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Abstract—The Bayesian Coherence Ratio (BCR) is a statistic
which rejects glitches in LIGO data using the fact that glitches
are typically less coherent between detectors than real signals.
This statistic was originally used on glitches from O1 LIGO
data for low-mass binary-black hole systems. We apply the BCR
on intermediate-mass black hole data and determine that, while
not quite as strong, the BCR is still valid in rejecting a large
percentage of IMBH glitches.

I. INTRODUCTION

The Bayesian Coherence Ratio (BCR) is a statistic used
to distinguish real gravitation-wave (GW) sources from both
glitches and pure Gaussian noise [1]. Given D detectors, we
write

BCR =
αZS∏D

i=1[βZ
G
i + (1− β)ZN

i ]
.

Here, ZS denotes the evidence for the signal model, ZG

the evidence for the glitch model in a given detector, and ZN

the evidence for the noise model in a given detector. The α
and β parameters in this equation are priors for the given
models: α is the prior belief in the signal model, β is the prior
belief in the glitch model, and 1− β is the prior belief in the
noise model. Together, these priors and evidences allow us to
separate incoherent glitches from coherent signals. The values
α and β may be estimated by choosing values which give the
largest amount of separation between signal and background
distributions.

II. BACKGROUND

In using the BCR we need a suitable method to identify
background events given LIGO data. This background data is
found by performing time-slides between data from multiple
detectors, changing the time offset of one detector relative to
the other. Additionally, to obtain a sizable amount of signal
data, we use software injections to add signal to typical
background noise in each detector.

After obtaining enough instances of signal and background
data, we run parameter estimation (PE) runs on each selection
of data to obtain our signal, noise, and glitch evidences. This
can be done with the help of software packages such as bilby
[2]. The noise and glitch evidences in each detector come
from parameter estimation runs using data from one detector
only. The signal evidence comes from a PE run using data in
multiple detectors.

Given the data from the PE runs for each piece of signal
or background data, we then calculate the BCR for each run,
tuning α and β to create the greatest amount of separation
between the signal and background triggers. Typically, we
choose a BCR of 1, or log-BCR of 0 as a cutoff between
signal and background distributions, which can be shifted
accordingly by using α to re-scale the data. Correspondingly,
tweaking β is what actually creates the separation between the
two distributions.

After the prior weights α and β are determined, the BCR
can now be used to veto possible triggers whose log-BCR falls
below the zero threshold. This allows us to correspondingly
decrease the false-alarm rate (FAR) of any trigger whose BCR
passes the cutoff, depending on the percentage of glitches in
the background distribution which have log-BCR < 0.

III. PREVIOUS USES FOR LOW MASS TRIGGERS

The BCR was originally used in [1] to analyze triggers
from the O1 PyCBC pipeline. With this method, 98% of
background triggers were found to have a log-BCR below
zero. Here the background triggers were selected to be uniform
in inverse false-alarm-rate, and all of the background triggers
and software injections had total masses estimated to be
less than 100 solar masses. The weights that were found to
best separate the signal and background distributions were
α = 10−6, β = 10−4.

IV. TRANSITIONING TO IMBH TRIGGERS

While the BCR as shown works very well in separating
low-mass signal and background triggers, in transitioning to
intermediate black hole (IMBH) sources (with total mass over
100 solar masses), we expect background triggers to have a
much larger degree of coherence between detectors. This is
due to the fact that higher-mass events have a much shorter
signal duration, so it is much more likely for a glitch to be
coherent between detectors in the smaller timeframe. This
larger degree of coherence would make it much harder to
separate the signal and background distributions, and thus the
BCR could prove to be less useful in vetoing glitches and
decreasing FAR for real events.

However, even if a 98% improvement is out of reach for
IMBH triggers, something on the order of an 80-90 percent
veto for background triggers could provide a significant im-
provement in FAR for real events.
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Fig. 1. IMBH Weighted BCR vs SNR distributions with α = 1, β = 1

V. METHODS

All of our parameter estimation runs are done using the
dynesty (dynamic nested sampling) package in python as a part
of the bilby parameter estimation package [2]. Data segments
are all four seconds in length, and we use the IMRPhenomPv2
waveform for all of our analyses.

