideways deflection of the end of the shaft against the speed of rotation 
for several different materials [12]. 

In Figure 3 it is clear that for most materials the size of the deflection remains 

constant with rotational speed. If dislocations are a source of the dissipative forces 

previously discussed, it is expected that at low frequencies the deflection of the rod will 

increase. At low enough frequencies and a high enough precision in position 

measurement individual avalanches may even be visible with the modification of this 

experiment.   
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CHAPTER 3  

Experiment 
 

This experiment is attempting to detect the macroscopic effects on the equilibrium 

point of a flexure under gravitational stress caused by avalanches of entangled 

dislocations. The experiment is a variation on the rotating beam Kimball-Lovell 1927 

experiment that was invented to measure the loss angle of materials. Kimball and Lovell 

were interested in dissipation above 1 Hz. The experiment has shown changes in 

dissipation at low frequency.  The experiment, shown in Figure 4, is designed to work at 

frequencies below 1 Hz to study the dissipation behavior that is expected to occur below 

0.5 Hz. 

 

Figure 4. Image of self-organized criticality experiment (not fully assembled). 

Starting on the far left is a stepper motor suspended from a rigid stainless steel frame, the 

flexure under test, in the form of a wire, is attached to the motor through a brass bushing 

and, at the other end, to a stainless steel tube with another brass bushing. The function of 
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the tube is to enhance the torsional gravitational stress on the flexure, and to change any 

flexural deviation into large transversal motion that can easily be measured. At the end of 

the tube there is a third brass bushing supporting a high conductivity copper disk with a 

coaxial screw.  The disk housed between two low carbon steel disks (not fully assembled 

in this image), each provided with 16 magnets glued in equal degree separation around 

the inner diameter of the disks with alternating polarity. These magnets provide strong 

magnetic field across the disk, thus forming an eddy current brake to damp all vibrations. 

The screw-cap supports an object used to track the movements of end of the rod. Figure 

14 shows the schematics of the setup, and the individual experiment components are 

discussed in detail in the following sections. 
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3.1 Frame 
 

The rigid frame housing the experiment is composed of T-slot aluminum 

extrusion bars, with brackets and corners to enhance rigidity, as shown in Figure 5. The 

structure is also designed to be suspended from a geometric anti-spring (GAS) seismic 

isolation filter (see Section 5.1.1).  All mountings for components are designed to be 

adjustable to allow for tuning range. They include: 

• A stepper motor mount which is a simple corner bracket modified to accept 

the screws fastening to the front of the motor, see Figure 6. 

• A microscope camera mount which allows for transverse motion in x and y, 

and vertical tilt of the camera to point perpendicular to the object being 

tracked at the end of the tube, see Figure 8.  

• An eddy current damper mount, which extends from the frame using 

aluminum bars and corner brackets for transverse motion in x, y, and z and a 

rotation mount. Its function is to position the eddy current magnet holder 

around the copper disk, matching its angle, see Figure 9. 

The frame can be tilted to change the stress level applied on the flexure.  If turned 90o it 

allows measurement of the flexure static bend, without gravitational torque stress applied. 
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Figure 5. Main frame without instrument mounts. 
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Figure 6. Motor mount drawing. Side view left and front view right. 

 

    
 

Figure 7. Images of the motor mount. Side view left and front view right. 
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Figure 8. Side view of camera mount (Text in red are axis degrees of freedom). 

 



 17 

 

Figure 9. Eddy current brake mount. Left is a front view of the mount, center is the side 
view, and right is a detail of the right disk. 



 18 

 
 

Figure 10. Image of the left and right disks. Black dots were applied with markers to 
indicate the North Pole of the magnet. One disk is cut in half for assembly reasons. The 
soft iron acts as a magnetic flux return confining the magnetic field to that which occurs 
between facing magnets. 
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3.2 Stepper Motor 
 

The stepper motor used is a Trinamic MODEL QSH2818-51-07-012 (see Figure 

7) and has 200 steps/turn.  A high torque stepper motor was chosen because of its longer 

shaft, to reduce the effects of any residual play of its two pre-compressed roller bearings 

by a half. The motor driver MODEL TMC5130-EVAL allows for 256 microsteps/step. 

Stepper motors are known for their “stepping” vibrational noise at 200 times the 

rotational speed that may be a concern at the low r.p.m. chosen for this experiment.  The 

operation in microsteps shifts the stepping noise to 51,200 times the chosen rotational 

frequency. Vibration frequencies from this noise, even when rotating as slow as 1 mHz, 

are well inside the frequency range effectively damped by the eddy current damper (see 

Section 3.4).  It should be also noted that the stepping noise is principally a torque noise, 

which is orthogonal to the horizontal shift of the sag significant for this experiment. 

Since the motor is not subject to any significant torque load, it can be operated at low 

current.  The motor is designed to run with a maximum current of 1.01 A.  Tests were 

completed to ensure that rotation is not affected for currents as low as 0.08 A (see 

Appendix A). Operating the motor at 0.08 A, creates only 60 mW of power dissipation 

on the motor resistance of 9 W.  
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Figure 11. Plot of temperature data taken of the motor rotating at 0.1 r.p.m. fitted to find 
the maximum temperature of the motor and how long it takes the motor to thermalize. Plot 
and fit colors are reversed (i.e. Red data corresponds to blue fit parameters).  

 
An investigation was done on the time constant of the heating caused by running 

the motor over large periods of time driven at different current inputs. It was found that 

regardless of the input current, the motor operated at 1.01 A, without cooling fins, 

thermalizes to a temperature of 71.21 ± 0.06 oC for the first thermometer and 75.32 ± 

0.05 oC for the second, 50 oC above room temperature. Thermalization (at 5t) can be 

considered to happen within 34.7 - 35.2 minutes. For this experiment, the motor was run 

at 1.01 A, however, in the actual experiment the motor will be run at 0.08 A, producing 

0.16% of heating and a rise of 8 oC. Thus, data taken might show an initial drift in sag 

due to heating the motor, but then stabilize.  A finned, aluminum heat radiator was 
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designed to be attached to the motor and to increase its passive air cooling. In the future, 

the experiment will be placed inside an acoustic isolation box, which will also act as 

thermal isolation.  The box will reduce the effect of external temperature fluctuations but 

will also bottle-up all heat produced by the motor. To avoid temperature run-off, a water-

cooled radiator, separate from the motor, will be installed inside the box to sink the heat 

produced by the motor. 

 

Figure 12. Image of the Trinamic stepper motor control board. The motor is attached on 
the right and the power supply on top the right corner. For manual see reference [15]. 
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Figure 13. Technical Drawing of the Stepper Motor with Dimensions in mm [16]. 

The set-up and use procedure for the control of the Trinamic motor is available in 

Appendix A. A larger and more rigid StepperOnline motor, Nema 17 MODEL 17HS24-

2104S, was also procured in the unlikely case the Trinamic motor rigidity is shown to be 

problematic. 
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3.3 Rod Design 
 

The rod design, see Figure 14, was created to obtain a large enough sag while 

imposing a well-defined torsional stress on the material, and allowing a easily 

customizable flexures to test a variety of materials1. These materials include high carbon 

steel, copper-beryllium, tungsten and maraging steel and were chosen because they 

exhibit excess losses [8]. The flexure stress level can be changed multiple ways: 

• Changing the mass of the copper disk (which is a key component of the eddy 

current vibration damper) 

• Changing the length of the tube 

• Tilting the frame, thus changing the angle of the force applied by gravity 

• Changing the flexure diameter 

This allows for great flexibility in the experiment. 

 

Figure 14. Current rod design under no gravitational stress. 

Figure 14 shows the schematics of the flexure and rod design currently in use. In this 

design the parts are fit with close tolerances and glued together using a slow drying super 

glue to minimize spurious flexure between parts. The downside to gluing is that a new 

                                                
1 All parts were machined in bulk (6 each) by Daniel Roberto, a machinist who just retired from 
the California State University, Los Angeles Department of Engineering. 
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sample, including a new motor, must be created for each test material and configuration. 

Additionally, if not glued carefully we may end up measuring the loss angle of the glue 

instead of the loss angle of the material under test. For a more advanced version of the 

rod design see Figure 30. 

 

Figure 15. Current rod design showing how it sags under gravity. 

The sketch in Figure 15 and shows the rod bends under gravity. The dotted lines are the 

lines of symmetry for the rod with and without gravity applied. 
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3.4 Eddy Current Vibration Damper 
 

Vibrations come from the surrounding environment, acoustic noise and from the 

motor itself.  An eddy current disk damper was installed to remove these vibrations. A 

ring of magnets of alternating poles were glued around two disks, see Figure 10, in order 

to create a strong field crossing the disk in 16 locations. Two soft steel washers were used 

to channel the return field on the back of the magnets.  One of the two washer was split in 

half for ease of installation around the tube, see Figure 16. 

 

Figure 16. Eddy current damper (not fully assembled). 

If the copper disk vibrates within the magnetic field, it induces current opposing the 

motion in the copper disk, viscously damping any vibration. A rough measurement of the 

magnetic field using a gaussmeter showing that the field remains constant across the 

separation an illustration of this effect is shown in Figure 17 for one set of magnets 

across the disk. A test needs to be conducted to compare a copper disk to the aluminum 
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disks of three different thicknesses to find the optimal material and disk separation for 

damping vibrations.  

 

Figure 17. The image on the left illustrates the field lines from one magnet pair across the 
disk. The image on the right is a diagram showing how an eddy current disk brake works. 
The black arrow indicates that the disk is spinning clockwise, the green arrows indicate the 
magnetic field which induces circular current shown in red within the disk.  These circular 
currents are called eddy currents.  During rotation the induced currents are dragged with 
the motion and distorted by an amount proportional to the speed, and produce a force 
opposing the motion. From Lenz's law, the eddy currents create a changing magnetic field 
to oppose the field felt by the magnetic field applied across the disk [19] [20]. 

 
A functionality test was done to measure the effectiveness of the brake by 

inducing vibrations without the brake (Figure 18), with half of the brake (Figure 19), 

and with the entire brake (Figure 20). 
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Figure 18. No Damper. Red points are the data, the blue line is the fit to the data. 

Clearly without damping any outside mechanical noise would excite large amplitude 

vibrations. The wire has a measured Q-Factor of 106.24 ± 0.2, obtained using the 

Equation 3.1. 

𝑄 = #$
%&
				𝑜𝑟				𝑄 = t	𝑓                         (3.1) 

Where t is the exponential decay time constant (the time it takes for the oscillation to 

damp to 1 𝑒⁄  amplitude), and w (or 𝑓) is the frequency of oscillation. The fit parameter 

m3 gives the period (T) of oscillation as 0.257910 ± 0.000006 s, using Equation 3.2 this 

gives a frequency of 24.362 ± 0.004 Hz. 

𝜔 = %&
/
					𝑜𝑟					𝑓 = 0
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The loss angle (f) expected to be observed can be found using Equation 3.3 to be 9.42 ± 

0.02 milli-radians. 

 f = tan40 0
5

                    (3.3) 

 

Figure 19. Half damper. Red points are the data, the blue line is the fit to the data. 

With half of the damper installed a substantial amount of damping is induced. 
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Figure 20. Complete Damper. Red points are the data, the blue line is the fit to the data. 

With the complete damper installed almost critical damping is achieved.  The 

damper reduces the amplitude of resonances below the planned position resolution of tens 

of nanometers. In addition to the damper, the experiment will be housed in a Styrofoam 

box to remove the effects of air conditioning and suspended from a geometric anti-spring 

attenuation filter to remove seismic excitation, see Section 5.1.1. Another set of 

measurements will need to be taken of the magnetic field using a mount to ensure that the 

sensor remains stationary. It is interesting to note that in Table 1 that the damper induces 

only a small frequency shift at the relatively high oscillation frequency of 24 Hz, 
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indicating that its viscous damping has minimal effects on the sub-Hertz effects that are 

the object of this study. 

Table 1  

T and w values for each test. Columns 2 and 3 are measured oscillation period and 
corresponding error, columns 4 and 5 are frequency and corresponding measurement 
error, column 6 is the frequency shift induced by the damper. 

 
 

 

 

The first resonant frequency of the flexure-tube-disk system (24 Hz), all higher 

frequency harmonics, and to the high frequency stepping noise will be damped, but the 

damper will not affect the static lateral changes of sag, nor its fluctuations, which if they 

exist, are expected to be well below 0.5 Hz. 

  

 T 
[s] 

dT 
[s] 

w  
[Hz] 

dw  
[Hz] 

Dw 
[Hz] 

No damper 0.257910 0.000006 24.362 0.004 ---- 
Half damper 0.260 0.002 24 1 -0.36 
Full damper 0.2644 0.0007 23.8 0.4 -0.60 
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3.5 Tracking and the Determination of the Gravitational Sag Changes 
 

Neither the wire flexures, nor their fastenings to the motor and to the tube, are 

perfectly straight.  Therefore, the end of the tube will move in a circle around a center of 

rotation that cannot be pre-determined.  It is the sag of this center of rotation, and its 

lateral movements when rotating in different directions, which are relevant for this 

experiment.  To do this we developed an orbit tracking method. 

A first, low-resolution, experiment to track the position of the end of the rod was 

conducted using a 4.75 mm stainless steel ball which was glued to the hexagonal socket 

screw-cap fastening the damper disk to end of the rod.  A program called “Tracker,” 

available through open source educational software was used to track the motion of the 

ball as the stepper motor rotated the rod at a set frequency. The video of the rotation was 

taken using a USB microscope camera mounted to the frame angled to be perpendicular 

to the end surface. Once the video was taken, it was uploaded to the “Tracker” program 

and the reflection of the camera was used to create a template for the program to track. 

