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The LIGO and Virgo detectors have been observing the cosmos in search of gravitational waves
(GW) since 2000. All three detectors were upgraded to Advanced versions, which for LIGO began
observing in 2015 and for Virgo in 2017. In Advanced LIGO’s first (12 September 2015 to 19
January 2016) and second (30 November 2016 to 25 August 2017) observing runs (O1 and O2,
respectively), the detectors found 10 GW signals from binary black hole (BBH) mergers, and 1 from
a binary neutron star (BNS) merger, all with high significance, or low probability of being due to
instrumental noise fluctuations. Already in the first several months of O3, which began in April
2019, dozens of candidates have been seen with such high significance. The two aforementioned
categories, along with neutron star/black hole mergers (NSBH), are collectively known as compact
binary coalescence (CBC). In the coming years, as the detectors’ sensitivities are improved, we
expect to accumulate tens, hundreds, or thousands of CBC events. From such large samples, we
expect to be able to infer the underlying population of CBC systems as a function of their masses,
component black hole spins, and redshift. This, in turn, will allow us to better understand the
astrophysical processes governing the formation, evolution, and final fate of such systems, as tracers
of the most massive stars. In this project, we aim to develop tools and techniques to accomplish
this through detailed simulation and Bayesian inference.

I. INTRODUCTION

At present, LIGO has catalogued over 30 CBC events,
most of which have been detected solely in the third ob-
serving run. As our detectors improve, the volume of
spacetime in which LIGO is able to observe increases.
This quantity is known as the sensitive spacetime vol-
ume

〈V T 〉 =
4

3
πD3

avgT, (1)

where Davg represents LIGO’s sensitive distance and T
represents the observation time of the LIGO detectors.
This represents the sensitive spacetime volume in Eu-
clidean space, and this generalized equation no longer
holds in the presence of cosmological effects. It is im-
portant to note that Davg is a strong function of mass;
systems with a larger overall mass produce louder GW,
and result in a larger Davg. Because 〈V T 〉 is propor-
tional to the sensitivity of our detectors, we are able to
observe larger regions of spacetime as we produce higher-
sensitivity detectors.

As larger regions of spacetime are observed, LIGO is
expected to recover events in larger and larger numbers.
A larger sample size of BBHs offers the unique oppor-
tunity to reveal the underlying naturally-occurring rela-
tionship between merger rate and BBH masses, spins,
and redshift. By studying populations of BBHs, we may
better understand the relationship between the progen-
itor star initial mass function and the mass function

that governs BBH. We also stand to uncover informa-
tion about models that describe formation channels for
BBHs, and which formation channel is most prevalent in
nature. We have, and will continue to carry out detailed
simulation and Bayesian inference to do so.

II. MOTIVATIONS

A. Measuring binaries with gravitational waves

Gravitational radiation comes from rapidly-changing
gravitational fields, and is observed in the form of a
wave which propagates at the speed of light. When a
GW propagates, it distorts spacetime; we thus observe a
change in the length of the arms of our Michelson laser
interferometer. This quantity is called strain:

h =
∆L

L
, (2)

where L is the original length of the detector arm, and
∆L is the change in that length as induced by a GW of
strain h.

General relativity allows us to compute the strain of a
GW if we know the binary’s parameters. Strain depends
primarily on the intrinsic parameters, mass and spin,
which directly affect the shape of the observed waveform.
The other parameters, which are all extrinsic (observer-
dependent), govern only the strength of the signal. We
can thus analyze the evolution of the waveform’s shape
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by using Bayesian inference techniques to determine the
chirp mass M, as well as the symmetric mass ratio η.
The component masses are implicit in η [1]:

η =
m1m2

M2
tot

=

(
M
Mtot

) 5
3

. (3)

The ultimate goal of this project is to learn about the
universe’s more massive stars, which lead to the forma-
tion of BBHs. The component masses of a BBH are re-
lated to the masses of its progenitor stars. More mas-
sive stars, such as those that form BBHs, have lower
metallicity and were formed early in the universe’s evolu-
tion (before heavier elements existed). Younger, higher-
metallicity stars have masses too small to form BBHs; as
such, it is important to determine the underlying distri-
bution of the high-mass progenitor stars so that we may
be informed about their evolution into BBHs.

