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INTRODUCTION / BACKGROUND:  

The LIGO and Virgo detectors have collected gravitational wave (GW) data from three separate 

observation runs since 2015, with the third run presently collecting data. There have been 10 

signals from binary black hole (BBH) mergers and one binary neutron star (BNS) merger 

detected from the first two observation runs and several more from the third run. These 

detections were all confirmed due to high confidence in their signal-to-noise ratio (SNR); 

however, there are likely many more unconfirmed signals in the data due to lower SNRs. A 

limitation in the SNR criteria arises when accidental coincidence of “loud” glitches or other rare 

noise fluctuations in the two LIGO detectors can result in high SNRs but are not the product of 

real GWs [1].  

Initial PyCBC [2] and GstLAL[3] pipeline searches have flagged potential GW events as triggers 

based upon matched-filtering and threshold values [4]. Since LIGO-Virgo’s search sensitivity 

scales with binary black hole mergers primary component mass, approximately V ∝ M1 
2.1, 

higher mass mergers have been easier to detect than those of lower mass [5]. Current compact-

binary-coalescence (CBC) searches do not adequately differentiate GWs of lower confidence 

from inherent noise. Bayesian model comparison of coherence may be a way to effectively 

discriminate whether a marginal trigger, a flagged event just below the SNR from the pipeline 

searches, is likely a GW signal or instrumental noise from the detectors.  

Coherence requires that the strain signals in multiple instruments share a phase evolution 

consistent with a single astrophysical source, represent a well-described CBC waveform, and be 

temporally coincident [6]. Instrumental noise transients (glitches) are not expected to fully meet 

these requirements, whereas GWs are; therefore, allowing the distinction to be made.  

The data from these signals contain valuable untapped information to understanding gravitational 

waves and the characteristics from merging black hole and neutron star systems in the distant 

universe. Being able to collect and analyze the data from the weaker signals will help fill in the 

gaps of our understanding of CBC populations. Confirming numerous GW events may allow us 



to construct a diagram depicting the evolution of these populations, similar to the Hertzsprung-

Russell diagram for stellar evolution. 

 

OBJECTIVES / METHODS: 

I will be working on analyzing whether the Bayesian coherence ratio (BCR) can be a reliable 

method to improve confidence in the signal of marginal triggers and/or improve the rejections of 

inherent noise in the data in conjunction with current pipeline searches. 

A BCR compares the odds between the hypotheses that the data comprise coherent CBC signal 

or incoherent instrumental features. This calculation factors in the evidence of the signal in pure 

gaussian noise, non-gaussian noise fluctuations that are not coherent between detectors, and the 

coherent signal in gaussian noise. Priors, such as the BBH merger rate and mass range, will be 

determined through trial and error and be used to compute the evidence parameters in the BCR 

calculation. The two weighted terms (α and β) in the BCR calculation are priors that affect the 

separation between the background and foreground populations and will be estimated to produce 

useful BCRs. A predetermined surrogate glitch hypothesis will be used and an assumption for 

the gaussian noise evidence is of a perfect measurement of the detector noise power-spectral-

density (PSD) [6]. 

 

Equation 1: Showing Bayes’ Theorem. w represents the parameters of Hi (hypothesis). D represents the 

data. 

Equation 2: Shows simplified version of Bayes’ Theorem. Analogous to Equation 1. 

 

We want to calculate the BCR for triggers produced in all observing runs to detect weak GW 

signals and potentially define empirical probability distributions that would allow us to obtain 

likelihood ratios to use for trigger classification.  

The BCRs will be computed with the likelihood values calculated from running Bilby [7] jobs on 

the LIGO cluster. We will run hundreds of Bilby jobs on injected signals, glitches, confirmed 

signals, and marginal triggers analyzed with an astrophysical and respective noise models for 

both Advanced LIGO detectors. 

We will compute and apply the BCR to Observation 2 and 3 background triggers in effort to 

reject any glitches. This will allow an updated false alarm rate (FAR) to be used for Observation 

3 event analysis. A BCR < 1 would allow for the rejection of that trigger as a GW event because 

( 1 ) 

 

 

( 2 ) 



it would favor the odds of the hypothesis that the data is comprised of incoherent instrumental 

noise.  

Various plots will be produced to visualize the results from using the BCR to compare real and 

simulated signals to inherent noise. I will utilize Thomas Alford’s python code and Bilby 

tutorials to produce plots in Figure 2, following the discussion in [6].  

