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ABSTRACT

We present the results of targeted searches for gravitational wave transients associated with gamma-
ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place
from November 2016 to August 2017. We have analyzed 98 gamma-ray bursts using an unmodeled
search method that searches for generic transient gravitational waves and 42 with a modeled search
method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods
clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 x 106
(modeled) and 3.1 x 10=* (unmodeled). We find no evidence of associated gravitational-wave signals
for any of the other gamma-ray bursts analyzed, and therefore report lower bounds on the distance to
each of these, assuming various source types and signal morphologies. Using our final modeled search
results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place
bounds on the rate of short gamma-ray bursts as a function of redshift for z < 1 and estimate 0.07-1.80
detections per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 joint detections per year

when current gravitational-wave detectors are operating at design sensitivities.

1. INTRODUCTION

Gamma-ray bursts (GRBs) are high energy astrophys-
ical transients originating throughout the universe that
are observed more than once per day on average. The
prompt gamma ray emission is thought to emanate from
highly relativistic jets powered by matter interacting
with a compact central object such as an accreting black
hole (BH) or a magnetar (Woosley 1993). Broadly
speaking, GRBs are divided into two sub-populations
based upon duration and spectral hardness (Kouveliotou
et al. 1993).

Long-soft bursts generally have durations 22 seconds.
The favored model is the core-collapse supernova (SN)
of a rapidly rotating massive star (Woosley & Bloom
2006; Mosta et al. 2015). This connection was observa-
tionally supported by the presence of SN 1998bw within
the error box of the long GRB 980425 (Galama et al.
1998) and the later strong association of SN 2003dh
with GRB 030329 (Hjorth et al. 2003; Stanek et al.
2003). The core collapse process will produce some
gravitational radiation (Fryer & New 2011). Rota-
tional instabilities may give rise to much more signif-

icant gravitational wave (GW) emission, however, and
could be observable from beyond the Milky Way (Fryer
et al. 2002; Davies et al. 2002; Kobayashi & Meszaros
2003; Shibata et al. 2003; Piro & Pfahl 2007; Corsi &
Meszaros 2009; Romero et al. 2010; Gossan et al. 2016).

Neutron star (NS) binaries have long been proposed
as the progenitors of short-hard GRBs (Blinnikov et al.
1984; Paczynski 1986; Eichler et al. 1989; Narayan et al.
1992). The detection of the GW transient GW170817,
a NS binary merger (Abbott et al. 2017a,b, 2019), in
coincidence with the short GRB 170817A (Goldstein
et al. 2017; Savchenko et al. 2017) confirmed that such
mergers can produce short GRBs. An optical detection
of a counterpart (Coulter et al. 2017) was followed by
panchromatic observations identifying kilonova and af-
terglow emission (see Abbott et al. 2017¢, and references
therein).

The unusually low flux of GRB 170817A and its light
curve evolution suggested an off-axis GRB with a rela-
tivistic structured jet or cocoon that either propagated
into the universe successfully or was choked (Rossi et al.
2002; Kasliwal et al. 2017; Hallinan et al. 2017; Got-
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tlieb et al. 2018; Lamb & Kobayashi 2017; Troja et al.
2017; Lazzati et al. 2018; Zhang et al. 2018). Later,
very long baseline interferometry observations indicated
a successfully launched relativistic jet (Mooley et al.
2018; Ghirlanda et al. 2019). The center of this jet
appears to have been directed at an angle of approx-
imately 15°-30°from the line of sight (Lazzati et al.
2018; Mooley et al. 2018). Analysis of the first ten
years of Fermi Gamma-ray Burst Monitor (GBM) data
suggests GRB 170817A may belong to a population of
local, low-luminosity short GRBs with similar spectral
features (von Kienlin et al. 2019). The multimessenger
observations of this event have proven to be extremely
rich, providing insights about the structure of neutron
stars (Margalit & Metzger 2017; Radice et al. 2018; Ab-
bott et al. 2018a; Most et al. 2018; De et al. 2018), the
local cosmological expansion rate (Abbott et al. 2017d,
2019; Hotokezaka et al. 2018), and heavy element nu-
cleosynthesis (Drout et al. 2017; Cowperthwaite et al.
2017; Chornock et al. 2017; Smartt et al. 2017; Kasen
et al. 2017; Abbott et al. 2017e) to name a few.