At present, there exist well-supported models of the
star formation rate density as a function of m1, m2, and
redshift (z), such as the Salpeter Initial Mass Function
(Fig. 1) [2] and the Madau-Dickinson model (Fig. 2)
[3]. These models are based on observations from elec-
tromagnetic radiation [4, 5]. For BHs, we postulate a
relation between BH event rate density R, z, and mass.
We describe R, or the number of events per unit comov-
ing volume per unit time, as

R(m1,m2, z) =
dN

dVcdts
. (4)

We aim to determine the dependence of R on z, m1,
and m2. Such a measurement will allow us to infer the
underlying mass distribution and track the evolution of
BBHs in cosmic spacetime.

Although there are six parameters used to describe
spin, only two combinations of them dominate in the
phase and amplitude evolution of a gravitational wave-
form: χeff and χp. χeff is the mass-weighted combination
of the component spins along the binary’s orbital angu-
lar momentum vector [6]. χp refers to the components
of spin perpendicular to the orbital angular momentum
which cause the binary’s orbit to precess. These quanti-
ties carry information about the mechanisms by which a
binary was formed, and are described [7] by

χeff =
a1m1cosθ1 + a2m2cosθ2

m1 +m2
, (5)

and

χp = max
(
a1sinθ1, (

4m1 + 3m2

4m2 + 3m1
)(
m1

m2
)a2sinθ2

)
, (6)

where θ1 and θ2 are the angles between the angular mo-
mentum vectors of each component and the binary’s total
angular momentum vector.

FIG. 1. Various initial mass functions following different dis-
tributions. We are interested in the Salpeter IMF, shown in
dark blue. These curves describe the initial mass distribution
for a stellar population. It appears linearly on a log-log plot,
as its true nature is a power law with index -2.35. BHs that
are detected by LIGO tend to have masses greater than 10
M�, thus our work begins where this plot ends. (Johannes
Buchner)

FIG. 2. Madau-Dickinson star formation rate density
(rate/unit volume) as a function of redshift. The data points
come from many other bodies of work. [3] For BHs, this dis-
tribution will be shifted left (to lower redshifts) because it
takes time for stars to evolve and collapse into BHs, and even
more time for BHs in binaries to merge and be detected in
GWs. Additionally, we are limited in the maximum redshift
at which we can observe; generally speaking, the cutoff is be-
low z = 1. This will improve with next-generation detectors.

Because spin is a higher-order effect in gravitational
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waveform evolution, it is more difficult to measure,
whereas chirp mass is of first order and its range of val-
ues can be more accurately constrained. As such, we will
primarily focus on mass for now.

B. Channels of formation

If we are able to determine the underlying distribu-
tion of masses, we are then able to gain valuable insights
into possible methods by which a binary in question was
formed. There are many proposed formation channels,
but two (shown in Fig. 3) that are of particular inter-
est to us [8]. The first main channel is common evo-
lution. In one common evolution sub-channel marked
by a common envelope phase, the BBH evolves via tra-
ditional collapse of both components from a progenitor
stellar binary, within a single cloud of gas. In another
sub-channel, the BBH forms via chemically homogeneous
evolution, in which the orbit of the binary components
does not expand traditionally during main sequence he-
lium production, but rather remains compact [9].

FIG. 3. Formation channels of interest for binary black holes.
The first such channel is common evolution, in which bina-
ries are either formed from common envelope evolution or
chemically-homogeneous evolution. The second such channel
is dynamical formation, in which black holes formed in sepa-
rate environments interact, in either two-body or three-body
interactions.

The second main channel is dynamical formation,
which entails the interaction of components formed in-
dependently of each other. In one such case, a binary
system interacts with a third body in a dense stellar
cluster, which results in the ejection of the binary’s less
massive component and the capture of the third, more
massive body into the binary. In another dynamical for-
mation case, one single body captures a second body via
the gravitational Bremsstrahlung radiation caused by the
acceleration of the second body through the first body’s
gravitational field. We aim to be able to distinguish
between these formation channels, primarily from mass,
then eventually from spin.