All of our IMBH triggers used in the analysis come from the
Coherent Wave-Burst (CWB) pipeline, which ranks triggers by
a re-weighted signal-to-noise ratio statistic ρ [3]. We take the
top 300 IMBH background triggers in ρ for our background
timeslides. Additionally, we perform 300 software injections
with total mass between 100 and 400 solar masses. These
injections are uniformly distributed in distance with signal-to-
noise ratios (SNRs) ranging from 0 to 50.

Finally, we run parameter estimation runs using data from
the 170502 IMBH trigger. This trigger was the most significant
observed in the O1 + O2 IMBH search. Its FAR was estimated
to be 0.34, not significant enough to call a real event, and
checks identified a correlation between this trigger and an
optical lever laser glitch. However, if its BCR fell above the
background threshold, its FAR could be decreased accordingly.

VI. RESULTS

For our preliminary results, when analyzing BCR values
with setting α = 1, β = 1 (also known as the BCI) in
Figure 1, we find very little separation between the signal and
background distributions. In contrast, varying α and β leads
to a much better separation between signal and background.
Here, with results for α = 10−8, β = 10−4 shown in Figure
2, we see that most of our background events are below the
zero threshold and most of our signal events are above the
threshold, especially above SNRs of 10. Specifically, we find
that 96% of background triggers are below the cutoff while
91% of software injections above SNRs of 10 are above the
cutoff. Additionally, from the data we see that the 170502
IMBH trigger has network SNR too low for any valid veto to
be determined by the BCR.

When looking at the metric as an extra veto used to rule
out possible glitches, we see promise in the large separation

Fig. 2. IMBH Weighted BCR vs SNR distributions with α = 10−8, β =
10−4

between signal and background distributions with the final
weights. From the original distributions in background triggers
in ρ, we see in Figures 3 and 4 that applying the BCR
as a veto takes away a very large portion of the existing
background events and would significantly lower FAR in real
events. However as we approach lower values of SNR, we see
that the BCR is doing nothing to separate the distributions.
This is the one main difference we see between intermediate-
mass black hole events and low-mass black hole events from
[1]. This is likely due to the larger degree of coherence allowed
in shorter-duration glitches. Even though our signals are still
more coherent at low-SNRs, the margin is too slim for the
BCR to yield any useful result. As we approach larger SNRs,
however, we see that the distributions separate much more,
especially when compared with the results for α = 1, β = 1.
As most mergers cannot be observed at SNRs below 10, we
see that the BCR is still performs well in rejecting IMBH
glitches. We suggest that, at the very least, the BCI (BCR with
α = 1, β = 1) statistic shown in some PE software packages
and other analyses should be replaced with the BCR using
better choices of weights.

Fig. 3. Cumulative background distributions in ρ with and without PE runs
with BCR < 1, logarithmic scale.
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Fig. 4. Cumulative background distributions in ρ with and without PE runs
with BCR < 1, linear scale.

VII. ITEMS FOR FURTHER ANALYSIS

In the next steps towards using the BCR in the future, it
would be useful to finalize the ’correct’ choices in weights for
α and β. As mentioned in [1], this could be done with sam-
pling a very large number of glitches and software injections,
with masses ranging in both the low and intermediate mass
ranges, and separating the distributions as before. However,
due to the differences in α values found, it’s possible that
the weights vary between low and intermediate mass events,
which could be taken into account.

Additionally, the weights can be determined as the priors
they are defined to be, instead taking the approach of finding
the general odds of finding a signal in Gaussian noise and a
glitch in Gaussian noise. It’s also possible that this would still
cause α and β to vary from low to intermediate mass ranges.

Aside from the weights, we can look into using the BCR on
other pipeline data. It’s likely that new pipelines have a more
polished system for finding signals and glitches, and thus it
would be good to see how well the BCR does compared to
previous runs.
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