The program was then used to track the reflection through the video, in most cases the 

auto-tracking function was insufficient and manual tracking was necessary. This was due 

to the blur observed in videos taken at and above 0.5 Hz due to the limitation in frame 

rate and the exposure time for each image. The x-position, and y-position (in pixel units) 

were then transferred into a data file for fitting. The fitting method uses a polynomial 

(least squares) curve fitting method where it not only fits the set of data but uses a 

bootstrapping method to fit samples of the data to improve the fit.  This technique allows 

the extraction of the center of both clockwise and counterclockwise rotations, which is 

then used to determine the loss angle of the material.  
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To convert the number of pixels was counted across the 4.75 mm diameter of the 

ball in one of the video frames. The size of a pixel was found to be 27.46 µm by 27.46 

µm. An error of ±5.5 pixels in x and y from the tracking program, resulted in an error in a 

position of ±151 µm, see Figure 21. 

 

Figure 21. Determination of position error using “Tracker” program.  

Once this conversion from pixels to µm was implemented, a Python code was used to 

complete the fitting process. The results from this method appear in the Chapter 4 of this 

thesis. In the future, tracking will move away from this coarse method and a tracking 

software currently in development will be used to greatly improve the precision (see 

Section 5.1.5). A new camera needs to be purchased that will allow the user to take high-

resolution videos without making the image acquisition too slow. At least 5 

acquisitions/second are needed to obtain 10 images per orbit at 0.5 Hz.  The current 

camera is too slow but has a very convenient feature; it has eight light emitting diodes 

(LEDs) around its charged coupled device (CCD), which is valuable to the eventual 
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tracking of 49 µm glass beads. Not only does it allow for high contrast, but the reflection 

from each of the beads has a particular shape that allows for high precision tracking of 

the beads, as discussed in Section 5.1.3. Thus, when the new camera is purchased a ring 

of LEDs around the new CCD will need to be fabricated. 
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CHAPTER 4  

Results 
 

Using a 4.75 mm metal ball and a glued high carbon steel test wire, a signal was 

observed at a range of frequencies with loss angles appearing in Table 2. These values 

were found using the centers of the ellipses created during both clockwise and 

counterclockwise rotation by the sag of the rod under gravity. 

f = 6∆8
9:∆;9

%<
                      (4.1) 

Where d (33000 µm) is found by measuring the change in height of the end of the straight 

rod to the height of the end of the rod experiencing sag due to gravity, and both Dx and  

Dy mark the change in position from clockwise to counterclockwise rotation µm. The 

main data is in Table 2 and plots of the raw data can be found in Appendix B. A control 

frequency of 1 Hz was used in order to correct for any drift in the sag due to the heating 

of the stepper motor. No such effect was seen in this data set, which could be due to the 

large error from the tracking program. 

Table 2  

Loss angle results at eight rotation speeds. 

 

 



 35 

 

Figure 22. Plot of the measured loss angle against frequency of rotation. The expected loss 
angle measured at 24 Hz is artificially placed at 1.1 Hz to allow for convenience.  

 
To obtain the data, data was taken in from the highest rotating frequency of 0.75 

Hz to the lowest of 0.05 Hz, continuously alternating between 1Hz and the desired test 

frequency to reduce systematic drifts. Each data set contained one repetition of 5 

rotations clockwise (motor position: 0 – 256,000), followed by 5 rotations counter-

clockwise (motor position: 256,000 – 0); and were separated into clockwise and counter-

clockwise rotation paths prior to fitting. The data was then run through a program in 

Python, which used a polynomial curve fit to find the center of the ellipse. It had error 

calculated from the bootstrapping method in the program that samples the data and then 
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calculates a center for each fit to obtain a sigma value. The difference in the x and y 

positions of the two centers were taken to find the loss angle using Equation 4.1. 

The data analyzed in Table 2 had a visible problem, as illustrated in Figure 32: it is 

possible that the copper disk was making contact with the eddy current brake mount 

during the measurement. Nevertheless, a first data analysis was attempted.  

When testing the effectiveness of the eddy current damper, the loss angle of the 

piano wire was calculated from the 24 Hz ring-down data shown in Figure 18 and was 

found to be 9.42 ± 0.02 milli-radians. This value was taken with the same rod used for 

this experiment and was thus used as a comparison value to ensure the results found 

using the rotating rod method agreed with the oscillation data. The measured loss angle 

was found to bounce around that value (see Figure 22). The 24 Hz value differed from 

the average of the results in Table 2 (9.9 ± 0.3 milli-radians) by 5%. This is a superb 

agreement given the current state of the experiment. The postulated increase of loss angle 

at low frequency is not visible in this carbon steel sample. Please note that both 

measurements were performed with the glued sample, as a result we may have been 

measuring the losses in the glue.  

With the improvements outlined in the following chapter; we can greatly improve 

the precision in the loss angle to 10’s of micro-radians (nm precision in position) and 

remove many sources of noise currently appearing in the data. 
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CHAPTER 5  

Future Improvements and Research Areas 
 

This experiment is too complex to be completed in a single master thesis.  From 

the beginning, this project was intended to be performed by a sequence of students.  

Therefore, this chapter is particularly important; it includes a number of improvements, 

which can be made to bring the experiment to a successful conclusion as well as a 

possible extension of the project, which entails looking into possible replacement 

materials for the outlined devices using metal flexures should the dislocation avalanche 

theory prove to be true. 

5.1 Improvements to the SOC Experiment 

This section contains improvements to be made including the suspension of the 

system from a GAS Filter, stabilizing the temperature of the experiment, improvements 

to the position measurement precision, a new design for the rod, and a new tracking 

program to automate the process. Orders of magnitude progress was made in improving 

the position measurement precision. 

5.1.1 GAS Filter 

As the precision is increased in the experiment, seismic noise will become more 

prominent in the data. Suspension from a geometric anti-spring (GAS) filter shown in 

Figure 23 can be used to isolate the experiment from seismic noise. It does this through 

the use of maraging blade springs in a geometric anti-spring configuration, which behave 

like the three springs shown in Figure 24.  
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Figure 23. GAS filter used in LIGO [19]. 

The stiff vertical spring supports the weight with a large, negative elastic constant 𝑘>. 

The two horizontal springs are pre-compressed against each other. At equilibrium the 

radial compressional forces 𝐹@ of the two horizontal springs cancel. When moving 

vertically away from the equilibrium point the vector sum of the two springs produce a 

vertically repulsive force proportional to the compressional force and the vertical 

displacement. 

𝐹 = 𝑘ABCD	𝑧                   (5.1) 

where 𝑘ABCD = 2𝐹@ℎ/𝐿.  The equation is formally equivalent to that of a spring, only with 

a positive sign, i.e. an antispring.  An antispring of arbitrary strength is generated by 

changing the radial compression FH.  By tuning the antispring constant kanti to match that 

of the vertical spring, 𝑘JKK = 𝑘ABCD − 𝑘> 	≈ 	0, the effective stiffness of the GAS spring 

can be nulled while the suspended load remains unchanged.  A spring of null elastic 

constant is unable to transmit perturbations in the z axis to its payload, hence the 
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mechanical attenuation of vibration. A wire suspension isolates the payload from 

horizontal perturbations. 

 

 

Figure 24. 2D vertical plane schematics of a geometric anti spring [9]. 

There is a GAS filter set-up available in the lab for this purpose.  

5.1.2 Stabilizing the Experiment Temperature 
 

The experiment needs to be housed in a thick Styrofoam box to shield it from 

ambient temperature fluctuations and from acoustic noise. A water-cooled heat sink will 

be installed to evacuate the heat radiated by the stepper motor and maintain the 

experiment at a given temperature. Both the heat sink and the motor will be equipped 

with fins to radiate and exchange the heat. 

5.1.3 Position Measurement Precision 
 

The steel ball does not provide sufficiently precise measurements of the tube front 

face. A much better position precision was demonstrated using a CCD microscope 

tracking the position of 49 µm diameter glass beads markers mounted on a black glass 

disk, mounted on the front face of the tube.  
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There is no need to mark the center of the rod, because it will “orbit” around a 

center of rotation determined by straightness defect s in the assembly, which cannot be 

pre-determined. Since only movements of the center of rotation are of concern, the orbit 

of any marker positioned on the front of the rod is suitable for identifying the center of 

rotation and its movements. Therefore, the beads were simply sprinkled on the surface of 

the black glass disk, which had been coated with a µm thin layer of wax. The disk was 

then heated to melt the wax to grab and hold the beads. The black glass disk is then 

simply glued on the cap of the screw at the end of the tube. 

The choice of black glass is to increase contrast. The microscope has eight LEDs, 

see Figure 25, each producing a reflection on each bead.  The reflections appear as a 

daisy shape, see Figure 26.  The daisy of loose beads appears with a core due to the 

fraction of light entering and trapped in the bead; the wax produces an optical contact 

with the black glass that drains the trapped light and makes the center dot disappear.  It is 

therefore easy to pick beads solidly attached to the glass and ignore loose ones. To 

produce position determination with nm resolution the image of a chosen daisy is 

digitized and analyzed for each successive microscope frame. A demonstration of the 

achievable resolution is illustrated in Figure 26, Figure 27 and Figure 28. Figure 26 

shows a number of daisies.  A slice of the digitized daisy, along the cut of Figure 27, was 

taken and fitted in Figure 28 to achieve 38 nm precision. 
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Figure 25. USB microscope camera’s LEDs. 
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Figure 26. Reflections of the eight LED’s in the 49 µm glass beads. 

 

 

Figure 27. Zoom into a single bead with red line to show slice. 
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Figure 28. Gaussian fit of the brightness across the slice, the fitting resolution of each 
Gaussian is indicated in blue. 

 
To further enhance precision, the entire daisy in Figure 27 can be fitted to a 

crown of 8 ellipsoidal Gaussians, see Figure 29.   A daisy positioning precision better 

than 10 nm can be expected with a global daisy fit.  

The USB microscope with its crown of eight LEDs coupled with 49 µm diameter 

beads proved capable of producing measurement precision in tens of nanometers. 

However, the USB microscope’s acquisition rate is too slow in high definition mode and 

is not suitable for the measurement repetition rate required by tracking. A new camera, 
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capable of faster high-definition video frame rate, and possibly better image quality, is 

necessary to implement high precision tracking with the 49 µm glass beads.  

 

Figure 29. Illustration of fitting the eight ellipsoidal Gaussians of the daisy shape. 

The aim of the experiment is to measure the loss angle of the flexure’s material and its 

fluctuations, i.e. the movements of the gravitational sag of the end of the tube.  What 

counts in determining the loss angle resolution is the transversal position resolution 

divided by the gravitational sag.  A position resolution of 30 nm and a sag of 30 mm 

result in 1 micro-radian sensitivity, which should be compared with a typical metal loss 

angle of 100 micro-radian in a high-quality metal.  The demonstrated single-daisy 

position resolution is sufficient to detect smaller than 1% fluctuations from the daisy 

circular orbit.   

The demonstrated resolution is therefore adequate to detect the effects of 

sufficiently large dislocation avalanches, if the vibrations of the rod are reduced below 

the nm level. Ground vibrations are less than a µm above few Hz, the GAS filters easily 

attenuate to less than 1/1000 of ground vibration, and the Eddy current damper proved 

adequate to produce critical damping.  Only internal movements of the frame-rod system 
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are relevant.  The main source of statistical and systematics error should be from acoustic 

couplings and thermal drifts, both mitigated by the thermal enclosure.   

5.1.4 New Rod Design 
 

A new rod attachment design was created with collet clamps that avoid the need 

of gluing and enable the use of the same rod to measure multiple flexures, thus avoiding 

using a new stepper motor and making a new rod for each material as required by the 

original design. This will speed-up and reduce costs for future data acquisition runs. The 

new rod design is shown in Figure 30. 

 

 

Figure 30. Schematics of new rod design. 

The clamping to the collet on the right side of the test wire connecting the wire to the 

tube is currently being machined to remove unnecessary mass.   
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Figure 31. Image of the motor with a collet mount attached to the shaft. 

5.1.5 Eddy Current Brake Modifications 

The eddy current damper has been modified to allow for more freedom of 

transversal motion. Due to poor sample straightness, the copper disk made contact with 

the nuts separating the disks as data was taken. This contact is clearly seen in the raw 

rotation data shown on the left of Figure 32. One particular point of contact is indicated 

by a green ellipse encircling the region.  On the right is a new set of raw data with the 

new configuration. In the new configuration a stainless steel tube used as a spacer to 

replace the nuts. With this improvement, the contact with the frame is removed. Another 

improvement to the eddy current brake is the testing of aluminum versus copper to 

determine the best material for the brake and then to cut shorter segments to decrease the 

spacing between the magnets to improve the damping. 
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Figure 32. Raw 0.5 Hz data from the experiment (left) and new set of raw data (right). 
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5.1.6 Maraging Wire Design 

 Rather than simply cutting out a section of a wire in the case of our piano wire 

sample, a design was made for the maraging steel wires as shown in Figure 33.  

 
Figure 33. New maraging wire design. 

5.1.7 Tracking program 

A custom tracking program is in development. Presently it uses Matlab to take in 

a template of a daisy reflection in a glass bead, specified by the user, and track a chosen 

bead through successive images using correlation thresholds. Currently the program had a 

74% success rate with a 94% correlation threshold using stop motion tracking of a single 

daisy before misreadings begin to appear. The capability of identifying a constellation of 

daisies to make sure that the same daisy is tracked is being added. After positive 

identification of the chosen daisy a new program would fit with the crown of eight 

ellipsoidal Gaussians get the position resolution. It is planned to move away from Matlab 

and toward a faster programming language. Machine learning could be incorporated to 

allow identification of daisies without inputting a template. For details on the method of 

testing the current program see Appendix B. 

  

2 mm diam 1 mm diam

10 mm 10 mm60 mm

0.5 mm r

material   maraging
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5.2 Glassy Metals as a Possible Replacement Material 
 
Glassy metals have been considered to replace maraging steel in suspension blades for 

several reasons: 

• Metals alloys in glassy form have double the elasticity range of the same alloy 

in polycrystalline form and can be loaded with twice the elastic potential 

energy. 

