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1. Introduction

In 1916, Albert Einstein predicted the existence of gravitational waves, rip-
ples created by accelerating masses that would propagate through spacetime
[1,2]. However, he believed they would be too small for human detection. On
September 14, 2015 at 09:50:45 UTC, nearly one century after Einstein’s predic-
tion, both detectors of the Laser Interferometric Gravitational-wave Observatory
(LIGO) simultaneously observed a transient gravitational-wave signal [3]. This
was the first direct detection of gravitational waves, as well as the first detection
of a binary black hole merger. The two LIGO observatories are in Livingston,
LA and Hanford, WA. Each instrument is a dual-recycled Michelson interfer-
ometer with 4 km arms [4]. LIGO’s discoveries were made possible by a factor
of 10 sensitivity improvement in the frequency regime around 100 Hz.

One of the challenges for LIGO is differentiating between signal and noise.
Transient noise arises as short O(seconds) glitches in the data that can mimic
true transient astrophysical gravitational wave signals including binary black
hole mergers. One powerful method to identify signals with waveforms that
are well predicted by Einstein’s relativity, including neutron star and black hole
binaries, is matched filtering, which calculates the cross-correlation between
modeled templates and the noisy gravitational wave detector data. The Py-
CBC pipeline, which identified all LIGO discoveries to date, employs matched
filtering to calculate the signal-to-noise ratio (SNR) between all modeled tem-
plates considered in a gravitational wave search. To help make the pipeline
more robust to noise, PyCBC uses a χ2 test to downweight the SNR of events
where the data does not match the modeled template well. Any times where the
re-weighted SNR is above threshold are saved as "triggers” [5]. Any given trig-
ger will have multiple associated modeled templates with non-zero re-weighted
SNR, each with individual re-weighted SNR tends to be densely clustered in
total mass and effective spin.

One of the outputs of this process is a set of parameters, such as total
mass, effective spin, and maximum re-weighted SNR [6]. These parameters



can be plotted for a given stretch of data. For gravitational wave signals, the
plots typically have a compact area of high maximum re-weighted SNR, with a
relatively low re-weighted SNR over other values of total mass and effective spin.
If the event is noise, typically maximum re-weighted SNR is not well localized
in these template parameters.

Our approach to improving the PyCBC pipeline performance by limiting
the impact of transient noise is to use a convolutional neural network and im-
age classification. A neural network is a biology-inspired computer program in
which a computer learns a specified task from a series of provided ‘training’
examples. Neural networks have successfully been used to classify images of
LIGO data in the past [7]. We will build an image classifier that takes as input
a plot representing the distribution of templates associated with a trigger time
in total mass and effective spin. We expect that the much more well-localized
appearance of true signals in this parameter space will serve as a powerful dis-
tinguishing feature for our machine learning image classifier.

2. Objectives

The aim of my summer research project is twofold:
1) Create a convolutional neural network that will differentiate signal and noise
in LIGO data
2) Test this algorithm’s performance on increasingly large data sets

3. Approach

I will first design and build a simple convolutional neural network (CNN) algo-
rithm that can intake images of the total mass and effective spin distribution of
PyCBC triggers and output some likelihood that the trigger belongs to the ‘sig-
nal’ class or the ‘noise’ class. Next I will need to develop a training set to train
the CNN to make accurate classifications. I will inject a series of simulated
gravitational wave signals into data from Advanced LIGO’s second observing
run and flag each of these as part of the ‘signal’ class. For the glitch class, I will
use glitch examples identified by Gravity Spy.

After I have trained the CNN with known examples of both the signal and
glitch classes, I will test it with a test data set. To ensure this data is inde-
pendent from the training set I will use a different period of Advanced LIGO
data, and I will follow the same method as above to inject signal examples and
identify glitch examples. I will evaluate the performance of the CNN by pro-
ducing a confusion matrix for the test data which will calculate the fraction of
mis-classified PyCBC triggers for each class. I anticipate tuning the CNN based
on these results.

At this point, I will be ready to expand my training set and data set to
an extended set of O2 data. Then, I will produce and analyze my results.
All simulations will be run from my personal laptop using Caltech’s LDAS
computing cluster for computational power.



4. Project Schedule

I will follow the timeline below:

Weeks 1-2: Learn LIGO software and computing clusters, assemble basic
code

Weeks 3-5: Tune algorithm using isolated test cases
Weeks 6-8: Run on extended data set
Weeks 9-10: Combine results, prepare final report and presentation

5. Current Work

Upon my initial arrival at Caltech, I began to familiarize myself with LIGO
data through Gravity Spy. I practiced categorizing different types of glitches so
that I could develop intuition categorizing noise and distinguishing it from sig-
nals. This work was important for the potential to need to troubleshoot further
in the project when building the training and test data sets. I then designed the
data feature that I intend to feed into the machine learning algorithm, studying
how the SNR varied with certain parameters like end time, mass, and spin, to
name a few. I more strictly defined the information to feed into the classifier so
that I can reliably represent the data that I am putting into the classifier, and
I modified the existing software to automate plots for an inputted time.