In this paper we present targeted GW follow-up of
GRBs — long and short — reported during the second
observing run of Advanced LIGO and Advanced Virgo
(02). The observing run spanned 30 November 2016 to
25 August 2017, with Advanced Virgo commencing ob-
servations on 1 August 2017. As a measure of their sen-
sitivities, the Advanced LIGO instruments had sky- and
orientation-averaged BNS ranges between 65-100 Mpc
throughout the run, while for Advanced Virgo this range
was approximately 25 Mpc (Abbott et al. 2018b). In ad-
dition to GW170817, seven binary BH mergers were pre-
viously identified during O2, with a further three binary
BHs observed during the first observing run (Abbott
et al. 2018b).

We discuss the population of GRBs included in our
analyses in Section 2, and summarize the methods used
in Section 3. We then present the results of a mod-
eled binary merger analysis targeting short-hard GRBs
in Section 4 and an unmodeled analysis targeting all
GRBs in Section 5, with discussion in Section 6 followed
by concluding remarks in Section 7.

2. GRB SAMPLE

The GRB sample contains events disseminated by
the Gamma-ray Coordinates Network (GCN)!, with
additional information gathered from the Swift BAT

I GCN Circulars Archive: http://gen.gsfc.nasa.gov/gen3.
archive.html.

catalog? (Lien et al. 2016), the online Swift GRB
Archive®, Fermi GBM Burst Catalog® (Gruber et al.
2014; von Kienlin et al. 2014; Bhat et al. 2016), and the
InterPlanetary Network (IPN) (Hurley et al. 2003)°. An
automated system called VALID (Coyne 2015) cross-
checks the time and localization parameters of the Swift
and Fermi events against the published catalog with
automated literature searches. In total, from Novem-
ber 2016 through August 2017, there were 242 bursts
detected in the combined Swift + Fermi catalog. We
received a total of 52 bursts localized by the IPN with
many bursts appearing in both catalogs. GRBs that
were poorly localized were removed from our sample,
as were GRBs that did not occur during a period of
stable, science-quality data taking by the available GW
detectors.

For the purposes of this work, GRBs are classified (as
in Abbott et al. 2017f) based on their Tyy value — the
period over which 90% of the flux was observed — and its
uncertainty 6799. GRBs with a value of Tyg+ 0Ty < 28
are short, and those with Tog + 0T9g > 4 s are long. The
remaining GRBs are ambiguous.

As in Abbott et al. (2017f), a generic unmodeled GW
transient search (Sutton et al. 2010; Was et al. 2012) was
performed for all GRBs for which 660 s of coincident
data was available from two GW detectors, regardless
of classification. A modeled search for coalescing binary
GW signals (Harry & Fairhurst 2011; Williamson et al.
2014) was performed for all short and ambiguous GRBs
with at least 1664 s of data in one or more detectors.
This scheme resulted in 98 GRBs being analyzed with
our unmodeled method and 42 analyzed with our mod-
eled method.

3. SEARCH METHODS

To cover all possible gravitational-wave emission
mechanisms we consider two search methods: a modeled
search for binary merger signals from short or ambigu-
ous GRBs, and an unmodeled search for GWs from all
GRBs. Neither of these methods have changed since
previous published results (Abbott et al. 2017f,a), so we
provide summary overviews here.

3.1. Modeled search for binary mergers

2 Swift BAT Gamma-Ray Burst Catalog: http://swift.gsfc.
nasa.gov /results/batgrbcat/.

3 Swift GRB Archive: http://swift.gsfc.nasa.gov/archive/grb_
table/.

4 FERMIGBRST - Fermi GBM Burst Catalog: https://heasarc.
gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html.

5 Collected via private communication with Kevin Hurley
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The modeled search is a coherent matched filter-
ing pipeline known as PyGRB (Harry & Fairhurst 2011;
Williamson et al. 2014), and is contained within the
PyCBC data analysis toolkit® (Nitz et al. 2018). We ana-
lyze a 6 s on-source window comprising [-5,4+1) s around
the arrival time of the GRB for a GW candidate event,
and up to approximately 90 minutes of adjacent data to
characterize the background.