• Glassy metals are particularly resistant to corrosion [21]. 

• Glassy metals have no crystalline structure and therefore no dislocations.   

Therefore, they are free of all dislocation-mediated loss mechanisms, both the traditional 

Granato-Lueck and the anomalous mechanism investigated here. While glassy metals 

have a number of different drawbacks, they are obvious materials of interest for 

suspensions. 

Work was completed at Montana Instruments over the summer of 2017 

comparing the low-frequency performance of maraging and LM105 cantilever blade 

springs. As already stated, virtually all cantilever blade springs used in gravitational-

wave detectors for seismic attenuation are made with maraging steel [8]. Geometric anti-

spring filters made from this material and designed to reach arbitrarily low resonant 

frequencies have shown instabilities that impede their tuning below 0.5 Hz [8]. The 

instability and low frequency noise can be attributed to self-organized criticality effects 

within the material. Amorphous materials are free of dislocations and thus a hopeful 

candidate for removing the low frequency instability. The low frequency behavior was 

tested for the maraging steel blades alongside the vitreloy 105 blades to identify a 

possible replacement for the maraging steel blades. 
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5.2.1 The Goal 

The research and development goal for this project was to test the low frequency 

behavior of commercially produced LM105 blades alongside maraging steel blades to 

determine if this material removes the low frequency instability noise in the GAS filter 

set-up. If fruitful, this research will provide a replacement material to produce a new 

generation of sensitive devices able to detect gravitational signals from more massive 

black-hole mergers. 

A proposed application, should this research produce a positive result, is the 

implementation of glassy fibers in experiments measuring the gravitational constant. 

Metallic tungsten suspension wires are currently used because of their ability to ground 

all stray charges and null electrostatic forces; however, these wires are subject to 

unpredictable fluctuations with 1/f amplitude fluctuations due to avalanches within the 

suspension wires [5] [16]. The frequency of the events is strongly dependent on the 

velocity of the oscillation, its amplitude and the recent oscillatory history of the sample 

[8]. Self-organized criticality is predicted to change the slope of the flexure and therefore 

the equilibrium point of the oscillation, which would then be the likely culprit behind the 

experiment discrepancy of ±500 ppm [6]. 

5.2.2 Results 

This test made over the summer was a failure as the commercially manufactured 

LM105 blades shattered. Work is being done with the company to determine if there is a 

way to manufacture the blades with the desired specifications.  
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Should glassy metals prove to remove the low-frequency instability in metal 

flexures, this material would be a commercially available option for future 

implementation.  

The following sections are a discussion on the experimental set-up, why the 

blades may have broken, the analysis done on the maraging blades and a preliminary 

analysis of the LM105 blades before they shattered, and finally what may be expected in 

future trials. 

5.2.3 Experimental Set-up 

In order to compare the material to the maraging steel blades currently in use in 

many of the GAS filters in use, the LM105 vitreloy blades were manufactured to match 

the maraging steel blade shape and configuration. Apart from the material, the only 

difference between the two blade sets were the length and thickness of the blades 

imposed by the production process at the samples available at the commercial level. The 

final blades were 2.3 mm shorter than the maraging steel blades, still using the same set-

up as shown in Figure 34. 
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Figure 34. Cantilever blade configuration for testing both the maraging steel and vitrelloy 
105 blade sets. 

 
Once mounted, the set-up was attached to the table as shown in Figure 34 and a 

mass was suspended at the center to bring the blades to float below the end-stop. The 

tuning process utilizes: a position gauge to determine the compression of the blade set 

(appearing to the left of the fixture in Figure 34), a capacitive sensor to measure the 

vertical position, an adjustable mass to change the load, and python script to control the 

electronics responsible for adjusting the system and data acquisition. This set-up 

automatically loads the blade set in incremental mass steps and applies an impulse to the 

fixture at each step to acquire ring down data at each load level. Both the maraging steel 

and the thinner set of LM105 blades were tested using the fixture shown above. Due to 

the size difference of the LM105 blades, the fixture could not tune the glassy blades past 
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1.4 Hz and thus spacers were designed by Caleb Schreibeis to allow for further 

compression of the blade set. Unfortunately, the blades shattered in the dismounting 

process, so this additional compression could not be tested. The design shown in Figure 

35 is ready for future testing of blades with shorter length. New glassy metal blades are 

currently being manufactured. 

 

Figure 35. Cantilever blade set-up in geometric anti-spring configuration. The addition of 
spacers to the fixture to allow further compression of the LM105 cantilever blades. 

 
5.2.4 Why the Glassy Metal Blades Broke 

The LM105 material proved more brittle than previously tested glassy materials 

(a GAS spring built years ago is still operational). The expected fracture toughness (𝐾0P) 

should have been in the central region of the black ellipse drawn on Figure 36 (around 

150 MPa m1/2) and should have been comparable to maraging steel in both fracture 

toughness and yield strength (sy). Thus, it should not have broken at the stress level 

imposed by the experiment.  
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Figure 36. Plot of the fracture toughness versus the yield strength of many commonly used 
materials. The area of interest lies within the metallic glasses within the ellipse drawn in 
black [11]. 

 
Since the two samples of different thickness shattered, a direct comparison with 

maraging was not possible, however, a limited set of data was obtained with the second, 

thinner set of blades providing insight for future testing.  

During the break, the blades gave off a flash of visible light due to surface 

oxidation ignited the newly exposed surface ignited by the sudden transient of stress 

concentration typical of amorphous metals. There are two possibilities we could think of 

as to why the blades shattered. First, the LM105 purchased was not good quality (the 

fracture toughness was much less than predicted). 
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Rcritical = QRS
9

&T9
                  (5.1) 

Secondly, impurities (i.e. crystals, cracks, pockets of gas) formed during the casting 

process were larger than Rcritical (the smallest a defect can be before causing catastrophic 

failure) and caused the material to shatter before reaching its yield point. 

 

Figure 37. Comparison of the fracture toughness, yield strength, and cost of maraging steel 
to vitreloy 105 [10]. 

 
5.2.5 Q-Factor Analysis 

5.2.5.1 Measurements of the Control Maraging Steel Blades 

A large set of Q-Factor analysis were completed on a number of maraging steel 

blade sets. 
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Figure 38. Image of the longer of the two suspended masses. 

Tuning was completed using two separate configurations as the suspended mass (see 

Figure 38). The suspended payload behaves like a pendulum whose resonance 
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(Equation 5.2) renders sections of the data useless due to the appearance of beat 

frequencies around the pendulum’s resonant frequency, see sample data set in Figure 39. 

0
%& U

V
W
               (5.2) 

Where the length of the pendulum, L, changes the region of coupling between the 

pendulum and the suspended mass. A shorter pendulum and a longer pendulum were 

used to fill in the areas of lost data and the complete set of data is shown in Figure 40.  

 

Figure 39. Beat frequencies appearing in the raw data where the pendulum’s frequency 
couples with the frequency of the cantilever blade spring. 

 
The expected behavior is shown when tuning the blades. The blades could only be 

tuned to roughly 0.43 Hz. A run using an electromagnetic voice coil for tuning the blades 

at lower frequency was performed and the system was able to be tuned to 0.38 Hz, which 

was the lowest frequency achieved during this investigation. More work is foreseen using 

this method to study the behavior at even lower frequencies.  
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Figure 40. Data removed due to the appearance of beats at frequencies around the resonant 
frequency of the suspended mass, in green and yellow is the data taken with a shorter 
pendulum configuration. 
 
5.2.5.2 Measurements of the Glassy Metal Blades 

The data shown in Figure 41 was taken when the blades were tuned to the largest 

radial compression allowed by the apparatus, which limited the lowest possible resonant 

frequency to a frequency of 1.4 Hz. Spacers were machined to allow for more 

compression as discussed previously, however, they remain untested since the blades 

shattered during disassembly. 
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Figure 41. Q-Factor data from LM105 cantilever blade set. 

Despite the interrupted experiment, an interesting phenomenon was observed in 

the Q-Factor. As the pay load increases, the resonant frequency first decreases and then 

increases again as expected. The same Q-Factor is expected at the same frequency, above 

or below the minimum, which is observed is not observed in either the maraging or with 

this sample of glassy metals, see Figure 42 and Figure 43. The reason for this difference 

is still unknown, but it is suspected that the inertial change as mass is added may have 

some role here.  



 60 

 

Figure 42. Q-Factor data from maraging steel cantilever blade set. 

 

Figure 43. Q-Factor data from LM105 cantilever blade set. 
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5.2.6 Future Development of the Montana Instrument Test Set-Up 

A PID loop was optimized for the tuning of the blades using an electromagnetic 

voice coil and it was able to tune the blades to frequencies below those achieved with the 

Reynold’s Fixture alone. Once fully optimized and integrated this method will allow the 

exploration of the behavior of the Q-Factor at even lower frequencies, enriching the study 

already completed here. 

The two remaining blades were taken back to the grinding company and ground 

to a smaller thickness. Tests were performed at lower load, but the data has yet to be 

analyzed. While the thinner blades do not carry the desired load, the measurements may 

give insight into the material’s low frequency behavior.  

Different kinds of glassy metals, including lab grade vitrelloy 105 are being 

considered. 
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CHAPTER 6  

Conclusion 
 

The first part of this thesis covers the development of an experiment to study low 

frequency mechanical noises from dislocation avalanches, if they exist. This experiment 

is designed to measure the loss angle of materials at arbitrarily low frequencies. While 

the experiment development is still far from complete, it has already successfully 

measured the loss angle of piano wire to within 5% of the value measured on the sample 

with traditional ring-down methods.  

It is expected that if dislocation entanglement happens, larger loss angle and 

sudden deviations of the equilibrium point of the flexure will appear during the rod’s 

rotation at very low frequencies [9]. In order to measure these deviations, further 

improvements need to be made to the experiment to remove excess noise and the 

precision of position measurements.  

A second part of this thesis tests on the use of glassy metal flexures as a possible 

dislocation-free alternative. Should the theory of SOC prove to be valid, a new non-

crystalline material needs to be developed in order to remove the 1/f noise from high 

sensitivity instruments using metal flexures. Self-organized criticality is believed to be 

present in all polycrystalline metals; therefore, one solution is to use a glassy metal. 

Initial tests using glassy metals gave discouraging results and a thinner set of blades has 

been prepared for future tests. The method for studying these materials at low frequency 

has been developed. Future work may need to wait for glassy metal technologies to 

improve. 
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APPENDIX A  

Trinamic Stepper Motor 
 

A.1. Running the Stepper Motor 

The Trinamic software was downloaded from their website and can be found in 

reference [23]. The current version on the laptop in the lab is version 3.0 and was 

downloaded on June 30th 2017. To start the program, make sure that the stepper motor 

control board is connected to a power source, the motor and the computer before opening 

the application (the icon is shown in Figure 45). If disconnected the program will not 

recognize the motor. As soon as the program opens the screen will look the same as the 

screen shown in Figure 45. 

 

Figure 44. Desktop on the lab computer with the Trinamic software indicated with a red 
box. 
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Figure 45. Start-up of the Trinamic stepper motor software. Both the Motion Calculator 
(left) and Position mode (right) windows open automatically. 

 
At this point there are only three windows of interest to run the motor, however, 

the list of all possible windows can be found on the left hand side of the screen and a 

detail of this list can be found in Figure 46. The first window that should be used is the 

current settings window (see Figure 47). This window allows the user to edit the current 

supplied to the motor. The automatic current setting is 1.01 A.  It was found that to 

currents as low as 0.08 A did not compromise the stepping accuracy of the motor (see 

Appendix A.2). 
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Figure 46. Detail of the option list on the left side of the window. 
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Figure 47. Current settings window. 

The next window of interest is the motion calculator window (see Figure 48). This 

window allows the user to calculate the velocity at different rotation speeds. A table of 

values used in this experiment can be found in Table 3.  

 

Figure 48. Detail of the motion calculator window. 
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Table 3  

Velocities corresponding to each frequency run completed during the experiment. 

 

 

After the correct velocity is calculated it must be entered into the position window 

before beginning the experiment. The position window can be found in Figure 49. The 

window is expanded here by clicking on the arrow appearing on the right of the window, 

here is appears in the center because it has been expanded.  The velocity is automatically 

set to 200,000 pps and can be changed by deleting the value that appears in VMAX and 

typing in the correct velocity. Finally, to run the experiment the position must be changes 

in the move to section.  For this data run, the rod was rotated through one repetition of 

five full rotations clockwise and five full rotations counter clockwise. Since one rotation 

would take the stepper motor from an actual position of 0 to 51,200, the value to enter for 
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the first set of five clockwise rotations is 256,000. To complete the counterclockwise 

rotations, the motor would start at an actual position of 256,000 and thus the value to 

enter would be 0 to bring it back to the original position. 

 

Figure 49. Detail of the position window. 

A.2. Stepper Motor Testing  

A series of tests were run on the stepper motor prior to acquiring data in order to 

learn more about how the motor heats up and whether or not steps were lost when 

running the motor at lower current. These tests were motivated by the desire to reduce the 

heating of the motor in order to reduce the heat transfer to the test wire.  If this heat is 

transferred to the test wire a drift in the position will be seen which would interfere with 

any measurements taken.  

The first of these two goals were achieved through the measurement of 

temperature while running the motor for 30 minutes and then shutting it off and watching 

the cooldown of the motor. An example of such a data run is shown in Figure 50. 
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Figure 50. Voltage vs. time plot taken at 0.1 rotations per minute using two temperature 
sensors. 