Once I familiarized myself with promising feature sets for a signal, I then
tested the plots on noise. I used Python to find the times that had maximum
SNR and were not artificial. I reran the same density plots, this time using noisy
data, and searched for more interesting behavior. I decided that the plots of
reduced χ2 v. template duration and end time v. template duration exhibited
the most distinct behavior. Once I had done a preliminary analysis of the
plots, I modified the code so that it would display the data with more confined
axis limits and only analyze that portion of the data. Part of this required
that I modify the binning of the data so that it would best display meaningful
information. Examples of the impact of binning can be seen below in Figure 1.

To prepare for feeding the images into a CNN, I automated the generation
of plots to the top 100 SNR events for data sets from Livingston and Hanford. I
also ran a similar test on injected signals that were superimposed over Gaussian
noise. Expanding to larger and more diverse data sets allowed me to search for
patterns with more precision and to finetune my ability to search for deviance
from the more clearly defined signal patterns.

After I made the data understandable for human analysis, I needed to modify
it further so it could be read by a computer. One aspect of this was altering the
plotting so that the absence of data would not be interpreted as more significant
than it was. If I were to keep the code in its original format as dictated, the
white background would be interpreted by a computer as an extrema rather
than the absence of information. This posed a significant problem when there
were small holes in the middle of large data clusters. To counter this issue,
I decided to use an inverse gray scale for the color bar so that I could place



Figure 1: The top figure is an example of bad binning, where the bins are too
wide to effectively distinguish the shape of the distribution. On the bottom, the
binning has been adjusted so that a more distinct feature space can be seen.

the white end of the spectrum at the lower limit of the color bar. This would
effectively increase the noise floor to the lower limit. To force the code to always
produce the same output, I also eliminated the feature of the code that allowed
for a logarithmically scaled color bar. This then produced identical scaling for
all plots.

Another modification that needed to be made was cropping the plot so that
the neural network would receive data that was all significant and understand-
able. This entailed setting a consistent values for dots per inch (DPI) and image
size. I set the figure size to be 6in x 6in, with 200 DPI. With those two values
set constant, I could then calculate the pixels that would specify the region I
should crop so that the neural network would only analyze the plot, eliminating
features like the axes and color bar.

Once I had specified the plot features, I saw interesting behavior in the
outputted injection plots. There was a strong band of high SNR data points
that seemed as if they were saturating the upper limit of the color bar, implying
that they were an artifact of an artificial signal. To eliminate that problem,
I modified the code so that after masking the injections to the 100 loudest



SNR, any peaks above the color bar range were not plotted and thus effectively
eliminated from the data set. This removed the artificially high SNR band from
the template duration vs. end time dataset.

Because the template duration vs. reduced χ2 plot exhibited differing be-
haviors from when viewed on different scales, I decided to consider three axis
limits for reduced χ2 - 8, 30, 140. To allow the neural network to consider how a
true signal would behave in all three limits, I wrote additional code to combine
all three views into one image.

With all of the aforementioned changes, I had effective code that could pro-
duce plots that would be easily understandable by a CNN. However, I needed
to generalize the code so it was easily iterable. After doing that, I was then
able to test my neural network on a small data sample from the two data sets
and the injection data. The CNN ran and produced reasonable results, able to
predict the outcome of the data to an average of 99-98 percent accuracy.

Then, I was able to change the neural network so that I could input only
one dataset and set aside a random 90 percent of it for a training set and a
random 10 percent for a testing set. However, with the current parameters,
the CNN was running very slowly, so I altered the CNN to read in the data
with a smaller pixel count. After that modification, the CNN seemed to be
producing eerily consistent results, so I checked the plots with reduced pixel
count. I found out that the method I was using to downsample was taking
the maximum value, which was solely based on the gray scale count. Although
white was the minimum value on my color bar, it represented the maximum
value in the grayscale. To counteract that, I changed the downsampling to the
mean value and that method of averaging produced a plot similar to the original
but at a lower resolution.

In order to ensure that the data I was analyzing in the injection data set,
I wanted to compare the highest SNR times with the times at which a pure
gravitational wave signal was injected. I included a two second time window
from the intended injection time as another filtering parameter. With that extra
level of selection, I ran the injections again to include the top 1000 SNR and
got 15 outputted plots that met all criteria. Similarly, I ran my Livingston and
Hanford data sets over the top 1000 SNR to include more samples. Currently,
I am producing plots of injected signals over real noise, and then I will move
onto injecting them into the CNN.

6. Challenges

One of the difficulties that arose thus far was determining what made the
plots interesting enough to consider them as viable for training the CNN. I
struggled to develop an understanding of what combinations of data would pro-
vide a meaningful plot, especially since a large portion of that entailed learning
how to quickly yet effectively interpret code written by someone else. A similar
problem that arose from that issue was doing unnecessary work. It took me a
long time to find out that code that I had been writing was already part of the
code I was using, just hidden under different names or deeper in source code.



Another difficulty was determining how to constrain the plots that would al-
low high levels of clarity for data sets with differing distributions. This required
studying the behavior that signals had and finding variations across different
noise data sets to look for different patterns. Changing the binning was a sig-
nificant step towards remedying this issue, and utilizing the potential to run the
CNN over different data constraints will help in the future.

A current difficulty for me is the uncertainty if the CNN will still be as
effective on O2 data sets as they have been on O1 data sets, because I have only
tested O1 data. This will hopefully be remedied in the next week, as I move
into analysis on O2 data.
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