We use a bank of GW template waveforms for fil-
tering (Owen & Sathyaprakash 1999) that encompasses
combinations of masses and spins consistent with BNS
and NS-BH systems that may be electromagnetically
bright, i.e., under conservative assumptions about the
NS equation of state, the evolution of these systems to-
wards merger could feasibly produce an accretion disc
via disruption of the NS that might be sufficient to power
a GRB (Pannarale & Ohme 2014). The templates are
restricted to orbital inclinations of 0°or 180°. This deci-
sion is motivated by the expectation that short GRBs do
not have jets with angular sizes, and therefore inclina-
tions, much greater than 30°(e.g., Fong et al. 2015). The
effect of a small inclination angle on the relative ampli-
tudes of the two GW polarizations is minor enough that
restricting the inclination of templates to 0°or 180°can
simultaneously reduce computational cost and improve
sensitivity to slightly inclined systems by lowering the
search background (Williamson et al. 2014). The tem-
plates are generated with an aligned-spin model tuned to
numerical simulations of binary BHs (Khan et al. 2016).
This model was chosen since it was found to provide
good levels of signal recovery with relatively low compu-
tational cost, and all available models featuring matter
effects or generic spin orientations would significantly
increase the average computational cost per individual
waveform generation and require a substantial increase
in the number of templates. Filtering is performed over
frequencies of 30-1000 Hz.

The detection statistic is a re-weighted, coherent
matched filter signal-to-noise ratio (SNR) (Harry &
Fairhurst 2011; Williamson et al. 2014). Candidate sig-
nificance is evaluated by comparing the most prominent
trigger within the 6 s on-source, if there is one, with the
most prominent in each of the numerous 6 s off-source
trials to produce a p-value for the on-source candidate.
Extended background characterization is achieved using
time slides; additional off-source trials are generated by
combining data from GW detectors after introducing
time shifts longer than the light travel time across the
network.

6 https://pycbc.org/
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Search sensitivity is estimated by injecting simulated
signals into off-source data in software. We choose three
distinct astrophysical populations of simulated signals:
BNS, NS-BH with spins aligned with the orbital angular
momentum, and NS-BH with generically oriented spins.
Signals are simulated as having originated at a range
of distances. The 90% exclusion distance, Dgg, is the
distance within which 90% of a simulated population
are recovered with a ranking statistic greater than the
most significant trigger in the on-source.

In all instances NS masses are drawn from a normal
distribution of mean 1.4 Mg and standard deviation
0.2 My (Kiziltan et al. 2013; Ozel & Freire 2016), re-
stricted to the range [1,3] Mg where the upper limit
is conservatively chosen based on theoretical considera-
tion (Kalogera & Baym 1996). NS spin magnitudes are
limited to <0.4 based upon the fastest observed pulsar
spin (Hessels et al. 2006).

BH masses are drawn from a normal distribution of
mean 10 My and standard deviation 6 Mg, restricted
to the range [3,15] Mg, with spin magnitudes restricted
to <0.98, motivated by X-ray binary observations (e.g.,
Ozel et al. 2010; Kreidberg et al. 2012; Miller & Miller
2014).

All simulations have binary orbital inclinations re-
stricted to within [0°,30°] or [150°,180°]. Additionally,
the EM-bright condition is applied to simulations, avoid-
ing the inclusion of systems that could not feasibly power
a GRB (Pannarale & Ohme 2014).

For each of our three astrophysical populations we
generate simulations with three different waveform
models so as to account for modeling uncertainty.
Specifically, the results quoted in this paper are ob-
tained for simulations with a point-particle effective one
body model tuned to numerical simulations, which in-
corporates orbital precession effects due to unaligned
spins (Pan et al. 2014; Taracchini et al. 2014; Babak
et al. 2017).