 
Both the rise in temperature while running the motor at a given rotational speed 

and the cooling of the motor after switching the motor off were fitted by separating the 

data at the shut off time. An example of the heating fit can be found in Section 3.2 in 

Figure 11 and the cooling can be found in Figure 51. The set of results can be found in 

Table 4.  

time [s] 
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ol
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ge

 [m
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] 
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Figure 51. Fit to the cooling of the motor after shut-off. Plot and fit colors are reversed (i.e. 
Red data corresponds to the blue fit parameters). 

 
In the cooling portion of the data the minimum temperature value approaches 24.5 

± 0.05 oC with the first temperature sensor and to 25.54 ± 0.04 oC with the second 

temperature sensor. The reason for the difference between the two sensors is thought to 

be from damage due to overheating the sensors in a previous experiment. The motor 

should thermalize between 37.5 and 37.7 minutes. These time frames are found by 

multiplying the time constant in seconds by five and then dividing by 60 to obtain the 

time for thermalization in minutes. With this information it can be expected that drift will 

appear in measurements within the first 35 minutes of running and it would be prudent to 
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wait for 40 minutes before running a new set of data in order to ensure that enough time 

has passed to remove this drift. 

Table 4  

Results of testing how the motor heats at different rotation speeds. 

 

It is apparent from the table of results that a change in rotation speed does not 

seem to have a large effect on the increase nor the decrease in temperature. The 

difference in time constants between the sensors might be due to the points of contact.  

Temperature data was also taken for a series of rotation speeds at 0.51 A, 0.25 A, 0.17 A, 

and 0.08 A to determine if the motor’s peak temperature reduced with a reduction in 

current. Although none of the data has been analyzed, it was noted that the maximum 

temperature was roughly the same in all cases. 

The second goal of determining the current at which the motor loses stepping 

accuracy was completed using a piece of tape fixed to the bras mount connecting the 

motor to the rod. This test determined that there was no loss in stepping accuracy at 

currents as low as 0.08 A.  In the future it would be prudent to rerun this test in a more 

quantifiable way to determine if this is actually the case. 
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APPENDIX B  

The Tracking Program and Testing 

This section will first cover how to run the “Tracker” program used to track the 

4.75 mm ball.  Then the current state of the program being developed in the lab will be 

discussed, followed by the testing being done on the code to improve it.  

B.1. Running the “Tracker” Program 

The “Tracker” program is relatively easy to use, however, there are many pitfalls 

for someone starting out for the first time. To start the program, select the “Tracker” icon 

(see Figure 52) in the applications folder on your desktop. This will open the program an 

present a screen identical to the one shown in Figure 53. 

 

Figure 52. Icon for the "Tracker" program. 
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Figure 53. Start-up screen for the "Tracker" program. 

The next step is to either click and drag the video of interest into the program 

window or open the file through the interface. Once uploaded, which may take a few 

minutes depending on the file size, a point mass must be created in order to start the auto-

tracker.  Figure 54 illustrates clicking the “Create” button to select a point mass on the 

left.  Once created, the auto tracker window is opened by selecting the button to the right 

of the magnifying glass and is shown on the right of Figure 54. 



 76 

  

Figure 54. Creating a point mass (left) and the auto tracker window (right). 

 

 

Figure 55. Image of the "Tracker" program window once tracking of a video is complete. 

 
When tracking the reflection of the camera in the ball, if the auto-tracking 

function does not work it is important to remember that the key combination shift-

control-click only updates the template, shift-option-click selects the center and moves to 

the next frame. A way to check you have not made this mistake is to watch the plot of the 
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x-position versus time on the right. The plot should look similar to the one displayed in 

Figure 55. 

 Upon completion the time, x-position, and y-position is easily extracted by 

selecting the entire table and copying it to an excel sheet. It is also important to save the 

tracker file as .trk in order to have access to the work completed during this process. 

B.2. Running the Tracking Software in Development  

In order to run the program both Matlab and the EE426DIPToolbox toolbox need 

to be present on the computer. The toolbox (obtained from Dr. Marina Mondin) does not 

appear in this thesis because it is too large to include its contents. Once those are 

successfully installed the file startup_rvc.m must be run in order to run the code. The 

code can be found under example_06_TemplateMatchingDaisy.m which contains the 

current code to track a template containing one daisy through a rotation. In line 9 the 

code requires a name for the daisy template being used.  In this version of the code the 

file being used is DaisyTemplate1.jpg which appears on the left of Figure 56 

 

 

 

 

 

  

Figure 56. Template used to track a bead through its rotation. 

Once the program has found a position for the daisy in the image it will return the center 

to the output window. The images produced by the code are shown in Figure 57 starting 
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with the template on the top right, the image in which the code is looking for a match to 

the template on the bottom right, the correlation map to the image on the bottom left, and 

the results of the code on the top left. The code only found one match to the template 

with a correlation threashold of 70% or higher, the output (below) has a correlation 

threshold of 95% or higher and also results in one center.  

f = (1) area=1, cent=(731.0,370.0), theta=1.57, b/a=NaN, color=1, 

label=2, touch=0, parent=1 

Currently the centers are extracted for each image and placed into an excel sheet. In the 

future, a batch method will be necessary, and the centers need to be printed to a text file 

for ease of use. 

 

Figure 57. Image product of the template matching code. 
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B.2.1. startup_rvc.m 
disp('Robotics, Vision & Control: (c) Peter Corke 1992-2011 http://www.petercorke.com') 
tb = false; 
rvcpath = fileparts( mfilename('fullpath') ); 
robotpath = fullfile(rvcpath, 'robot'); 
if exist(robotpath,'dir') 
    addpath(robotpath); 
    tb = true; 
    startup_rtb 
end 
  
visionpath = fullfile(rvcpath, 'vision'); 
if exist(visionpath,'dir')  
    addpath(visionpath); 
    tb = true; 
    startup_mvtb 
end 
  
if tb 
    addpath(fullfile(rvcpath, 'common')); 
    addpath(fullfile(rvcpath, 'simulink')); 
end 
  
clear tb rvcpath robotpath visionpath  
 
B.2.2. example_06_TemplateMatchingDaisy.m 
%example0_Matching template 
close all 
clear all 
%template = iread('template.jpg','double','grey');  
%stars = iread('stars02.jpg','double','grey');  
  
template1 = iread('DaisyTemplate1.jpg','double','grey'); 
template=template1(:,2:end-2); 
stars = iread('Daisy01.jpg','double','grey');  
  
S = isimilarity(template, stars, @ncc); %ncc is the normalized cross correlation 
  
figure(1); idisp(template,'title','original image'); 
figure(2); idisp(stars,'title','template image'); 
figure(3); idisp(S,'title', 'similarity','colormap','jet','bar'); 
figure(4); idisp( S>=0.7,'invert','title','template localization'); 
  
out = S >= 0.95; 
f = iblobs(out, 'area',[1,5]) 
  
[m,n] = size(f); 
for k=1:n 
    msg =sprintf('%d',k); 
    text(f(k).uc, f(k).vc, msg,'Color','r'); 
end 
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B.3. Testing of the Current Tracking Software 

Initial analysis of the tracking program has been completed. Images were taken of 

a sample prepared by Nicole and Riccardo over the summer which was glued to the end 

of a stepper motor shaft in order to simulate the actual motion of the rod. The sample was 

chosen to allow for enough points to track but not too many as to reduce noise in the 

correlation signal. The four samples are shown below. The image labelled 2 was the one 

chosen sample for this study. 

 

Figure 58. Four samples of wax-glued glass beads to a black glass plate. 

In order to model the rotation of the rod, the stepper motor was rotated in various 

increments through one full rotation. At the start were very small steps of 0.0977% of the 

full rotation which increased up to a stable step in position of 1.95% the full rotation. 

Taking a total of 73 images of the sample through one rotation.  Each image was 

processed using the correlation program.  A bead that maintained a position within the 
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frame for the full rotation was chosen and cropped from the initial photograph to use as 

the correlation sample and this crop is shown in Figure 56. This was used to generate a 

correlation map across each image and then another plot with a marker. 

 

Figure 59. Results from testing the current tracking program. 

Analysis was done using different minimum correlation values.  The initial minimum was 

set to 95% and then slowly decreased.  As the threshold was increased more noise was 

seen in the images as shown in  

 

Table 5.  If an automation of the code is pursued, a loop that starts at a high threshold 

and then moves down slowly only looking at images where the initial run was a failure 

would be necessary. There should also be a minimum deviation implemented to rule out 
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mislabeled objects within the image because as the threshold is increased, more objects 

begin to appear in the output. 

 

 

Table 5  

Results from increasing the correlation threshold. 

 
 

To remove the possibility of misreadings, the idea of tracking a constellation of 

glass beads has been discussed and attempted. Unfortunately, adding the functionality of 

rotating the template to find the best correlation value to determine the new position and 

its rotation from the initial point causes the program to run for hours as opposed to 

minutes.  The idea of transferring this code to a faster programming language might need 

to become a reality for the future of this program. It is also clear that batch tracking will 

need to be implemented in the future to run through a file of images rather than having 

the user input each image individually since current experiments acquire hundreds of 

images per frequency run.  
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APPENDIX C  

Raw Data and Ellipse Fitting Code 

This appendix contains raw data in the form of plots for each frequency run, how 

to run the polynomial curve fitting code, fitting results, and the code used. 

C.1. Raw Data 

 This section contains all raw data used to obtain the final results appearing in the 

Results section of this thesis. It is clear that contact is being made with the eddy current 

brake and is causing the bumps in the rotation data. 

 

 
Figure 60. Rotation Data for 0.05 Hz. 



 84 

 
Figure 61. Rotation Data for 0.1 Hz. 
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Figure 62. Rotation Data for 0.2 Hz. 
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Figure 63. Rotation Data for 0.3 Hz. 
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Figure 64. Rotation Data for 0.4 Hz. 
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Figure 65. Rotation Data for 0.5 Hz. 
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Figure 66. Rotation Data for 0.75 Hz. 
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Figure 67. Rotation Data for 1 Hz. 
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C.2. Running the Ellipse Fitting Code 

The ellipse fitting code was written by Samavarti Gallardo in python and can be 

run through any python platform. The instructions on how to run this code can be found 

in his documentation on the Laser Interferometer Gravitational Wave Observatory 

(LIGO) document control center (DCC) at: https://dcc.ligo.org/cgi-

bin/private/DocDB/ShowDocument?docid=T1800205&version=  

His technical paper contains a full explanation on the logic behind the code and 

how it generates the results found in the following section.   

C.3. Result from Ellipse Fitting Code 

 The following images are the output from the polynomial curve fit. As part of the 

bootstrapping method, each parameter of the fit was recalculated for each selection of the 

data set.  These values are plotted in a histogram to find the best fit value for each 

parameter and the error in this value in order to produce the final fit.  

The output that is most important is outlines as follows. Starting with the first row 

on the top left is a plot containing the clockwise rotation data in red with the final fit in 

blue, two columns to the right is a plot containing the counterclockwise rotation data in 

red and the final fit in blue. Moving to the second row, plots of x and y center values 

appear with the peak value and its error (sigma value) appearing at the top of the plot. 

These values were used to calculate the loss angle of the material at the given rotation 

speed. 
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Figure 68. Fitting results for 0.05 Hz. 
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Figure 69. Fitting results for 0.1 Hz. 



 94 

 

Figure 70. Fitting results for 0.2 Hz. 
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Figure 71. Fitting results for 0.3 Hz. 
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Figure 72. Fitting results for 0.4 Hz. 
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Figure 73. Fitting results for 0.5 Hz. 
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Figure 74. Fitting results for 0.75 Hz. 
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Figure 75. Fitting results for 1 Hz. 
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C.4. Ellipse Fitting Code 

The code appears in Sam’s technical paper on the LIGO DCC which can be found 

through the following link:https://dcc.ligo.org/cgi-

bin/private/DocDB/ShowDocument?docid=T1800205&version=  
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APPENDIX D  

Reynolds Fixture User Manual and Explanation of the Code 
 
Written by Morgan Shaner to explain code compiled by Dr. William J Baker and David 

Schwarz on 06/22/2017. 

 
D.1. Introduction 

 
When writing scripts in python there are built in modules created for different 

functionalities.  Outside these modules functions need to be created to customize 

functionality.  The following is a document created with the aim of allowing any user to 

run the Reynolds Fixture and understand the output.  The first section lists and describes 

all referenced code within the main script (referenced modules can be found in the 

appendix with links to detailed website explanations).  This is followed by an outlined 

description of the main code, an explanation of how to run the Reynold’s fixture and 

what to do in case of an error and/or failure.  Finally, should the code be necessary, it 

appears in the appendix of this document. 

 
D.2. Referenced Code 

 
D.2.1. pump_operator 
 

This is a class written to run the water pump used to add specified mass to the 

fixture’s bucket.  The class is called Pump_Operator() and has six defined functions 

within.  These functions are listed below along with their functionality. 

 
def  DisplayDeviceInfo(self):   Displays the device information. 

 
 def  _init_(self):    Initializes the pump. 
 

def  dispense(cls , mass_to_add): Dispenses a set amount of water to the 
bucket. 
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def  dispense_calc(cls , frequency_current): Determines how much was dispensed. 

 
def  time_calc(start_mass , mass_to_add): Calculates the time needed to 

dispense a particular amount of water 
to the bucket. 

 
 def  close(cls):     Stops the pump. 
 
D.2.2. fft_operator_u3 
 

This is a class written to acquire data from the capacitive sensor connected to the 

LabJack, fit an FFT to the position and time data acquired, and find the resonant 

frequency of the spring system.  The class is called Fft_Operator() and has seven defined 

functions within.  These functions are listed below along with their functionality. 

 
def  _init_(self , seconds_to_measure): Initializes the LabJack through u3 (a 

script developed to use the LabJack 
device) to acquire data. 

 
def  emptybucket(cls): Empties water held in the bucket by 

opening and closing the solenoid 
attached to the bottom. 

 
def  impulse(cls , delay): Applies an impulse to the bucket 

using the solenoid attached to the top 
of the bucket. 

 
def  close(cls): Stops acquiring data from the 

LabJack using u3. 
 