C. Populations, mass distributions, and mass gaps

Within the mass distribution of CBC events (shown
in Fig. 4), there exist three proposed regions of scarcity
(mass gaps): one below 1 M�, one between ∼2-5 M�,
and another between ∼50-150 M�. The first is proposed
to exist due to the small likelihood that traditional stel-
lar collapse mechanisms would produce any BHs in this
region; if there were BHs in this region, they could be
of primordial nature [10]. The second is thought to be
caused by a disparity in NS and BH masses; NS masses
gather between 1-2 M�, whereas BH masses tend to be-
gin around 5 M� [11]. The third hypothesized mass gap
is proposed to exist due to pulsational pair-instability su-
pernovae [12], in which progenitor binary stars with com-
ponent masses between 100-150 M� eject a significant
amount of their mass upon going supernova. This theo-
retically causes the subsequent BBH component masses
to settle around ∼40-65 M� [13]. We can thus infer
truths about this particular mass gap by measuring the
underlying mass distribution of BBH.

FIG. 4. Distribution of NS and BH masses. Yellow repre-
sents NS detected via electromagnetic radiation, and orange
represents NS detected via Advanced LIGO. Purple repre-
sents BHs detected via electromagnetic radiation, and blue
represents BHs detected via Advanced LIGO. There are re-
gions of scarcity below 1 M� and between ∼2-5 M�, as well
as a possible mass gap between ∼50-150 M�. The x-axis does
not have significance in this figure.

III. METHODS

A. Bayesian inference

We have ultimately used the method of Bayesian in-
ference for this project. The first step in this method is
to construct a posterior distribution, given by:

p(θ|d) =
L(d|θ)π(θ)

Z
. (7)
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The posterior distribution is the probability density of
θ, which describes the parameters of the model, given the
strain data from the detectors, d. L(d|θ) represents the
likelihood function of the strain data given the parame-
ters of the model, π(θ) represents the prior distribution of
the model parameters, and Z is the normalization factor,
also called the evidence:

Z ≡
∫
dθL(d|θ)π(θ) (8)

We can thus define evidences for both the signal and the
noise:

Zsignal ≡
∫
dθL(d|θ)π(θ), (9)

Znoise ≡ L(d|n). (10)

We can then define the Bayes factor, or the ratio of evi-
dence, for signal and noise to be:

BFSN =
Zsignal
Znoise

. (11)

We can use this technique to determine preferred models,
as well. For example, given two models 1 and 2, we can
produce a Bayes factor:

BF 1
2 =

Z1

Z2
. (12)

We can thus compare different models and determine
which model produces the best fit for our actual data
[14].

B. Mathematical model

The actual number of events that we have observed (or
our collected data) is described as N . The true number
of events that occur in nature is described as

N̂true =

∫
dN

dm1dm2dzdts
dm1dm2dzdts. (13)

The component masses m1 and m2, as well as source time
ts and z, can be written as a series of parameters called
~θ. We assume that N̂true depends on m1 and m2, the
distribution of which we will describe by hyperparame-
ters α and β, respectively. We also assume that R has a
dependence on z, which is described by another hyperpa-
rameter γ. Collectively, we denote these hyperparamters
~λ. Spin is also believed to be a dependent of N̂true; how-
ever, we will not address spin at this point in the project.
We can thus rewrite Eqn. (13) as

N̂true =

∫
dN(~λ)

d~θ
d~θ, (14)

where

dN(λ)

d~θ
= R(1 + z)γf(m1|α)f(m2|β)

dVc
dz

dtd
dts

1

Td
, (15)

with td being the time as measured at the detector (which
has been dilated with respect to the time at the source
due to cosmological expansion), Td the observation time
of the detector, and Vc the comoving volume, whose re-
lation to z is determined in accordance with the ΛCDM
cosmological model [15]. From this, we can construct an
expression for the expected amount of events that we will
observe:

N̂det =

∫
dN(~λ)

d~θ
E(~θ)d~θ, (16)

where E(~θ) represents the efficiency of detection. Upon
collecting N , we can construct a Poissonian probability
distribution for N such that

P (N |N̂det, ~λ) =
N̂N
dete

−N̂det

N !
. (17)

We step through this process until we recover something
that can be directly compared to observations. This en-

ables the calculation of a single likelihood for ~λ; when

this cycle is repeated, the full likelihood in ~λ space can
be recovered.

