

Future Ground-Based GW Detectors

Stefan Ballmer Syracuse University April 30, 2019 Gainesville, FL

Overview

- Gravitational-wave Astronomy now
- Future gravitational-wave science
- Near- and long-term upgrades
 - LIGO A+ AdVirgo+, Kagra+
 - Einstein Telescope, Cosmic Explorer
- Technical challenges
- Organization and timeline

Gravitational-wave

Astronomy

Now

GW astronomy in full swing

- Three km-scale detectors operational
 - LIGO Livingston ~140Mpc
 - LIGO Hanford
 - Virgo

~ 55Mpc

~105Mpc

- O3 run since April 1 2019
 - As of 4/24: 3 binary black hole merges

Just last week: BNS #2

event ID: G330561 distance: 155±45 Mpc

Open alerts issued as GCN Circulars <u>https://gcn.gsfc.nasa.gov</u> <u>https://gracedb.ligo.org/superevents/S190425z/</u>

Just last week: BNS #2

KAGRA

- Underground facility
- Cryogenic Sapphire test masses
- Locking full interferometer this summer
- Goal to join at the end of the O3 run

Today's detector network

A GW Interferometer in one slide

Quiet test mass

Interferometric readout

Vacuum Squeezing is now in use

Binary Neutron Stars range from ~125MPc to ~140MPc

What current detectors can reach

(at design sensitivity)

- GW merger events in the local universe
 - Black hole mergers: redshift z≲2
 - Neutron star mergers: redshift $z \leq 0.1$

Most of the universe is still out-of-reach

- At design at most O(1000)/yr detections per year
- BH mergers: O(100 000)/yr in the universe

Detected events relatively "noisy"

Typical Signal-to-noise ratio O(10)

What future detectors can reach

High-redshift sources

Population III remnants merging at redshift z≈10

High-fidelity source

 Signal-to-noise ratio O(1000) for test of relativity and neutron star physics

Large number of sources

- Rare and exotic events
- Population studies (a black hole merger every 5 minutes)

Compact binaries throughout the Universe

Hall/Vitale https://dcc.ligo.org/LIGO-G1900803/public

Tests of relativity

Look for deviations from Kerr geometry in the frequency spectrum of the ringdown signal

E Berti, A Sesana, et al., Phys. Rev. Lett. **117**, 101102 (2016) 2000

Earlywarning capability

Future ground-based gravitational-wave detectors

The noise limits of Advanced LIGO

CO

The Phase-Space of Detector Networks

https://dcc.ligo.org/LIGO-G1900660/public

Near-term upgrades: A+ & AdVirgo+

~5 year time scale

Modest upgrades to aLIGO and AdVirgo:

Better mirror coatings

Frequency-dependent squeezing

Heavier test masses*

Suspension modifications*

Newtonian noise subtraction*

~5× rate improvement for binary neutron stars

Also Kagra+: upgrades TBD

Heavier masses, new materials, higher power, ...?

(*AdVirgo+ only)

N Smith and R Adhkiari, Cold voyage, tech. rep. G1500312 (LIGO, 2015)

OzGrav High-Frequency Detector

https://www.ozgrav.org/

Expand or build an Australian facility dedicated to high frequency detection

Neutron star equation of state, post-merger physics above ~1kHz

Don't worry about low-frequency noise

Removes many constraints on interferometer design and control scheme

Currently in conceptual design

Cryogenics

Several megawatts of power + squeezing

Facility:

Einstein Telescope

10-km triangle
Underground in Europe

Three room-temperature interferometers:

glass optics
1 μm laser

Three cryogenic interferometers:

silicon or sapphire optics
10–20 K cryo
1.5 or 2 μm laser

Grn-LF

Facility:

Cosmic Explorer 40 km L shape Surface or underground (TBD)

One interferometer:

Stage 1: room-temperature glass with 1 μm lasers Stage 2: cryogenic silicon with 1.5 or 2 μm lasers

Network:

Envisioned as part of a global network; e.g., two Cosmic Explorers and one Einstein Telescope

Example location: Bonneville Salt Flats, Utah, USA

Technical challenges

Facility challenges

Building a new facility requires O(\$1 billion) with current technology Earthmoving, tunnelling Vacuum construction, bakeout

Some possible cost savings with novel vacuum systems or serendipitous sites

Low frequencies

Low frequency is hard Control noises Geophysical noises Scattered light Mystery noises aLIGO goal: 10 Hz CE goal: 5 Hz ET goal: 3 Hz

High Power + Strong Squeezing

Highest power demonstrated: ~250 kW (aLIGO) Next-gen power requirement: 3 MW 10× power increase

Best squeezing demonstrated: 6 dB (GEO600) Next-gen squeezing requirement: 10 dB 3× optical loss reduction

New materials + Wavelength

Most GW detector experience is with room-temperature glass and $1\,\mu m$ lasers

Need to develop familiarity with cryogenic suspended silicon/sapphire

Need high-power lasers, high-efficiency photodetectors, etc. at new wavelengths

Need large pieces of high-quality silicon

CO

Status

Organization

Timeline

Einstein Telescope

- European-led effort
- Design study 2008-2011
- Site studies in Limburg and Sardinia
- Maastricht Pathfinder Experiment (starting 7/2019)
 - Cryogenics
 - New wavelength
- Large-mass cryogenic prototyping at Virgo

Einstein Telescope timeline

2018–19	Formation of collaboration
2019–21	ESFRI roadmap
2021–22	Site selection
2023	Full technical design
2025	Excavation and construction begins
2032+	Instrument installation

A. Freise, LVC 21 Mar 2019

Cosmic Explorer

US-led effort Design study underway now (2018–2021) NSF-sponsored workshop on large ultrahigh-vacuum systems (Jan 2019) Proceedings: https://dcc.ligo.org/LIGO-P1900072 Astro2020 Decadal Survey whitepaper: https://arxiv.org/abs/1903.04615

Cosmic Explorer Timeline

CO

Timeline of a Cosmic Explorer 40km Observatory

Coordination via GWIC

The Gravitational-Wave International Committee: https://gwic.ligo.org/3Gsubcomm/

Astro2020 Decadal Survey whitepapers:

Cosmology and early Universe

Extreme gravity and fundamental physics

Black hole binaries

Multimessenger observations of neutron star binaries

Multimessenger observations of supernovae and isolated neutron stars (magnetars, pulsars, ...)

Next-gen science book:

~100-page exhibition of next-generation gravitational-wave science Due out in next few months

Conclusion

Current detectors see local events

Terrestrial GW detectors that see the entire universe are possible

Planning for new generation detectors is underway

Thank you!