D.2.3. parabolic 
 

This script was written to fit the FFT using a parabolic function to determine the 

resonant frequency as opposed to taking the max of the FFT.  This code includes two 

functions parabolic(f,x) and parabolic_polyfit(f,x,n). The first is a quadratic interpolation 

for estimating the true position of an inter-sample maximum when nearby samples are 

known; and the latter find the peak of a parabola using the fit. 

 



 103 

D.2.4. sartorious 
 

This is the python interface provided for the scale and contains the class 

Sartorius(serial.Serial) which contains the six functions listed below with their 

functionality. 

 
 def  _init_(self , com_port):  Initializes the scale. 
 

def  value(self):   Will return the displayed value on the scale. 
 

def  display_unit(self):  Will return the unit of measurement. 
 
 def  tara_zero(self):   Tares and zeros the scale. 
 
 def  tara(self):    Tares the scale. 
 
 def  zero(self):    Zeros the scale. 
 
D.2.5. checking_ports 
 

This script contains a function named serial_ports() which lists the serial port 

names, raises and environment error on unsupported or unknown platforms, and returns a 

list of the serial ports available on the system. 

 
D.3. Main Script 

 
The main script utilizes the modules listed in the appendix and the scripts 

referenced above to control the Reynolds Fixture and tune blades for the HILA project.  

This section will explain the variables, functions, and finally the main code within the 

script, highlighting the functionality of the main code and pointing out areas that are 

commonly changed to serve different testing purposes.  The following line numbers are 

based off the original version of the code; spaces were removed in the code appearing in 

the appendix of this document to shorten the length of the document and therefore, will 

not correspond to the lines within the document code. 
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Lines 8-24: Import all the necessary modules, classes, and functions listed in the 

previous section. 

Line 27: Define a variable to be utilized later in the code to break if the initial 

TWP calibration has not been done. 

Line 29:  Define a variable to be utilized to keep track if the test is a pass or a 

fail. (i.e Does the test pass the 1mm working point somewhere in the 

middle? Are we above 2Hz?) 

Lines 31-34: Making sure the calibration file exists, and if not create the file. 

Lines 36-42: Checks to see if the calibration is loaded and what the value is. 

Lines 45-57: Definitions of all the constants and user inputs within the script. 

Lines 60-64: Initializes all the necessary devices including the scale, fft, labjack, 

u3 and the pump. 

Lines 66-374: Defines all functions within the script which are listed below with 

their functionality. 
 

def  runMeasurement(user_mass): Runs a measurement.  
• Creates a directory to which the 

information to be stored.   
• Initializes variables to catch a failed fit or 

if a fall through occurs.   
• Uses the function writeData() to collect 

and store the data.  
• Reads in the starting mass of the scale and 

uses the function initial_mass_approach 
to bring the target into range to begin the 
measurement (currently set to 10mm).  

• Loop in place to dispense the correct 
amount of water by determining the mass 
added to the bucket by finding the 
difference in mass read by the scale.  If this 
loop reaches its 20th iteration without 
reaching half the amount of mass to add it 
will break and empty the bucket.  This is 
to protect the pump from running without 
water. 

• Test to see if the drift at low frequency can 
be eliminated. 

• Impulse applied to the fixture. 
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• Prints the resonant frequency. 
• Writes raw data to a .txt file (this is only 

necessary when acquiring data for a Q-
Factor analysis, comment out if not 
necessary). 

• Checks for failures. 
• Uses the resonant frequency to determine 

the next mass to add to the fixture. 
• Finish statement.  
• Calculates and prints the time it took to run 

the measurement. 
• Empties the bucket when finished. 
• Returns the data. 

 
def  imputCompressionPoint(): Allows the user to input a value for the 

compression point read from the dial 
indicator fixed to the left of the fixture, see 
Figure 77. 

 
def  twp_grabber(): Asks the user if the theoretical working point 

(TWP) has been calibrated, if yes (y) it will 
take the user back to the code, if not (n) it will 
measure the target distance with the TWP 
fixture installed to calibrate the sensor. 

 
def  userInput(): Requires the user to input: the added mass to 

the fixture, the part number of the blades, the 
serial number of the blades in lower case, and 
then press enter to continue with the code. 
(This can be changed to a manual input if the 
user should want to run multiple tests on the 
same set of blades so you don’t have to input 
the information each time). 

 
def  timeStamped(fname, fmt='{fname}_%m-%d-%Y-%H-%M-%S'): 

      Gives the time stamp. 
 

def  SMS(res_freq , distance , mass , PFmsg):   Sends an email and/or text 
to anyone listed in this part of the code. 

 
def  writeData(data): Initializes a dictionary for data collection, 

plots the data while the program is running, 
and saves the final plot of the data. 

 
def  close():    Closed the pump and FFT operator scripts. 

 
def  signt_handler(signal , frame): Writes the data if an interruption has 

occurred. 



 106 

 
Lines 337-438: Contains the code necessary to run a full test.  It starts with 

the implementation of signt_handler() to allow the program to abort 

if necessary.  Then it asks for the user to input the blade parameters 

before running the program.  After a test, it will ask the user if they 

would like to run again at a new compression point.  If not, it will 

close the program and free resources.  If yes, it will ask for the new 

compression point and ask if the user would like to overlay the last 

run. 

 
 

 
 
 

Figure 76. Web showing how the main code within WILLmain.py communicates with the 
other scripts. 

 
In Figure 76 black arrows indicate communication with the main script, yellow 

arrows indicate communication within the main script functions, orange arrows indicate 
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communication with the main script functions and the other scripts, and finally the green 

arrows indicate communication between the fft_operator_u3.py script and the other 

scripts.  An arrow head points to the function or class being utilized by the object from 

which it originates. There is no other communication out with this drawing with the 

understanding that u3, Phidget and python modules are left out to remove complexity.  

All unused functions within a script are also left out from the drawing above. 
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D.4. Step-by-Step How to Run 
 

To run a spring tuning test the user must open both the WILLmain.py and 

fft_operator_u3.py scripts.  It is good practice to have the stop_stream.py and empty.py 

scripts open as well should there be an error. 

To start, run the fft_operator_u3.py script before starting the WILLmain.py script.  

Once started the script the terminal will ask the user for the inputs listed in the 

userInput() function.  It will first call the function twp_grabber().  If the theoretical 

working point (TWP) has been calibrated the user will answer “y” for yes to the question: 

“Has the TWP been calibrated for this spring set? In no, install TWP fixture and enter ‘n’ 

to calibrate. (y/n)”.  If not, the user needs to install the TWP fixture on the main fixture 

before entering ‘n’ for no.  Once installed and no is entered, the capacitive sensor will 

read the current target distance and save it as the theoretical working point.   

Once this has been completed, the terminal will prompt the user for the added 

amount of added mass to the system by asking the question: “How much additional mass 

was added(g)”.  The user must input the mass added in units of grams and press enter.  

The next question will be: “Part Number of Blades:” which requires the user to input the 

blade part number.  This will either be 4109-905, 4109-906 or 4109-907 for maraging 

steel, or LM105 for glassy metal blades.  The following question enquires for the serial 

number of the blade set by asking the question: “Blade Serial Number? (alpha/lower 

case):”.  The serial numbers appear on the blades themselves, but are covered once 

installed, the blade pairs were selected to ensure similar thicknesses and then inputted as 

pairs into an excel sheet.  This is where the user will find the serial number for the 

selected position on the ring. 
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Next the user needs to remove the TWP fixture from the main fixture so the 

bucket is free to oscillate along the z-axis.  The user input function will then call the 

imputCompressionPoint() function and the terminal will ask for the compression point 

which is read from the dial indicator fixed next to the main fixture, see Figure 77.  The 

prompt is as follows: “With the TWP fixture removed, record the absolute compression 

point of blade Base(X.XXXin):”.  Once entered the terminal will finally ask the user to 

press enter to begin the measurement process. 

The script will start by creating a unique file for the test run where it will record 

the suspended mass in grams in the first column, the resonant frequency in Hertz to the 

second column, and the working distance in millimeters to the third column.  It will then 

initiate the measurement using the runMeasurement() function.  The measurement will 

continue to run if all conditions are met.  The script will search for a minimum around the 

1mm and then continue adding mass until the resonant frequency of the system reaches 

halfway between the starting frequency and the minimum. 

Once the measurement has finished the script will print “test was a success!” if 

the conditions were met (or “test was a fail!” if not) and display the minimum resonant 

frequency achieved along with the corresponding working point and added mass.  It will 

also send the user a text with this information to allow the user to leave the room and 

return when the run has finished. 
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Figure 77. On the left is the dial indicator, on the right is the fixture mounted to the working 
table. 

 
Once the test is finished, the user has the option to run the test again (if for 

instance the blades are not compressed enough, corresponding to the system not reaching 

a low enough frequency (below 0.5Hz)).  If the user enters ‘y’ for yes the user must enter 

the new compression point before running the code again as well as select if the last run 

should be overplayed on the graph.  If the user enters ‘n’ for no, the program will close 

and save the data to the directory created. 
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Figure 78. The Reynolds Fixture. 
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Figure 79. Electronics used to control the fixture (left) and the unit specifically used to 
control the water pump (right). 

 

 
 
Figure 80. The electronics used to control both the impulse and the empty bucket solenoids.  
The left image is of the LabJack system, the middle image is the relay board connected to 
the LabJack, the solenoids and the power supply shown in the image on the right. 
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Figure 81. Electronics used to control the capacitive sensor. 

D.5. In Case of Failure 

There is no intelligent way to handle errors within the code.  Therefore, in case of 

a mistake on the user’s part (forgot to plug something in or remove the TWP fixture, 

etc.).  The user should restart the kernel, empty the bucket by running the empty.py 

script, run the fft_operator_u3.py script, and then run the WILLmain.py script to start the 

next run.  If an error message every appears stopping the program from completing a run, 

repeat this process. 

  



 114 

 
D.6. Appendix 

 
This section contains all scripts described in this document for reference along 

with a list of the python modules used with references to learn about their functionality. 

D.6.1 WILLmain.py 
"""Created on Fri Mar 17 14:31:31 2017 @author: william.baker""" 
import time 
from time import gmtime, strftime 
import datetime as dt 
import numpy as np 
from numpy import genfromtxt 
from pump_operator import Pump_Operator 
from fft_operator_u3 import Fft_Operator 
#from Mass_step import next_mass 
from sartorius import Sartorius 
from checking_ports import serial_ports 
from matplotlib.backends.backend_pdf import PdfPages #for outputting plots 
import matplotlib.pyplot as plt 
import os 
import sys 
import signal 
#from subprocess import Popen 
 
#this is used to break later if calibration is not done 
kill_switch = 0 
#ths is to keep track of a pass or fail 
fail_switch = 0 
#make sure the calibration file is there 
cal_file ="TWP.txt" 
if not os.path.exists(cal_file): 
    file = open("TWP.txt", "w") 
    file.close() 
cal_check_val = genfromtxt('TWP.txt', delimiter=',') 
#check to see if the calibration is loaded 
if cal_check_val==0: 
    print('system needs calibration') 
    kill_switch = 1 
else: 
    calibratedworkingPoint = float(genfromtxt('TWP.txt', delimiter=','))  
#constants     
seconds_fft = 10; #seconds to sample data for the fft 
mass_to_add = 5; #mass to add in each test 
samples_to_run = 1000; #currently test runs a set number of times 
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base_mass = 5523.44;  #this is the mass of the mechanism and wet (caleb 3:30pm on  
6/11/2017) 

impulse_time = 0.1; #time to run the silenoid  
save_location = 'Z:\Engineering Design Files\MI-20 Floating Stage  
Development\Testing\Individual GAS Tuning\Result Files\\' 
TargetMass = 0; 
#user inputs 
extraMassString = ''; 
extraMass = 0.0; 
partNumberBlades = ''; 
serialNumberBlades = ''; 
compressionPoint = ''; 
#initalize variables  
port_check = serial_ports() 
if 'COM3' in port_check: #checks to see if the scale is connected 
    scale = Sartorius('COM3') #and conects to it 
fft = Fft_Operator(seconds_fft); #initalizes the fft, also the labjack u3 
a = Pump_Operator(); #initializes the pump 
 
def initial_mass_approach(wait_time,offset): 
    #wait_time = 5 
    [distance] = Fft_Operator.dc_distance_measure(wait_time); 
    #offset = 5 #this represents the near gap distance (ngd)    
    while (distance < offset):        
        Pump_Operator.dispence(20) 
        time.sleep(1) 
        [distance] = Fft_Operator.dc_distance_measure(wait_time); 
        print("your current distance is "+ str(distance)) 
         
def starting_mass_approach(target_mass): 
    global TargetMass 
    global base_mass 
    TargetMass = 0 
    starting_mass = scale.value(); 
    mass = target_mass - base_mass - extraMass 
    Pump_Operator.dispence(mass) 
    time.sleep(5) 
    current_mass = scale.value() 
    mass_in_step = starting_mass - current_mass 
    TargetMass = mass_in_step 
            
def runMeasurement(user_mass): 
    t0 = time.time() 
    global seconds_fft; 
    global compressionPoint; 
    global mass_to_add; 
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    global impulse_time 
    global fail_switch 
    global partNumberBlades 
    global serialNumberBlades 
    global directory 
    name = partNumberBlades + '_' +serialNumberBlades + '_' +compressionPoint + '_'; 
    directory = save_location + timeStamped(name) 
    if not os.path.exists(directory): 
        os.makedirs(directory) 
    fail_count = 0 
    #initialize the kill switch to later catch a failed exp 
    fail_switch = 0 
    #initialize a dict for data collection 
Master_Data={'Mass(g)':[],'Res_freq(Hz)':[],'Distance(mm)':[],'Raw_data_flag(H:m:s)':[] 