3.2. Unmodeled search for generic transients

We run an unmodeled search targeting all GRBs; long,
short, and ambiguous. This analysis is implemented
within the X-Pipeline software package (Sutton et al.
2010; Was et al. 2012). This is an unmodeled search
since we do not know the specific signal shape of GW
emission from the core collapse of massive stars, so we
make minimal assumptions about the signal morphol-
ogy. We use the time interval around a GRB trigger
beginning 600 s before and ending either 60 s after or
at the Ty time (whichever is larger) as the on-source
window. This window is long enough to cover the time
delay between GW emission from a progenitor and the
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GRB (Koshut et al. 1995; Aloy et al. 2000; MacFadyen
et al. 2001; Zhang et al. 2003; Lazzati 2005; Wang &
Meszaros 2007; Burlon et al. 2008, 2009; Lazzati et al.
2009; Vedrenne & Atteia 2009). We restrict the search
to the most sensitive frequency band of the GW detec-
tors of 20-500 Hz. At lower frequencies terrestrial noise
dominates and at higher frequencies (f = 300) the GW
energy necessary to produce a detectable signal scales
as oc f4 Hz (see, e.g., section 2 of Abbott et al. 2017g).

Before analyzing detector data, we excise periods of
poor quality data from the data stream. These peri-
ods include non-Gaussian noise transients, or glitches,
that can be traced to environmental or instrumental
causes (Nuttall 2018; Berger 2018). Including a detec-
tor data stream with low sensitivity and many glitches
can reduce overall search sensitivity. Particular care
was taken to ensure periods of poor quality data from
the Virgo detector, which was significantly less sensi-
tive than both LIGO detectors during O2, did not de-
grade the unmodeled search performance. For GRBs for
which we have data from three interferometers, methods
for flagging and removing poor quality data were tuned
on off-source Virgo data, however ultimately Virgo data
were only included in the final analysis if the sensitivity
of the search was improved by its inclusion.

The analysis pipeline generates time-frequency maps
of the GW data stream after coherently combining data
from all detectors. These maps are scanned for clusters
of pixels with excess energy, referred to as events, which
are ranked according to a detection statistic based on
energy. Coherent consistency tests are applied to reject
events associated with noise transients based on correla-
tions between data in different detectors. The surviving
event with the largest ranking statistic is taken to be
the best candidate for a GW detection and we evaluate
its significance in the same way as the modeled analysis
except with 660s long off-source trials.

As in the modeled search, we estimate the sensitivity
of the unmodeled search by injecting simulated signals
into off-source data in software. Here, we report results
using signals from a stellar collapse model represented
by circular sine-Gaussian (CSG) waveforms (see Equa-
tion 1 and Section 3.2 of Abbott et al. 2017f), with an
optimistic total radiated energy Eqw = 1072Myc? and
fixed @ factor of 9. We construct four sets of such wave-
forms with central frequencies of 70, 100, 150, and 300
Hz. For an optimistic example of longer duration GW
emission detectable by the unmodeled search we also
report results for five accretion disk instability (ADI)
waveforms (van Putten 2001; van Putten et al. 2014). In
ADI models, GWs are emitted when instabilities form in
a magnetically suspended torus around a rapidly spin-

ning BH. The model specifics and parameters used to
generate these ADI models are the same as in Table 1
and Section 3.2 of Abbott et al. (20171).

4. MODELED SEARCH RESULTS

We analyzed 42 short and ambiguous GRBs with the
modeled search during O2. As previously reported,
the analysis identifies GW170817 in association with
GRB 170817A (Abbott et al. 2017b) in a manner con-
sistent with other GW analyses (Abbott et al. 2017a,
2019). In our analysis of GRB 170817A reported here,
where improved data calibration and noise subtraction
has been incorporated, this signal was seen with a mea-
sured p-value of <9.38 x 1076 and a coherent SNR of
31.26, far in excess of the loudest background.

We found no other GW signals detected in association
with any of the other GRBs. The p-value distribution
for the 41 GRBs other than GRB 170817A is shown in
Figure 1. For GRBs without any associated on-source
trigger we plot an upper limit on the p-value of one,
and a lower limit given by counting the background tri-
als that similarly had no trigger. The expected distri-
bution under the no-signal hypothesis is shown by the
dashed black line, with dotted lines denoting a 2¢ de-
viation about the no-signal distribution. To quantify
population consistency with the no-signal hypothesis we
use the weighted binomial test outlined in Abadie et al.
(2012a). This test considers the lowest 5% of p-values in
the population, weighted by the prior probability of de-
tection based on the detector network sensitivity at the
time and in the direction of the GRB. We do not include
GWI170817 as it is a definite GW detection. This results
in a p-value of 0.30, thus we find no significant evidence
for a population of unidentified subthreshold signals.