To do this, we have randomly generated a population
of masses and have proposed possible values for the hy-

perparameters in ~λ. We have developed methodology for

measuring ~λ using Bayesian inference to compare how
close our experimentally-recovered values are to our pro-
posed values. In particular, we have used the dynamic
nested sampler dynesty [16] to carry this process out in
three major steps:

(1) Simulate a dataset consisting of many observed bi-
nary systems, following a distribution that is provided

and known, with an arbitrary choice of ~λ.
(2) Use Bayesian inference techniques to recover the

most accurate posterior probability distribution for the

underlying ~λ.
(3) Reconstruct the distribution for N̂true.
This has been attempted by other groups. In [17],

three models were presented for the BBH primary mass
distribution, denoted Models A, B, and C (Fig. 5).
Model A fixes mmin to be 5 M�, and allows mmax to
vary. Model B allows both mass limits to vary. Model C
allows multiple functions to describe the distribution; a
second component of Gaussian nature appears due to the
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FIG. 5. Differential merger rate distribution for BBHs as
a function of primary mass and mass ratio (q) for proposed
Models A, B, and C in [17]. At lower masses, Model C follows
a power law distribution, and at higher masses, it follows a
Gaussian distribution. This distribution is based on data from
O1 and O2 only (10 BBH mergers). In this project, we use
Model C.

pair instability in massive progenitor stars. As such, for
Model C, a power law distribution fits at lower masses,
and a Gaussian distribution fits at higher masses. In this
case, α and β generally refer to the power law indices,
and γ describes the Gaussian component. We have used
Model C for the analysis done in this project.

IV. PROCEDURE AND RESULTS

We initially generated a distribution of masses (Fig. 9)
that followed a power law (in particular, the Salpeter Ini-
tial Mass Function, N = M−2.35). We then used dynesty
for parameter estimation, and generated posterior distri-
butions for both hyperparameters of the power law, the
amplitude, with true value 1, and power law slope, with
true value -2.35. Overall, the true values and the data
values were consistent, as shown in Fig. 6.

We then began work on writing scripts for use in this
project using Python 3.7 code. There is a series of four
scripts that have been written to carry out the work for
this project.

The first such script focuses on the generation of one
“injection.” An injection is a waveform that we have cre-
ated from predetermined parameters (such as mass, spin,
etc.). To do this, we have used LIGO-created software
called PyCBC. This code allows one to use already-defined
programs and functions to generate waveforms, in both
the time (Fig. 7) and frequency (Fig. 8) domains. As
such, we used this script to first generate a waveform in
the time domain.

We then applied more PyCBC code to translate the ideal
waveform to what would be seen in the detector’s frame.
Because CBC systems are usually very far away in the
universe and are relativistic in nature, the waveform that
is emitted from the CBC system is not what is observed

FIG. 6. Posterior probability distributions for amplitude and
power law slope as recovered by dynesty, along with the pa-
rameters’ correlation.

on Earth. We observe the now redshifted and time-
dilated event occurring at lower frequencies and higher
masses, and must subsequently correct for this.

FIG. 7. A gravitational wave pictured in the time domain.
Zoomed in on the merger and ringdown. Inspiral occurs until
-0.01s, at which point merger causes the signal to sharply
spike, and ringdown follows.

Because we are concerned with populations of BBH,
we must repeat this process for many iterations. We
created a second script that does just this. The second
script calls the “make injection” function that was de-
fined in the first script repeatedly. It is also here that
the parameters for each waveform are randomly gener-
ated from their respective distributions. Spin is set to 0
in the x and y dimensions, but the z-dimension spin is
drawn from a Gaussian distribution centered at 0.1 with
a standard deviation of 0.2 (Fig. 10). The right ascen-
sion, polarization angle, coalescence phase, inclination,
and time are all drawn from uniform distributions. Dec-
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FIG. 8. A gravitational wave pictured in the frequency do-
main, shown in red. The blue curve represents the Ad-
vanced LIGO design sensitivity curve. The signal is well above
the sensitivity curve, indicating LIGO’s ability to recover it.
Merger occurs around 60 Hz, with a decrease in slope. Ring-
down is shown at the ”bend” in the signal curve, around 200
Hz, and continues to around 400 Hz.

lination (δ) is determined by drawing from a distribution
uniform in sin(δ). Distance is determined by drawing
from a distribution uniform in comoving volume; here, we
must be sure to determine what the maximum distance
(rather, redshift) will be. These parameters are gener-
ated for each individual waveform. The second script
stores these parameters in a file.