,'Spring Displacement(in)':compressionPoint} 
    starting_mass = scale.value(); 
    pmass = starting_mass;                 
    #frequency_current = 10;  #dummy frequecy to feed into the calculation function 
    #this step is inteded to bring the target into a range to begin the measurement (now is set  

to 10mm) 
    initial_mass_approach(5,6)          
    for i in range(samples_to_run): 
        print("Starting Measurement") 
#mass_to_add = Pump_Operator.dispense_calc(frequency_current);  
#calculate the mass to add to the bucket 
       #mass_to_add = 2.0; 
        Pump_Operator.dispence(mass_to_add) #tell the pump to dispense that amount 
        time.sleep(5) # let the scale settle 
        mass = scale.value() #read the scale 
        mass_added_in_step = pmass - mass; #calculate the mass added in the step 
        print("Dispensed Mass: " + str(mass_added_in_step)); 
        j=0 
        while mass_added_in_step < (0.5*mass_to_add): 
            j+=1 
            if j > 20: 
                print("you have likely ran out of water, must abort and you should add course  

mass") 
                fail_switch = 1 
                Fft_Operator.emptybucket(); 
                break; 
            Pump_Operator.dispence((mass_to_add- 
mass_added_in_step)+0.15) 
            time.sleep(5) # let the scale settle 
            mass_average = [0,0,0,0,0,0,0,0,0,0] 
            for h in range(0,10): 
                mass_average[h] = scale.value() 
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                time.sleep(2.0) 
            mass = np.average(mass_average) 
            mass_added_in_step = pmass - mass; #calculate the mass added in the step 
            print("Dispensed Mass: " + str(mass_added_in_step)); 
        pmass = mass;                 
        total_mass = (starting_mass-mass)+base_mass+user_mass+TargetMass; 
        #this line is a test to see if we can eliminate the drift-to-polyfit fail 
        if mass_to_add == 1.0: 
            time.sleep(1.0) 
        if mass_to_add == 0.15: 
            time.sleep(2.0)  
        Fft_Operator.impulse(impulse_time); 
        time.sleep(0.5) 
        [frequency,abs_distance],RAW,RAW_time = Fft_Operator.measure(seconds_fft); 
        print(RAW)    
       ##saving the RAW voltage data in the chosen RAW data directory for furth 
       #these lines will need to be un-commented to save the RAW data. 
        time_RAW_aquired = strftime("%H-%M-%S", gmtime()) 
        RAW_text_location =  directory + '\\' + time_RAW_aquired + '.txt';    
        file = open(RAW_text_location, "a")     
        for l in range(len(RAW)):            
            file.write(str(RAW[l]) +'\t'+str(RAW_time[l])+'\n')            
        file.close() 
        #this is a simple check for the failure of the polyfit x != y error, look to fft_operator  

to make sense of [0,0] 
        if frequency == abs_distance ==0: 
            fail_count += 1 
            mass_to_add = 0 
            if fail_count == 3: 
                print('Most likely overcompressed, OR CAP sensor out of range? Try to un- 

compress blades by a small amount') 
                fail_switch = 1 
                Fft_Operator.emptybucket(); 
                break; 
        if frequency != abs_distance != 0: 
            if frequency > 2.0: 
                mass_to_add = 30.0 
            if frequency < 2.0 and frequency > 1.26: 
                mass_to_add = 25.0 
            if frequency < 1.25 and frequency > 1.0: 
                mass_to_add = 8.0 
            if frequency < 0.99 and frequency > 0.70: 
                mass_to_add = 3.5 
            if frequency < 0.69 and frequency > 0.51: 
                mass_to_add = 1.0 
            if frequency < 0.5: 
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                mass_to_add = 0.2 
            seconds_fft = 25.0* 1/frequency  
        if mass_to_add != 0: 
            fail_count = 0   
        #grabbing the current theoretical working point (twp) from TWP.txt 
        twp = genfromtxt('TWP.txt', delimiter=',') 
        #this is where we will offset the abs distance to a reference to twp(calibration point)   
        distance = abs_distance - twp 
#        print('the current distance from FFT_Operator is..'+str(distance)) 
#        print('the current res freq from FFT_Operator is..'+str(frequency)) 
#        print('the current mass from FFT_Operator is..'+str(total_mass)) 
        #distance = abs_distance 
        Master_Data['Mass(g)'].append(total_mass) 
        Master_Data['Distance(mm)'].append(distance) 
        Master_Data['Res_freq(Hz)'].append(frequency) 
        Master_Data['Raw_data_flag(H:m:s)'].append(time_RAW_aquired) 
        #this is checking for a collaped state, where the distance is not changing. 
#        if i>5: 
# if (abs(((Master_Data['Distance(mm)'][i]) – (Master_Data['Distance(mm)'][i-5])))) 

< 0.1: 
#                print('you likely have an overcompressed blade set...exiting ') 
#                break; 
        if frequency != 0:         
            file = open("Data.txt", "r+") 
            file.seek(0, 2) 
            file.write( str(Master_Data['Mass(g)'][i]) + '\t'  

+str(Master_Data['Res_freq(Hz)'][i])+'\t'+str(Master_Data['Distance(mm)' 
][i])+'\n' ) 

            file.close()  
        #this is the finish statement, it requires that we pass the 1mm point(somewhere in  

middle) and also sees a res-frequency > 2Hz 
        a = Master_Data['Res_freq(Hz)'] 
        a = np.array(a)  
        min_frequency = np.min(a[np.nonzero(a)]) 
        if distance > 1.5 and frequency > ((Master_Data['Res_freq(Hz)'][0]-  
min_frequency)/2 +  min_frequency): 
        #if distance > 12 and frequency > 1.0: 
            break 
    time_duration=( time.time() - t0)/3600 
    print("the time passed during measurment was "+str(time_duration)+"hours")                         
    Fft_Operator.emptybucket(); 
    #first try at a dump test, to see if the compression is passed a critical point, this should  

come after a (Fft_Operator.emptybucket();) 
#    MIDindx = np.argmin(min(Master_Data['Res_freq(Hz)'])) 
#    MIDdistance = Master_Data['Distance(mm)'][MIDindx] 
#    while (distance < MIDdistance): 
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#        Pump_Operator.dispence(50) 
#        time.sleep(2) 
#        [frequency, distance] = Fft_Operator.measure(wait_time); 
#        if (distance > (MIDdistance + 5)): 
#            print("failed the dump test!!") 
#            break 
    return Master_Data; 
 
def imputCompressionPoint(): 
    global compressionPoint 
    compressionPoint = raw_input("With the TWP fixture removed, record the absolute  

compression point of blade Base(X.XXXin): ") 
 
def twp_grabber(): 
    global kill_switch             
    ans = raw_input("Has the TWP been calibrated for this spring set? If no, install TWP  

fixture and enter 'n' to calibrate. (y/n)") 
    if ans == 'n':  
        measure_time=2 
        #twp is the theoretical working point derived from the design of the GAS blades 
        #the twp is defined by fixture that is bolted to isolation ring assembly and keystone 
        twp = Fft_Operator.dc_distance_measure(measure_time) 
        print (twp) 
        twp=twp[0] 
        file = open('TWP.txt','r+') 
        file.write(str(twp)) 
        file.close() 
        kill_switch = 0 
        return; 
    else: 
        return; 
                     
def userInput(): 
    global extraMassString 
    global extraMass 
    global partNumberBlades 
    global serialNumberBlades 
    #the working point defines the theoretical (based of the GAS blade design) working  

point in the mechanical design. All distances are relative to the WorkingPoint 
    twp_grabber() 
    extraMassString = raw_input("How much additional mass was added(g):    ") 
    extraMass = float(extraMassString); 
    #extraMass = 2086.91 
    partNumberBlades = raw_input("Part Number of Blades: ") 
    #partNumberBlades = '4109-906' 
    serialNumberBlades = raw_input("Blade seriel number?(alpha/lower  
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case):") 
    #serialNumberBlades = 'ij' 
    imputCompressionPoint(); 
    raw_input("Press enter to begin:") 
 
def timeStamped(fname, fmt='{fname}_%m-%d-%Y-%H-%M-%S'): 
    return dt.datetime.now().strftime(fmt).format(fname=fname) 
 
def SMS(res_freq,distance,mass,PFmsg): 
    import smtplib 
    #fromaddr = 'email@gmail.com' 
    #toaddrs  = 'email@gmail.com' 
    msg = 'Run complete, and you have a res freq of'+str(res_freq)+'a working point of  

'+str(distance)+'and a supporting mass of '+str(mass)+'the test was a.. '+PFmsg 
    username1 = 'email@gmail.com' 
    password1 = 'password' 
    server = smtplib.SMTP('smtp.gmail.com:587') 
    server.starttls() 
    server.login(username1,password1) 
    #server.sendmail(fromaddr, toaddrs, msg) 
    server.sendmail( 'email@gmail.com', 'number@txt.att.net', msg ) 
    server.sendmail( 'email@gmail.com', 'number@vtext.com', msg ) 
    server.quit()     
 
def writeData(data): 
    #initialize a dict for data collection 
    global extraMassString 
    global extraMass 
    global directory 
    for i in range(len(data)): 
        Master_Data = data[i] 
        displacement = Master_Data['Spring Displacement(in)']  
        text_location = directory + '\\' + displacement + '.txt';                                           
        file = open(text_location, "a") 
     #   file.write('Blade Part Number: '+ partNumberBlades + serialNumberBlades+  

'compresssion point: '+ compressionPoint +'\n') 
        
file.write('Mass(g)'+'\t'+'Res_freq(Hz)'+'\t'+'Distance(mm)'+'\t'+'Raw_data_flag(H:m:s)'+' 

\t'+'Spring Displacement(in)'+'\n') 
        for i in range(len(Master_Data['Mass(g)'])): 
            if i == 0: 
                file.write( str(Master_Data['Mass(g)'][i]) + '\t' +  

str(Master_Data['Res_freq(Hz)'][i])+'\t'+str(Master_Data['Distance(mm)'][ 
i])+str(Master_Data['Raw_data_flag(H:m:s)'][i] ) + '\t' + displacement + '\n' 
) 

            else: 
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                file.write(str(Master_Data['Mass(g)'][i]) + '\t'  
+str(Master_Data['Res_freq(Hz)'][i])+'\t'+str(Master_Data['Distance(mm)' 
][i])+'\t'+str(Master_Data['Raw_data_flag(H:m:s)'][i])+'\n' ) 

        file.close() 
        mass = Master_Data['Mass(g)']; 
        frequency = Master_Data['Res_freq(Hz)']; 
        distance = Master_Data['Distance(mm)'];                    
        fvm = plt.figure(3) 
        ax1 = fvm.add_subplot(111) 
        ax1.plot(mass, frequency, label = displacement ) 
        ax1.set_xlabel('Mass [grams]') 
        ax1.set_ylabel('Frequency [Hertz]') 
        ax1.legend(loc='upper center', shadow=True) 
        ax1.set_yscale('log')#adjusts y-scale of live plotting 
        fvd = plt.figure(2) 
        ax2 = fvd.add_subplot(111) 
        ax2.plot(distance, frequency, label = displacement ) 
        ax2.set_xlabel('Distance [mm]') 
        ax2.set_ylabel('Frequency [Hertz]') 
        ax2.legend(loc='upper center', shadow=True) 
        ax2.set_yscale('log')#adjusts y-scale of live plotting 
    pdf_location = directory + '\\' + 'plots.pdf';                                           
    pp = PdfPages(pdf_location); 
    pp.savefig(fvd) 
    pp.savefig(fvm) 
    pp.close(); 
 
def close(): 
    Pump_Operator.close(); 
    Fft_Operator.close(); 
 
def sigint_handler(signal, frame): 
    print ('Interrupted Test, saving data') 
    close(); 
    writeData(data); 
    sys.exit(0) 
     
signal.signal(signal.SIGINT, sigint_handler) 
#gets the blade parameters from the user 
userInput() 
#run a test 
data = [] 
os.remove("Data.txt") 
file = open("Data.txt", "a") 
file.write('Mass(g)'+'\t'+'Res_freq(Hz)'+'\t'+'Distance(mm)'+'\n') 
file.close() 
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while True: 
    if kill_switch == 1: 
        print('system halted due to improper calibration') 
        break; 
    dc = runMeasurement(extraMass) 
    dc['Spring Displacement(in)'] = compressionPoint        
    data.append(dc) 
    a = dc['Res_freq(Hz)'] 
    a = np.array(a)  
    min_frequency = np.min(a[np.nonzero(a)]) 
    index_at_resFreq = np.argmin(a[np.nonzero(a)]) 
    working_point = dc['Distance(mm)'][index_at_resFreq] 
    Supported_mass =  dc['Mass(g)'][index_at_resFreq] 
    writeData(data); 
    if fail_switch == 0: 
        print('test was a success!') 
        PFmsg = 'pass' 
    if fail_switch == 1: 
        print('test was a fail!') 
        PFmsg = 'fail' 
    print("The Minimun Frequency was:"+ str(min_frequency)) 
    print("With a working point of:"+ str(working_point)) 
    print("Supporting a mass of:"+ str(Supported_mass)) 
    SMS(min_frequency,working_point,Supported_mass,PFmsg) 
    ans = raw_input('Would you like to go again? ("y" for yes, "n" for no): ') 
    if ans == 'y': 
        imputCompressionPoint(); 
        target_mass = Supported_mass - 100        
        raw_input('Press Enter to Begin') 
        erase_answer = raw_input("Overlay last? (y,n)") 
        if erase_answer == 'n': 
            os.remove("Data.txt") 
            file = open("Data.txt", "a") 
            file.write('Mass(g)'+'\t'+'Res_freq(Hz)'+'\t'+'Distance(mm)'+'\n') 
            file.close() 
        starting_mass_approach(target_mass) 
    else: 
        break; 
#writeData(data); 
#close and free resources  
close(); 
 