In addition to GRB 170817A, there were 6 instances
of on-source candidates with p-values less than 0.1. The
second most significant p-value was 0.0068, associated
with GRB 170125102 from the Fermi GBM burst cata-
log. These 6 candidates were the subjects of further data
quality checks to assess whether they could be caused by
known instrumental noise sources. After careful scrutiny
of the data there were no clear noise artifacts identified
as being responsible for any of these candidates. We
also ran Bayesian parameter estimation analyses using
LALInference (Veitch et al. 2015) to quantify the ev-
idence for a coherent subthreshold signal in the data
versus incoherent or Gaussian instrumental noise. The
results of these studies are summarized in more detail
in Table 2. In particular, we quote Bayes factors (BFs)
to quantify the support for a coherent signal over inco-
herent or Gaussian noise, where a value less than one
favors noise over signal, and values greater than ~3 are
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Figure 1. The cumulative distribution of event p-values for
the NS binary search in O2. If the search reports no trigger
in the on-source we plot an upper limit on the p-value of 1,
and a lower limit equal to the number of off-source trials that
contained no trigger. The dashed line indicates the expected
distribution of p-values under the no-signal hypothesis, with
the corresponding 20 envelope marked by dotted lines.

generally required before considering support to be sub-
stantial (Kass & Raftery 1995). Some studies have pre-
viously looked at the distributions of these BF's in the
presence of weak signals and instrumental noise (Veitch
& Vecchio 2008; Isi et al. 2018), albeit in somewhat dif-
ferent contexts to the low-mass targeted coherent search
reported here. An in-depth study tailored to this anal-
ysis is beyond the scope of this work. However, our
follow-up results are consistent with that of the modeled
search itself, namely that there is no significant evidence
for the presence of signals in addition to GW170817.

GRB 170817A is known to have originated at a dis-
tance of ~43 Mpc in the galaxy NGC 4993 (Abbott
et al. 2017b). We have plotted the cumulative 90% ex-
clusion distances for the remaining short and ambiguous
GRBs in Figure 2. For each of our three simulated sig-
nal classes we quote the median of the 41 Dy results in
Table 1.

5. UNMODELED SEARCH RESULTS

98 GRBs were analyzed using the generic transient
method and no significant events were found except for
GRB 170817A. The generic method recovered a sig-
nal for GRB 170817A consistent with the previously
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Figure 2. Cumulative histograms of the 90% confidence
exclusion distances, Dyg, for the BNS (blue) and generically
spinning NS-BH (orange) signal models, shown for the sam-
ple of 41 short and ambiguous GRBs that did not have an
identified GW counterpart. For a given GRB and signal
model, Dyg is the distance within which 90% of simulated sig-
nals inserted into off-source data are recovered with greater
significance than the most significant on-source trigger.

reported signal GW170817 at a p-value of 3.1 x 1074
This value differs slightly from that reported in Ab-
bott et al. (2017b), which can be explained by various
changes in the configuration of X-Pipeline. Firstly, the
clustering of pixels in time-frequency maps was previ-
ously done over a 7x7 pixel grid, whereas in the analysis
reported here all clustering is done in a 3x3 grid. Sec-
ondly, in the case of GRB 170817A the coherent veto
tests were tuned (as described in section III of (Sutton
et al. 2010)) to maximize the sensitivity of the search
to injections of BNS waveforms on the 99.99999th per-
centile loudest data segment. Here, we go back to the
coherent veto tuning used in previous searches which
uses the background data segment containing the 95th
percentile loudest background event to all injected wave-
form families.

