Progress in Developing a Differential OSEM (DOSEM)

John W. Conklin, Deep Jariwala, Thida Preschari, Henri Inchauspe, Paul Fulda, David Tanner
LIGO-G1900464-v1

OSEMs \& Motivation

- Optical Sensor and Electro-Magnetic actuators (OSEMs)
- Measures, actuates multiple DOF of Top Mass, UIM, PUM
- As-installed performance of BOSEMs (thanks Arnaud)
- 30-200 pm/Hz ${ }^{1 / 2}$ @ 10 Hz
- 150-2000 pm/Hz ${ }^{1 / 2}$ @ 1 Hz
- May limit Iow frequency performance of aLIGO via control system
- Goal: Improve sensitivity and reduce systematics

[SM Aston 2011]

Basic idea behind DOSEM

- Replace BOSEM photodiode with a quadrant photodiode
- Replace BOSEM flag with one with a thin vertical plate
- Keep everything else the same
- Advantages
- Increases sensitivity (could be $4 x$)
- Eliminates some systematics via common mode rejection (more important)
- Improved linearity
- Disadvantages

- More complex flag (machined one at UF fairly easily)
- Four vac feedthrough wires $(2+2) \rightarrow$ Seven wires $(5+2)$

(over)Simplified Sensor Model

- Output voltage for quadrant i
- $V_{i}=g_{i} P_{i}(x)+b_{i}$
- $g_{i}=$ gain, $P_{i}(x)=$ integrated power, $b_{i}=$ bias
- For perfectly uniform light distribution, optimal flag width $=h+$ gap and
- $P_{i}(x)=P_{0} h\left(\frac{1}{2} h \pm x\right)$
- Then, can model output voltage as
- $V_{i}= \pm A_{i} x+B_{i}$
- After calibration (fitting for A_{i}, B_{i})
- Construct $s_{i}=\left(V_{i}-B_{i}\right) / A_{i}$

- $x=\frac{\left(s_{A}+s_{B}\right)-\left(s_{C}+s_{D}\right)}{s_{A}+s_{B}+s_{C}+s_{D}}$
- This combination insensitive to fluctuations in g_{i}, P_{0}, b_{i}

Emitter and Detector

- Quadrant photodiode: First Sensor GP5-6 TO

	QPD GP5-5 TO (DOSEM)	$\begin{aligned} & \text { BPX65 } \\ & \text { (BOSEM) } \end{aligned}$
Active area side length	1.10 mm square +0.024 mm gap	1.0 mm square
Responsivity @ 900nm	0.64 A/W	0.55 A/W
Dark current	0.2 nA	5 nA
Package (diam)	TO5 (8.1 mm)	TO-46 (4.7 mm)
Cost	\$35	cheap

- LED emitter: OP232 (same as BOSEM)
- TO-46 can
- Max forward current 100 mA (35 nominal)
- Procured and testing alternate LEDs: OPT132

BOSEM LED (left), PD (right) [SM Aston 2011]

DOSEM Sensor Testbed

- Mount side of flag same as BOSEM
- Mounted to piezo stage on top of 3-axis micrometer stage
- Aluminum mount holds LED \& QPD with spacing equal to that of BOSEM
- LED holder same as BOSEM
- QPD holder is modified BOSEM design (larger diameter)

View from LED

Dealing with Non-uniform Light Distribution

- LED power on QPD is non-uniform, leads to polynomial model for integrated power

$$
\text { - } P_{i}(x)=P_{0}\left(a_{0}+a_{1} x+a_{1} x^{2}+\cdots\right)
$$

- Calibration involves fitting polynomials for each quadrant
- x channel combination still insensitive fluctuations in
- LED power, PD gain \& bias
- Axisymmetric LED distribution
- Still sensitive to fluctuations in
- Right-left beam deflection
- Right-left asymmetric dist.
- For ~Gaussian beam, optimal

Modeled x Channel Signal

- Differential signal naturally reduces nonlinearity
- Nonlinearity could be removed in digital output
- Linear range: ~ $\pm 0.4 \mathrm{~mm}$
- Equivalent sensitivity $\sim 80 \mathrm{kV} / \mathrm{m}$ (calibrated combined signal is unitless)

Three output channels

- Calibrated quadrant outputs can be combined to produce three channels
- $x=\frac{\left(s_{A}+s_{B}\right)-\left(s_{C}+s_{D}\right)}{s_{A}+s_{B}+s_{C}+s_{D}}$
- $y=\frac{\left(s_{B}+s_{C}\right)-\left(s_{A}+s_{D}\right)}{s_{A}+s_{B}+s_{C}+s_{D}}$
- $\phi=\frac{\left(s_{B}+s_{D}\right)-\left(s_{A}+s_{C}\right)}{s_{A}+s_{B}+s_{C}+s_{D}}$
- y and ϕ channels are useful for:
- Noise characterization

- Alignment

Early Results

John W. Conklin, LVC Meeting, Milwaukee, WI, 18 March 2019

- Single quad sensitivity $\sim 1 \mathrm{~nm} / \mathrm{Hz}^{1 / 2}$ @ 10 Hz (10x worse than BOSEM)
- Combined sensitivity $\sim 40 \mathrm{pm} / \mathrm{Hz}^{1 / 2}$ @ 10 Hz $\sim 150 \mathrm{pm} / \mathrm{Hz}^{1 / 2}$ @ 10 Hz
- Common mode rejection ~30x @ 10 Hz
- X channel signal (3 Hz to 100 Hz) above y channel is likely flag motion
- Shot noise appears to be limit above few Hz

Future Prospects

- Pathways to increase sensitivity:
- Optimize flag width (reduce by ~0.2 mm)
$\rightarrow \sim 2 x$ increase in sensitivity (based on calibration slope)
- Minimize vibration, air currents \rightarrow vac chamber + vibe isolation
- Improve analog electronics: Protoboard \rightarrow PCB
- Optimize light distribution on QPD: LED current, optics
- Work in progress:

- Moving testbed to vacuum chamber (ion pump) on vibration isolation table (old LIGO HAM table)
- Future Work
- Examine impact on BOSEM design; both for the sensor head, and analog/digital electronics
- Seek out SWG interest, advice in DOSEM development
- Happy to evaluate alternate LEDs as part of this project

I arrive at LVC meeting in Wisconsin tomorrow night, depart Thursday afternoon

Happy to discuss further! - J.W. Conklin