D.6.2. pump_operator.py 
"""Created on Thursday Mar 16 10:36:44 2017 @author: David Schwarz""" 
import math 
from Phidgets.Devices.Stepper import Stepper 
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from Phidgets.PhidgetException import PhidgetException 
 
class Pump_Operator(): 
    stepper = 0; 
        #Information Display Function 
    def DisplayDeviceInfo(self): 
        print("|--------------|-------------------------|----------------|--------------|") 
        print("|- Attached -|-           Type           -|- Serial No. -|-  Version -|") 
        print("|--------------|-------------------------|----------------|--------------|") 
        print("|- %8s -|- %43s -|- %10d -|- %8d -|" %(Pump_Operator.stepper.isAttached(),  

Pump_Operator.stepper.getDeviceName(),Pump_Operator.stepper.getSerialNum( 
), Pump_Operator.stepper.getDeviceVersion())) 

        print("|--------------|-------------------------|----------------|--------------|") 
        print("Number of Motors: %i" %  
(Pump_Operator.stepper.getMotorCount())) 
   
    def __init__(self): 
        try: 
            Pump_Operator.stepper = Stepper()   
        except: 
            print("failed to open stepper")     
        try: 
            Pump_Operator.stepper.openPhidget() 
        except PhidgetException as e: 
            print("Phidget Exception %i: %s" % (e.code, e.details)) 
            print("Exiting....") 
            exit(1) 
        print("Waiting for attach to Pump") 
         
        try: 
            Pump_Operator.stepper.waitForAttach(1000) 
        except PhidgetException as e: 
            print("Phidget Exception %i: %s" % (e.code, e.details)) 
            try: 
                Pump_Operator.stepper.closePhidget() 
            except PhidgetException as e: 
                print("Phidget Exception %i: %s" % (e.code, e.details)) 
                print("Exiting....") 
                exit(1) 
            print("Exiting....") 
            exit(1) 
        else: 
            #self.DisplayDeviceInfo() 
            print('Connected to Stepper Motor') 
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    @classmethod 
    def dispence(cls,mass_to_add): 
        ml_step = 0.0022; 
        gram_per_ml = 1; 
        phidgits_step_unit = 0.0625; 
        ml_to_add = mass_to_add*gram_per_ml; 
        #this is the number of steps the pump will turn to put out the desired amount 
        #in reality the pump is not perfect and doesnt have a linear output per step 
        steps= int(ml_to_add/(ml_step*phidgits_step_unit)); 
        print("Dispensing: %s grams in %s steps" % ( mass_to_add,  
float(steps)))  
        try: 
            Pump_Operator.stepper.setCurrentPosition(0, 0) 
            Pump_Operator.stepper.setEngaged(0, True)        
            Pump_Operator.stepper.setAcceleration(0, 3048) 
            Pump_Operator.stepper.setVelocityLimit(0, 20000) 
            Pump_Operator.stepper.setCurrentLimit(0, 1.00) 
            Pump_Operator.stepper.setTargetPosition(0, steps) 
            while Pump_Operator.stepper.getCurrentPosition(0) != steps: 
                pass 
        except PhidgetException as e: 
            print("Phidget Exception %i: %s" % (e.code, e.details)) 
            print("Exiting....") 
        try: 
            Pump_Operator.stepper.setEngaged(0, False) 
        except PhidgetException as e: 
           print("Phidget Exception %i: %s" % (e.code, e.details)) 
           print("Exiting....") 
        print("Done Dispensing") 
        return steps; 
     
    @classmethod 
    def dispense_calc(cls,frequency_current): 
        frequency = [0.5,1,2] 
        mass_step = [0.1,3,9] 
        for i in range(len(frequency)-1): 
            if(frequency_current<frequency[i]): 
                return mass_step[i]; 
    
    def time_calc(start_mass,mass_to_add): 
        #all distances are measured in cm time in sec 
        #radius of the holding container 
        radius_big = 14.0 
        #radius of port at bottom of holding tank 
        radius_small = 0.5 
        #desity of water in g/cm^3 
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        roh_water=1.0 
        #constant of gravity in cm/sec^2 
        g = 980.0 
        height = start_mass/(roh_water*math.pi*radius_big**2) 
        time_interval = mass_to_add/(roh_water*math.pi*radius_small**2*math.sqrt(2*g 

*height)) 
        return time_interval 
 
    @classmethod 
    def close(cls): 
        Pump_Operator.stepper.closePhidget() 
 
D.6.3. fft_operator_u3.py 
"""Created on Fri Mar 17 14:31:31 2017 @author: david.schwarz""" 
import u3 
import traceback 
from datetime import datetime 
import time 
import numpy as np 
from numpy import arange 
from numpy import argmax, mean, diff, log 
import matplotlib.pyplot as plt 
from parabolic import parabolic, parabolic_polyfit 
 
limit = 100000; #number of samples to use for rising edge measurment 
average_length = 400; #number of samples to forward average 
 
class Fft_Operator(): 
    d = 0; 
    seconds = 10; 
    frequency_measurement_method = 1; # zero for fft, 1 for rising / fallling edge 
    empty_time = 8; #seconds  
 
    def __init__(self, seconds_to_measure): 
        Fft_Operator.seconds = seconds_to_measure; 
        Fft_Operator.d = u3.U3() 
        # To learn the if the U3 is an HV 
        Fft_Operator.d.configU3() 
        #Fft_Operator.d.streamStop() 
        # For applying the proper calibration to readings. 
        Fft_Operator.d.getCalibrationData() 
            #to find channel numbers go to this address  
https://labjack.com/support/datasheets/u3/hardware-description/ain/channel_numbers  
        print ("configuring U3 stream") 
        Fft_Operator.d.streamConfig( NumChannels = 1, PChannels = [ 3 ], NChannels = [31  

],  
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Resolution = 3, SamplesPerPacket=25, SampleFrequency=10000 ) 
   # Fft_Operator.d.getFeedback(u3.DAC1_8(Value = 255)) 
   # Fft_Operator.d.getFeedback(u3.DAC1_8(Value = 0))   
 
    @classmethod 
    def emptybucket(cls): 
        print("Opening Empty Silenoid") 
        #opening the solenoid     
        cls.d.getFeedback(u3.DAC0_8(Value = 255)) 
        time.sleep(cls.empty_time) 
        #time.sleep(0.5) 
        cls.d.getFeedback(u3.DAC0_8(Value = 0)) 
        print('Closing Empty Silenoid') 
 
    @classmethod 
    def impulse(cls, delay): 
        print("\a") 
        #opening the solenoid   
        print("Activating Impulse Silenoid") 
        cls.d.getFeedback(u3.DAC1_8(Value = 255)) 
        time.sleep(delay) #wait for it to go up 
        cls.d.getFeedback(u3.DAC1_8(Value = 0)) 
        print('De-Energizing Impulse Silenoid') 
        time.sleep(delay) 
        
    @classmethod 
    def measure_rising_edge(cls,data, runTime): 
        #time of measurment array 
        #data = data[0:limit] 
        time = np.linspace(0.0,runTime,num=len(data)) 
        #create normal data to read peaks from  
        average_voltage = np.mean(data) 
        normal_data = data-average_voltage; #centers the data at 0; 
        range_voltage = np.max(normal_data)-np.min(normal_data);  
        normal_data = normal_data/range_voltage; #creates a standard peak to peak (1) 
        #average the readings to smooth them out 
        for i in range(len(data) - average_length)[2:]: 
            #average data 
            normal_data[i] = np.mean(normal_data[i:i+average_length]) 
        #this should trim the data length should probably be fixed later 
        normal_data = normal_data[:(len(data)-average_length)] 
        time = time[:(len(data)-average_length)] 
        plt.figure(10) 
        plt.clf() 
        plt.subplot(3,1,1) 
        plt.plot(time,normal_data) 
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        #square the data 
        top = np.where(normal_data>0); 
        bottom = np.where(normal_data<=0) 
        sq = np.zeros(len(normal_data)) 
        sq[top] = 0.5; #arbitrary,  
        sq[bottom] = -0.5; 
        #plot the square data in the second subplot 
        plt.figure(10) 
        plt.subplot(3,1,2) 
        plt.plot(time,sq) 
        #compute the rising edges of the square data 
        pv = 0; 
        pt = 0; 
        ptp = []; 
        for i in range(len(sq) - average_length)[2:]: 
            #eliminate noise on edge of signal 
            if sq[i] != pv: 
                pv = sq[i]; 
                sq[i:(i+average_length)] = pv; 
            if sq[i] < sq[i+1]: 
                pt = time[i]; 
            if sq[i] > sq[i+1]: 
                if pt>0: #ignore the begining 
                    ptp.append(time[i]-pt) 
        #plot the the period in the third subplot 
        freqs = np.divide(1.0,2*ptp[2:]); #ignore the first value 
        plt.figure(10) 
        plt.subplot(3,1,3) 
        plt.plot(freqs) 
        distance = (5+ 6.250 - average_voltage/1.6); 
        freq_in_hertz = np.mean(freqs); 
        print('your res freq is ' + str(freq_in_hertz) + 'Hz' )                
        ans=[freq_in_hertz, distance] 
        return ans 
 
    @classmethod 
    def dc_distance_measure(cls,measure_time): 
        Fft_Operator.seconds = measure_time; 
        abs_distance = 0; 
#cls.d.streamConfig( NumChannels = 1, PChannels = [ 3 ], NChannels = [ 31 ], Resolution 
= 3, ScanFrequency = 200 ) 
        cls.d.streamConfig( NumChannels = 1, PChannels = [ 3 ], NChannels = [ 31 ],  

Resolution = 3, SamplesPerPacket=25,  
SampleFrequency=20000) 
        cls.d.streamStart() 
        start = datetime.now() 
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        print("start stream time: ") 
        print(start) 
        missed = 0 
        dataCount = 0 
        packetCount = 0 
        time_duration = 0 
        t0 = time.time() 
        data = [] 
        try: 
            for r in cls.d.streamData(): 
                if r is not None: 
                    # Our stop condition 
                    if time_duration >= cls.seconds: 
                        break 
                    if r['errors'] != 0: 
                        print( "Error: %s ; " % r['errors'], datetime.now()) 
                    if r['numPackets'] != cls.d.packetsPerRequest: 
                        print("----- UNDERFLOW : %s : " % r['numPackets'], datetime.now()) 
                    if r['missed'] != 0: 
                        missed += r['missed'] 
                        print( "+++ Missed ", r['missed']) 
                    # Comment out these prints and do something with r 
                    #print r['AIN2'] 
                    data = data + r['AIN3'] 
        #            print "Average of" , len(r['AIN0']), "AIN0," , len(r['AIN1']) , "AIN1  

reading(s):", 
        #            print sum(r['AIN0'])/len(r['AIN0']) , "," , sum(r['AIN1'])/len(r['AIN1']) 
                    time_duration = time.time() - t0 
                    #print (time_duration) 
                    dataCount += 1 
                    packetCount += r['numPackets'] 
                else: 
                    # Got no data back from our read. 
                    # This only happens if your stream isn't faster than the 
                    # the USB read timeout, ~1 sec. 
                    print("No data", datetime.now()) 
        except KeyboardInterrupt: 
            return 
        except: 
            print ("".join(i for i in traceback.format_exc())) 
        finally: 
            stop = datetime.now() 
            cls.d.streamStop() 
            print ("stream stopped.") 
            #print data 
            sampleTotal = packetCount * cls.d.streamSamplesPerPacket 
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            scanTotal = sampleTotal / 2 #sampleTotal / NumChannels 
        #    print "%s requests with %s packets per request with %s samples per packet = %s  

samples total." % (dataCount, (float(packetCount) / dataCount),
 d.streamSamplesPerPacket, sampleTotal ) 
            print("%s samples were lost due to errors." % missed) 
            sampleTotal -= missed 
            print("Adjusted number of samples = %s" % sampleTotal) 
            runTime = (stop-start).seconds + float((stop- 
start).microseconds)/1000000 
            print("The experiment took %s seconds." % runTime) 
            print("Scan Rate : %s scans / %s seconds = %s Hz" % ( scanTotal,  
runTime, float(scanTotal)/runTime )) 
            print("Sample Rate : %s samples / %s seconds = %s Hz" % (  
sampleTotal, runTime, float(sampleTotal)/runTime )) 
            data = np.array(data) 
            #Time = np.linspace(0.0,runTime,num=len(data)) 
            #plt.axes(xlim=(0, runTime), ylim=(data.min(), data.max())) 
            #plt.plot(Time,data)     
            np.savetxt("foo.csv", data, delimiter=",") 
            #return(cls.measure_rising_edge(data,runTime)) 
        #find the new distance of the fixture 
        #"abs.distance" is the abosolute measurement from the face of the cap sensor to target 
        average_voltage = np.mean(data) 
        #currently using 12.5mm (C25-21)LION capacitive sensor: variable below represent  

it's specs 
        ngd = 5 #near gap distance 
        mid_range = 6.25 #distance to near gap at 0 volts (mm) 
        sensitivity = 1.6 #sensitity of sensor (V/mm) 
        abs_distance = (ngd+ mid_range - average_voltage/sensitivity); 
        ans=[abs_distance] 
        return ans 
         
    @classmethod 
    def measure(cls,measure_time): 
    #start the measurment 
        Fft_Operator.seconds = measure_time; 
        kill_switch = 0; 
        freq_in_hertz = 0; 
        abs_distance = 0; 
        #cls.d.streamConfig( NumChannels = 1, PChannels = [ 3 ], NChannels = [ 31 ],  

Resolution = 3, ScanFrequency = 200 ) 
        cls.d.streamConfig( NumChannels = 1, PChannels = [ 3 ], NChannels = [ 31 ],  

