

Progress in Developing a Differential OSEM (DOSEM)

John W. Conklin, Deep Jariwala, Thida Preschari, Henri Inchauspe, Paul Fulda, David Tanner

LIGO-G1900464-v1

OSEMs & Motivation

- Optical Sensor and Electro-Magnetic actuators (OSEMs)
 - Measures, actuates multiple DOF of Top Mass, UIM, PUM
- As-installed performance of BOSEMs (thanks Arnaud)
 - 30-200 pm/Hz^{1/2} @ 10 Hz
 - 150-2000 pm/Hz^{1/2} @ 1 Hz
- May limit low frequency performance of aLIGO via control system
- Goal: Improve sensitivity and reduce systematics

Basic idea behind DOSEM

- Replace BOSEM photodiode with a quadrant photodiode
- Replace BOSEM flag with one with a thin vertical plate
- Keep everything else the same
- Advantages
 - Increases sensitivity (could be 4x)
 - Eliminates some systematics via common mode rejection (more important)
 - Improved linearity
- Disadvantages
 - More complex flag (machined one at UF fairly easily)
 - Four vac feedthrough wires $(2 + 2) \rightarrow$ Seven wires (5 + 2)

►X

(over)Simplified Sensor Model

- Output voltage for quadrant *i*
 - $V_i = g_i P_i(x) + b_i$
 - $g_i = \text{gain}, P_i(x) = \text{integrated power}, b_i = \text{bias}$
- For perfectly uniform light distribution,
 optimal flag width = h + gap and
 - $P_i(x) = P_0 h\left(\frac{1}{2}h \pm x\right)$
- Then, can model output voltage as
 - $V_i = \pm A_i x + B_i$
- After calibration (fitting for A_i, B_i)
 - Construct $s_i = (V_i B_i)/A_i$
 - $x = \frac{(s_A + s_B) (s_C + s_D)}{s_A + s_B + s_C + s_D}$
- This combination insensitive to fluctuations in g_i , P_0 , b_i

Emitter and Detector

• Quadrant photodiode: First Sensor GP5-6 TO

	QPD GP5-5 TO (DOSEM)	BPX65 (BOSEM)
Active area side length	1.10 mm square + 0.024 mm gap	1.0 mm square
Responsivity @ 900nm	0.64 A/W	0.55 A/W
Dark current	0.2 nA	5 nA
Package (diam)	TO5 (8.1 mm)	TO-46 (4.7 mm)
Cost	\$35	cheap

- LED emitter: OP232 (same as BOSEM)
 - TO-46 can
 - Max forward current 100 mA (35 nominal)
- Procured and testing alternate LEDs: OPT132

John W. Conklin, LVC Meeting, Milwaukee, WI, 18 March 2019

BOSEM LED (left), PD (right) [SM Aston 2011]

DOSEM Sensor Testbed

- Mount side of flag same as BOSEM
 - Mounted to piezo stage on top of 3-axis micrometer stage
- Aluminum mount holds LED & QPD with spacing equal to that of BOSEM
- LED holder same as BOSEM
- QPD holder is modified BOSEM design (larger diameter)

View from LED

Dealing with Non-uniform Light Distribution

• LED power on QPD is non-uniform, leads to polynomial model for integrated power

•
$$P_i(x) = P_0(a_0 + a_1x + a_1x^2 + \cdots$$

- Calibration involves fitting polynomials for each quadrant
- x channel combination still insensitive fluctuations in
 - LED power, PD gain & bias
 - r-data Axisymmetric LED distribution
- Still sensitive to fluctuations in
 - Right-left beam deflection
 - Right-left asymmetric dist.
- -10 For ~Gaussian beam, optimal -1 flag width is thinner than h + gap

Modeled x Channel Signal

- Differential signal naturally reduces nonlinearity
 - Nonlinearity could be removed in digital output
- Linear range: ~ ±0.4 mm
- Equivalent sensitivity ~80kV/m (calibrated combined signal is unitless)

Three output channels

• Calibrated quadrant outputs can be combined to produce three channels

•
$$x = \frac{(s_A + s_B) - (s_C + s_D)}{s_A + s_B + s_C + s_D}$$

• $y = \frac{(s_B + s_C) - (s_A + s_D)}{s_A + s_B + s_C + s_D}$
• $\phi = \frac{(s_B + s_D) - (s_A + s_C)}{s_A + s_B + s_C + s_D}$

- y and ϕ channels are useful for:
 - Noise characterization
 - Alignment

Early Results

- Single quad sensitivity ~1 nm/Hz^{1/2} @ 10 Hz (10x worse than BOSEM)
- Combined sensitivity ~40 pm/Hz^{1/2} @ 10 Hz ~150 pm/Hz^{1/2} @ 10 Hz
- Common mode rejection ~30x @ 10 Hz
- X channel signal (3 Hz to 100 Hz) above y channel is likely flag motion
- Shot noise appears to be limit above few Hz

Future Prospects

- Pathways to increase sensitivity:
 - Optimize flag width (reduce by ~0.2 mm)
 - \rightarrow ~2x increase in sensitivity (based on calibration slope)
 - Minimize vibration, air currents \rightarrow vac chamber + vibe isolation
 - Improve analog electronics: Protoboard \rightarrow PCB
 - Optimize light distribution on QPD: LED current, optics
- Work in progress:
 - Moving testbed to vacuum chamber (ion pump) on vibration isolation table (old LIGO HAM table)
- Future Work
 - Examine impact on BOSEM design; both for the sensor head, and analog/digital electronics
 - Seek out SWG interest, advice in DOSEM development
- Happy to evaluate alternate LEDs as part of this project

I arrive at LVC meeting in Wisconsin tomorrow night, depart Thursday afternoon Happy to discuss further! – J.W. Conklin