For the population of results we have compared the
distribution of p-values against the expected distribu-
tion under the no-signal hypothesis. We find a combined
p-value of 0.75 (0.75 in O1) looking at the most signifi-
cant 5% of events from the unmodeled search using the
weighted binomial test from Abadie et al. (2012b).
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Figure 3. Cumulative distribution of p-values from the un-
modeled search for transient GWs associated with 97 GRBs.
The dashed line represents the expected distribution under
the no-signal hypothesis, with dotted lines indicating a 20
deviation from this distribution. These results are consistent
with the no-signal hypothesis, and have a combined p-value
of 0.75 as calculated by a weighted binomial test (Abadie
et al. 2012b).

For GRBs other than GRB 170817A we place 90%
confidence level lower limits on the distance Dgg assum-
ing various emission models. The limit depends on de-
tector sensitivity that changes over time and sky loca-
tion, systematic errors due to mismatch of a true GW
signal and the waveforms used in simulations, as well
as amplitude and phase errors from detector calibra-
tion. For all GRBs searched with the generic transient
method we place exclusion limits that vary from 15 Mpc
to 113 Mpc, depending on the GW signal model (Table
2). Some of these limits differ by an order of magnitude
due to our limited knowledge of burst-type source emis-
sion models. The median Dgy values compare favorably
with those from the first observing run, either increas-
ing or staying the same depending on the specific signal
model.

6. DISCUSSION

Aside from GW170817, no GWs associated with
GRBs were detected in O2. The median Dgy values
for each class of signal/source type provides an estimate
of roughly how sensitive the searches were to such sig-
nals over the course of the entirety of O2, and these are
given in Table 1. In Table 3 we provide information
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Figure 4. Cumulative histograms of the 90% confidence
exclusion distances Dgo for accretion disk instability signal
model A (van Putten 2001; van Putten et al. 2014) and cir-
cular sine-Gaussian 150 Hz (Abbott et al. 2017f) model. For
a given GRB and signal model this is the distance within
which 90% of simulated signals inserted into off-source data
are successfully recovered with a significance greater than the
loudest on-source trigger. The median values for ADI-A and
CSG-150 waveforms are 32 Mpc and 81 Mpc respectively.

on each GRB that was analyzed, including selected Dy
results where relevant.

The non-detection of GW counterparts for 41 short
and ambiguous GRBs analyzed by PyGRB can be com-
bined with observed GRBs and the observation of
GW170817 to obtain bounds on the short GRB-BNS
rate as a function of redshift.

To evaluate this rate given the uncertainty in the jet
structure profile of the short GRB population, we model
the GRB luminosity function as a broken power law fol-
lowing Wanderman & Piran (2015), but extended at low
luminosities with a second break with an associated free
parameter ~yz, as in Abbott et al. (2017b). This ex-
tension at low luminosity is an effective model of the
short GRB jet structure that yields low luminosities for
mergers seen at a wide angle from their rotation axis.

Li —L L —ar
() ()" e

= ()

L**<L1<L*>

Li > L*
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where L; is the isotropic equivalent energy, and the pa-
rameters L, ~ 2 x 10%%ergs™!, L,, ~ 5 x 10%%ergs™!,
ar ~ 1 and B =~ 2 were used to fit the ob-
served short GRBs redshift distribution. We assume



a threshold value for detectability in Fermi-GBM of
2photons cm~2s~! for the 64ms peak photon flux
in the 50-300keV band. Furthermore, we model the
short GRB spectrum using a Band function with
Epear, = 800keV, apanda = —0.5 and fpanda = —2.25.
This yields an observed redshift distribution normalized
by a total Fermi-GBM detection rate of 40 short GRBs
per year.

In order to constrain the free parameter v we start
with an uninformative prior on -, which yields a flat
prior on the logarithm of the local rate density. Using
the redshift distribution for a given 7 we use Monte
Carlo sampling to compute the probability of obtaining
the O2 results presented here (41 non-detections and a
single detection). This yields a posterior on v with
90% confidence bounds of [0.04,0.98]. The correspond-
ing rates as a function of redshift are shown in Figure 5
in magenta.