Resolution = 3, SamplesPerPacket=25,  
SampleFrequency=20000) 
        cls.d.streamStart() 
        start = datetime.now() 
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        print("start stream time: ") 
        print(start) 
        missed = 0 
        dataCount = 0 
        packetCount = 0 
        time_duration = 0 
        t0 = time.time() 
        data = [] 
        try: 
            for r in cls.d.streamData(): 
                if r is not None: 
                    # Our stop condition 
                    if time_duration >= cls.seconds: 
                        break 
                    if r['errors'] != 0: 
                        print( "Error: %s ; " % r['errors'], datetime.now()) 
                    if r['numPackets'] != cls.d.packetsPerRequest: 
                        print("----- UNDERFLOW : %s : " % r['numPackets'], datetime.now()) 
                    if r['missed'] != 0: 
                        missed += r['missed'] 
                        print( "+++ Missed ", r['missed']) 
                        kill_switch = 1; 
                    # Comment out these prints and do something with r 
                    #print r['AIN2'] 
                    data = data + r['AIN3'] 
        #            print "Average of" , len(r['AIN0']), "AIN0," , len(r['AIN1']) , "AIN1  

reading(s):", 
        #            print sum(r['AIN0'])/len(r['AIN0']) , "," , sum(r['AIN1'])/len(r['AIN1']) 
                    time_duration = time.time() - t0 
                    #print (time_duration) 
                    dataCount += 1 
                    packetCount += r['numPackets'] 
                else: 
                    # Got no data back from our read. 
                    # This only happens if your stream isn't faster than the 
                    # the USB read timeout, ~1 sec. 
                    print("No data", datetime.now()) 
        except KeyboardInterrupt: 
            return 
        except: 
            print ("".join(i for i in traceback.format_exc())) 
        finally: 
            stop = datetime.now() 
            cls.d.streamStop() 
            print ("stream stopped.") 
            sampleTotal = packetCount * cls.d.streamSamplesPerPacket 
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            runTime = (stop-start).seconds + float((stop- 
start).microseconds)/1000000 
            time_data=np.linspace(0,runTime,num=sampleTotal) 
            if(kill_switch == 1): 
                print("Some failure has occurred, packets missed") 
                data = np.array(data) 
                ans=[0, 0],data,time_data 
                return ans;  
            #print data  
            scanTotal = sampleTotal / 2 #sampleTotal / NumChannels 
        #    print "%s requests with %s packets per request with %s samples per packet = %s  

samples total." % (dataCount, (float(packetCount) / dataCount), 
d.streamSamplesPerPacket, sampleTotal ) 

            print("%s samples were lost due to errors." % missed) 
            sampleTotal -= missed 
            print("Adjusted number of samples = %s" % sampleTotal) 
            print("The experiment took %s seconds." % runTime) 
            print("Scan Rate : %s scans / %s seconds = %s Hz" % ( scanTotal,  
runTime, float(scanTotal)/runTime )) 
            print("Sample Rate : %s samples / %s seconds = %s Hz" % (  
sampleTotal, runTime, float(sampleTotal)/runTime )) 
            data = np.array(data) 
            #Time = np.linspace(0.0,runTime,num=len(data)) 
            #plt.axes(xlim=(0, runTime), ylim=(data.min(), data.max())) 
            #plt.plot(Time,data) 
            np.savetxt("foo.csv", data, delimiter=",") 
            #return(cls.measure_rising_edge(data,runTime)) 
            w = np.fft.fft(data) 
            w[0]=0.0             
            plt.axes(xlim=(0, 2), ylim=(0, 1000)) 
            sample_rate = float(sampleTotal)/runTime  
            freqs = np.fft.fftfreq(len(w),1/sample_rate)      
            idx = np.argmax(np.abs(w)) 
            #true_idx = parabolic(log(np.abs(w)), idx)[0] 
            f = np.abs(w) 
            x = idx 
            n=2 
            check_array1 = arange(x-n//2, x+n//2+1) 
            check_array2 = f[x-n//2:x+n//2+1] 
            len1 = len(check_array1) 
            len2 = len(check_array2) 
            if(len1 != len2): 
                print("Some failure has occured, polyfit will fail under current conditions") 
                ans=[0, 0],data,time_data 
                return ans; 
            true_idx = parabolic_polyfit(np.abs(w), idx, n)[0] 
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            True_idx_low = int(true_idx) 
            True_idx_high = True_idx_low + 1 
            percent_to_add = true_idx - True_idx_low 
            difference = freqs[True_idx_high]-freqs[True_idx_low] 
            amount_to_add = percent_to_add*difference 
            freq = freqs[True_idx_low]+amount_to_add 
            freq_in_hertz = abs(freq) 
            plt.axes(xlim=(-5, 5)) 
            plt.plot(freqs,np.abs(w)) 
            print('you res freq is ' + str(freq_in_hertz) + 'Hz' ) 
        #     439.8975 
        #find the new distance of the fixture 
        #"abs.distance" is the abosolute measurement from the face of the cap sensor to target 
        average_voltage = np.mean(data) 
        #currently using 12.5mm (C25-21)LION capacitive sensor: variable below represent  

it's specs 
        ngd = 5 #near gap distance 
        mid_range = 6.25 #distance to near gap at 0 volts (mm) 
        sensitivity = 1.6 #sensitity of sensor (V/mm) 
        abs_distance = (ngd+ mid_range - average_voltage/sensitivity); 
        ans=[freq_in_hertz, abs_distance] 
        return ans,data,time_data 
 
    @classmethod 
    def close(cls): 
        cls.d.close(); 
 
D.6.4. u3.py 
Not included for the sake of the length of this document.  If interested in the main code 
see: http://labjack.com/support/u3/users-guide/5.2  
 
D.6.5. parabolic.py 
"""Created on Mon Apr 10 16:41:37 2017 @author: will.b""" 
from __future__ import division 
from numpy import polyfit, arange 
 
def parabolic(f, x): 
"""Quadratic interpolation for estimating the true position of an inter-sample maximum 
when nearby samples are known. f is a vector and x is an index for that vector. Returns (vx, 
vy), the coordinates of the vertex of a parabola that goes through point x and its two 
neighbors. Example: Defining a vector f with a local maximum at index 3 (= 6), find local 
maximum if points 2, 3, and 4 actually defined a parabola. In [3]: f = [2, 3, 1, 6, 4, 2, 3, 1] 
In [4]: parabolic(f, argmax(f)) Out[4]: (3.2142857142857144, 6.1607142857142856)""" 
    xv = 1/2. * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x 
    yv = f[x] - 1/4. * (f[x-1] - f[x+1]) * (xv - x) 
    return (xv, yv) 
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def parabolic_polyfit(f, x, n): 
"""Use the built-in polyfit() function to find the peak of a parabola. f is a vector and x is an 
index for that vector. n is the number of samples of the curve used to fit the parabola."""     
    a, b, c = polyfit(arange(x-n//2, x+n//2+1), f[x-n//2:x+n//2+1], 2) 
    xv = -0.5 * b/a 
    yv = a * xv**2 + b * xv + c 
    return (xv, yv) 
 
if __name__=="__main__": 
    from numpy import argmax 
    import matplotlib.pyplot as plt 
    y = [2, 1, 4, 8, 11, 10, 7, 3, 1, 1] 
    xm, ym = argmax(y), y[argmax(y)] 
    xp, yp = parabolic(y, argmax(y)) 
     
    plot = plt.plot(y) 
    plt.hold(True) 
    plt.plot(xm, ym, 'o', color='silver') 
    plt.plot(xp, yp, 'o', color='blue') 
    plt.title('silver = max, blue = estimated max') 
 
D.6.6. sartorius.py 
"""Python Interface for Sartorius Serial Interface for EA, EB, GD, GE, TE scales. 2010-
2011 Robert Gieseke - robert.gieseke@gmail.com See LICENSE.""" 
import serial 
class Sartorius(serial.Serial): 
    def __init__(self, com_port): 
        """Initialise Sartorius device. Example: scale = Sartorius('COM1')""" 
        serial.Serial.__init__(self, com_port) 
        self.baudrate = 9600 
        self.bytesize = 7 
        self.parity = serial.PARITY_ODD 
        self.timeout = 0.5 
 
    def value(self): 
        """Return displayed scale value.""" 
        answer = 'na' 
        while True: 
            try: 
                if self.inWaiting() == 0: 
                    self.write('\033P\n'.encode()) 
                answer = self.readline() 
                if len(answer) == 16: # menu code 7.1.1 
                      answer = float(answer[0:11].decode(encoding='UTF-8').replace(' ', '')) 
                else: # menu code 7.1.2 
                    answer = float(answer[6:17].decode(encoding='UTF-8').replace(' ','')) 
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            except Exception: 
                answer = "NA" 
            if (type(answer) is float): 
                return answer 
            import time as tm 
            tm.sleep(0.5) 
        return answer 
 
    def display_unit(self): 
        """ Return unit.""" 
        self.write('\033P\n'.encode()) 
        answer = self.readline() 
        try: 
            answer = answer[11].decode(encoding='UTF-8').strip() 
        except: 
            answer = "" 
        return answer 
 
    def tara_zero(self): 
        """Tara and zeroing combined.""" 
        self.write('\033T\n'.encode()) 
 
    def tara(self): 
        """Tara.""" 
        self.write('\033U\n'.encode()) 
 
    def zero(self): 
        """Zero.""" 
        self.write('\033V\n'.encode()) 
 
D.6.7. checking_ports.py 
"""Created on Fri Feb 24 08:19:54 2017 @author: william.baker""" 
import sys 
import glob 
import serial 
 
def serial_ports(): 
""" Lists serial port names. raises EnvironmentError: On unsupported or unknown 
platforms. returns: A list of the serial ports available on the system""" 
    if sys.platform.startswith('win'): 
        ports = ['COM%s' % (i + 1) for i in range(256)] 
    elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): 
        # this excludes your current terminal "/dev/tty" 
        ports = glob.glob('/dev/tty[A-Za-z]*') 
    elif sys.platform.startswith('darwin'): 
        ports = glob.glob('/dev/tty.*') 
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    else: 
        raise EnvironmentError('Unsupported platform') 
    result = [] 
    for port in ports: 
        try: 
            s = serial.Serial(port) 
            s.close() 
            result.append(port) 
        except (OSError, serial.SerialException): 
            pass 
    return result 
 
if __name__ == '__main__': 
    print(serial_ports()) 
 
D.6.8. empty.py 
"""Created on Wed Apr 05 10:15:57 2017 @author: david.schwarz""" 
from fft_operator_u3 import Fft_Operator 
impulse_time = 0.2; #time to run the silenoid  
seconds_fft = 15.0; #seconds to sample data for the fft 
fft = Fft_Operator(seconds_fft); #initalizes the fft, also the labjack u3 
Fft_Operator.emptybucket(); 
Fft_Operator.close(); 
 
D.6.9. stream_stop.py 
"""Created on Wed May 31 11:04:36 2017 @author: william.baker""" 
from fft_operator_u3 import Fft_Operator 
#impulse_time = 0.2; #time to run the silenoid  
seconds_fft = 15; #seconds to sample data for the fft 
fft = Fft_Operator(seconds_fft); #initalizes the fft, also the labjack u3 
#Fft_Operator.emptybucket(); 
#Fft_Operator.close(); 
fft.d.streamStop() 
 
D.6.10. Python Modules  
time: "15.3. Time — Time Access and Conversions." 15.3. Time - Time 

Access and Conversions — Python 2.7.13 Documentation. Python, 

27 May 2017. Web. 09 June 2017. 

datetime: "8.1. Datetime — Basic Date and Time Types." 8.1. Datetime - 

Basic Date and Time Types — Python 2.7.13 Documentation. 

Python, 27 Mar. 2017. Web. 09 June 2017. 

numpy: "NumPy." NumPy — NumPy. NumFocus, 2017. Web. 09 June 

2017. 
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traceback: Hellmann, Doug. "PyMOTW." Traceback – Extract, Format, and 

Print Exceptions and Stack Traces. - Python Module of the Week. 

N.p., 30 Apr. 2017. Web. 09 June 2017. 

glob: "10.7. Glob — Unix Style Pathname Pattern Expansion." 10.7. Glob 

- Unix Style Pathname Pattern Expansion — Python 2.7.13 

Documentation. Python, 27 Mar. 2017. Web. 14 June 2017. 

Matplotlib.backends.backend_pdf:  Sukhbinder. "Pdf With Matplotlib."  

SukhbinderSingh.com. N.p., 09 Sept. 2015. Web. 14 June 2017. 

Matplotlib.pyplot: Hunter, John, Darren Dale, Eric Firing, and Michael Droettboom. 

"Pyplot Tutorial." Pyplot Tutorial — Matplotlib 2.0.2 

Documentation. N.p., 10 May 2017. Web. 14 June 2017. 

os: "15.1. Os — Miscellaneous Operating System Interfaces." 15.1. Os 

- Miscellaneous Operating System Interfaces — Python 2.7.13 

Documentation. Python, 27 Mar. 2017. Web. 14 June 2017. 

sys: "28.1. Sys — System-specific Parameters and Functions." 28.1. Sys 

- System-specific Parameters and Functions — Python 2.7.13 

Documentation. Python, 27 Mar. 2017. Web. 14 June 2017. 

signal: "18.8. Signal — Set Handlers for Asynchronous Events." 18.8. 

Signal - Set Handlers for Asynchronous Events — Python 3.6.1 

Documentation. Python, 27 Mar. 2017. Web. 14 June 2017. 

subprocess: "17.1. Subprocess — Subprocess Management." 17.1. Subprocess - 

Subprocess Management — Python 2.7.13 Documentation. Python, 

27 Mar. 2017. Web. 14 June 2017. 

smtplib: "20.12. Smtplib — SMTP Protocol Client." 20.12. Smtplib - SMTP 

Protocol Client — Python 2.7.13 Documentation. Python, 27 Mar. 

2017. Web. 14 June 2017. 
 
 