I will now work on determining appropriate priors, such as the weights (α and β) which minimize 

the overlap between the signal and noise trigger [6] to calculate BCRs such that signal and noise 

are separated effectively. We will also need to determine a signal duration limit that we want to 

initially evaluate and providing us with a chirp-mass range. We will use standard ranges to 

restrict parameters on mass ratio, spin magnitude, luminosity distance, etc.. By identifying any 

likely GW events and/or rejecting any likely triggers due to instrumental noise, will allow us to 

calculate a new FAR that we will apply to Observation 3 events, improving our confidence in 

those events. The final step for this project would be to select new parameters, signal time 

duration limit, and compute BCRs for Observation 3 triggers. After running through the same 

sequence of steps, we can work on making any improvements/adjustments to method of 

distinguishing signal from noise. 

PROGRESS: 

For this project I am developing a thorough understanding of Bayesian inference and parameter 

estimation and its potential applications to GW research. I have also become familiar with 

Alford’s python code; which has allowed me to understand how to utilize LIGO data and set up 

to run multiple Bilby jobs on LIGO’s computer cluster.  

I investigated if there are any overlapping trigger times from several published sub-threshold 

trigger catalogs, such as GWTC-1 [4], 1-OGC [8], two from Princeton [10-11]. I extracted the 

intervals of data that surrounded the trigger times listed in the various catalogs and write 

corresponding hdf5 files. This was done after first converting all published trigger times into 

GPS time, the time in seconds from January 06, 1980. For each catalog’s list of triggers, I 

appended them to a list and sorted them from lowest to highest trigger times to discern if there 

were any overlapping triggers within a catalog. To make this determination, I compared whether 

the ending time of the first trigger was greater or equal to the starting time of the following 

trigger. I used a loop to iterate through each list. I then compared multiple catalogs for 

overlapping trigger times by appending the sub-lists into one list and resorting it so that the 

triggers were ordered lowest to highest GPS time. By running the new list through the same loop, 

I was able to determine no overlapping trigger times from the four sub-threshold catalogs, given 

a specified time range of ± 0.1 s surrounding the published trigger times. However, I am 

expanding my specified time range to identify any sub-threshold triggers that are reasonably 

close in time, given that multiple sub-threshold catalogs utilized different pipeline searches to 

produce their respective catalogs. 

In python, I have produced time-frequency plots (Figure 1) for various trigger times to visualize 

how the amplitude spectral density (ASD) in the data evolves over specified time intervals.  



 

Figure 1: Time-frequency plot of the amplitude spectral density (ASD) over a GPS time frame 

(1242442965.45, 1242442969.45). This data was taken from the channel L1:GDS-

CALIB_STRAIN_CLEAN. Frequency range specified for LIGO-Virgo sensitivity band. Below 10 Hz is 

not properly calibrated. Above 103 Hz is affected by detector quantum noise. 

 

I have used a computed set of BCR and SNR data files to compute the log10BCR to produce 

density plots against corresponding SNR distributions with varying α and β values, as shown in 

Figure 2. Contour and scatter plots show how the foreground, background, and selected GW 

trigger relate log10BCR vs SNR. The relation between these data subsets are also shown in a 

histogram with counts vs log10BCR, and cumulative distribution function vs log10BCR to 

represent the survival function from the selection of background triggers and foreground signals 

[6]. These visualizations help indicate whether the α and β values need to be adjusted and 

whether the BCR is effectively distinguishing GW signals from inherent noise.  



 

Figure 2: Density Plots with α = 3.62804 × 10-11 and β = 3.26975 × 10-06 

Recently, I have investigated how Alford’s code is fitting and method of estimating the α and β 

values. 

 

CHALLENGES: 

Thus far, I have encountered some difficulty with fully understanding Bayesian inference and 

parameter estimation methods. I have worked to become familiar with the LIGO data and 

learning how to set up and run multiple Bilby jobs on a computer cluster. It has taken some time 

to understand Alford’s code, his process, and methods for analyzing LIGO data and determining 

BCRs. Moving forward, I anticipate difficulties in determining useful α and β values to compute 

insightful likelihoods and BCRs. I may also find writing and submitting hundreds of Bilby jobs 

on the LIGO computer cluster since I am unfamiliar with Condor. In addition, I expect a learning 

curve with being able to analyze these results in a way so that I know which parameters may 

need to change and by approximately how much.  
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