These bounds can be compared to other measure-
ments and models of the short GRB redshift distribu-
tion. For instance, the sample of observed short GRB
redshifts without GRB 170817A is shown in Figure 5 by
the brown lines (Abbott et al. 2017b, and references
therein). We also show the cumulative Fermi detec-
tion rate as a function of redshift in green, calculated
following the framework in Howell et al. (2018). This
assumes that all short GRBs are associated with BNS
mergers and estimates the Fermi-GBM detection rate
by scaling the BNS source rate evolution with redshift
by the Fermi-GBM detection efficiency. Finally, the cur-
rent estimate of the local BNS merger rate of 121073230
Gpe?yr~! (Abbott et al. 2018b) is shown in black for
reference. We find that the posterior bounds from the
modeled O2 GRB analysis overlap with the BNS merger
rate and Fermi-GBM detected short GRB rate at low
redshift. At high redshift there is agreement with the
observed short GRB redshift distribution and the Fermi-
GBM detection rate.

For the 2019-2020 LIGO-Virgo observing run we ex-
pect to see 1-30 BNS coalescences, while at design sen-
sitivity LIGO-Virgo could detect 4-97 BNS mergers per
year. Using the framework provided in Howell et al.
(2018) we find that joint GW-GRB detection rates are
lower, estimated at 0.07-1.80 detections per year for the
2019-20 LIGO-Virgo observing run and 0.15-3.90 joint
detections per year at design sensitivity.

7. CONCLUSIONS

We have performed targeted analyses for GWs in as-
sociation with GRBs during O2, searching for NS binary
merger signals from short GRBs with a modeled analysis
and GW burst signals from all GRBs with an unmod-

Table 1. Median 90% confidence level exclusion distances,
Dyg, for the searches during O2. Modeled search results
are shown for three classes of NS binary progenitor model,
and unmodeled search results are shown for circular sine-
Gaussian (CSG) (Abbott et al. 2017f) and accretion disk
instability (ADI) (van Putten 2001; van Putten et al. 2014)
models.

Modeled search NS-BH NS-BH
(Short GRBs) BNS Generic Spins Aligned Spins
Dgo [Mpc] 80 105 144

Unmodeled search CSG CSG CSG CSG
(All GRBs) 70Hz 100Hz 150Hz 300Hz

Doo [Mpd] 12 113 81 38

Unmodeled search ADI ADI ADI ADI ADI
(All GRBs) A B C D E

Doo [Mpd] 32 104 40 15 36

eled analysis. GW170817 is confirmed by both methods
as a strong detection associated with GRB 170817A, en-
tirely consistent with previously published results. No
further GW signals were found as a result of these analy-
ses, and there is no strong evidence found in our results
for subthreshold signals. We set lower bounds on the
distances to progenitors for a number of emission mod-
els, which include the largest Dgg values published so far
for some individual GRBs (Abadie et al. 2012b; Abbott
et al. 2017f).

Based on the results of the modeled search we per-
formed a population model analysis in Section 6 and
place bounds on a twice broken power law short GRB
luminosity function that is consistent with both the
measured BNS merger rate and the Fermi-GBM ob-
served short GRB rate, and therefore with the hypoth-
esis that BNS mergers are generally short GRB progen-
itors. Further multimessenger observations should pro-
vide tighter constraints on GRB emission models and
event rates, and investigate whether NS-BH mergers also
power short GRBs. We expect to observe 0.07-1.80 joint
GRB-GW events per year in the 2019-2020 LIGO-Virgo
observing run, and 0.15-3.90 per year at network design
sensitivity.
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Table 2. Results of follow-up studies of PyGRB candidates with p < 0.1.

GRB Name p-value Comment

161210524 0.0933 BF = 1.45, giving only very weak evidence in favor of a coherent signal over noise. Chirp
mass posterior is multimodal.

170125102 0.0068 BF = 0.88 not favoring coherent signal over noise. 1D posteriors show no significant
information gain over priors.

170206453 0.0418 BF = 0.94 not favoring coherent signal over noise. Chirp mass posterior is multimodal.

170219002 0.0307 BF = 0.88 not favoring coherent signal over noise. 1D posteriors show minimal information
gain over priors.

170614505 0.0856 BF = 0.46 not favoring coherent signal over noise. 1D posteriors show no significant
information gain over priors.

170726249 0.0262 BF = 2.08, giving only very weak evidence in favor of a coherent signal over noise.
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