It is important to consider whether or not we would be
able to recover these simulated waveforms in application.
The efficiency referenced in Eqn.(16) quantifies our abil-
ity to recover the signal. To test this, we have written
a third script that recovers the optimal signal-to-noise
ratio (SNR) from each dataset. This can be done two
ways; the first is to run a matched-filter-based search on
each dataset using PyCBC code to recover the SNR time
series, and respectively the peak SNR. The second is to
calculate the optimal SNR for each dataset using

ρ2
opt =

∫
ĥ∗(f)h(f)

S(f)
df, (18)

where ĥ∗(f) and h(f) both represent the waveform (since
we are working with the optimal SNR), and S(f) is the
PSD (power spectral density, generated from Advanced
LIGO’s colored noise curve). We have used the second
method. These mathematics must be done in the fre-
quency domain, so it is essential to first use PyCBC code
to convert both the template and signal to frequency se-
ries, as the PSD is already in the frequency domain. To
determine if we will recover or miss an injection, we have
computed both the individual detector SNRs and the net-
work SNR. We have accounted for noise (shown in Fig.
11) by drawing a random number from a Gaussian cen-
tered at 0 with a standard deviation of 1; we will then

FIG. 9. 2-D histogram for primary mass vs. secondary mass.
For 10,000 total events, the mass pairs were drawn from a
power law distribution (following the Salpeter Initial Mass
Function). Most events occur within the lower end of the
mass range.

FIG. 10. Histogram of effective spin for 10,000 events, as
calculated from Eqn.(4). The z-component of each BH’s spin
is drawn from a Gaussian distribution centered at 0.1 with
standard deviation 0.2.

add this number to the SNR value. For an injection, if
any detector’s SNR is greater than 4, it is factored into
the network SNR; otherwise, it is not. Then, if the in-
jection has a network SNR above the threshold of 9, it is
recovered; otherwise, the injection is missed. To differen-
tiate between the two, recovered injections are assigned
a value of 1, and missed injections are assigned a value
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of 0. We can then see how the recovered and missed
distributions compare.

FIG. 11. A gravitational wave in the time domain within
noise. This noise is simulated by drawing a randomly-
generated number from a Gaussian distribution centered at 0
with a standard deviation of 1, and adding it to the SNR.

A fourth script then reads the injections file to retrieve
the mass distribution. It runs parameter estimation on
the distribution using dynesty as the preferred sampler,
and can recover the hyperparameters of the distribution
(in the initial case of a power law, the amplitude and
power law slope). We can then produce, for each dis-
tribution, a corner plot detailing the hyperparameters
and their respective correlations with the expected val-
ues. We are also able to compare the distribution that
was generated initially to the distribution that was re-
covered.

We have only worked with a power law distribution
(Fig. 12) for the masses in order to test the scripts and
be sure that the hyperparameters recovered via parame-
ter estimation are indeed consistent with the known hy-
perparameters we have supplied. We have started anal-
ysis on Model C from [17], which involves a power law
component at low masses, but evolves into a Gaussian
distribution at higher masses. For the sake of time, we
have generated the masses within the power law compo-
nent, and will move on to the Gaussian component at a
later time.

V. CONCLUSIONS AND FUTURE WORK

Overall, we may conclude that the known hyperpa-
rameters provided for the Salpeter Initial Mass Function
testing were well-recovered by our program. Due to time
constraints, we were unable to run parameter estimation
on the simulated data from Model C’s power law compo-
nent, but the hyperparameters should be well-recovered
in this distribution, as well. Since we are able to recover

FIG. 12. Masses generated from the Model C power law com-
ponent; the number of events is shown on a log-scaled axis.
We selected a power law index of -2.0 (less than the Salpeter
Initial Mass Function, as we know that the slope of the Model
C power law component is not as steep). Masses have values
between ∼ 7M� and ∼ 23�. There are 100,000 total events
in this particular distribution.

the hyperparameters we provided well, we should also
be able to recover the underlying distributions for real
populations of BBHs to a good degree of accuracy.

There are still many steps yet to be taken with this
project. The first is to finish the analysis of Model C’s
power law component, as well as the Gaussian compo-
nent. Model C offers many values for parameter estima-
tion, such as mmin, mmax, and the hyperparameters that
describe the underlying distribution in terms of m1, m2,
and z. When the values we provide for Model C have
been tested and recovered with accuracy, we then plan
to move on to more complex models in hopes of deter-
mining the redshift dependence of the merger rate. In
the future, we may incorporate the event rate’s possible
relationship to spin into our distributions, as well.

We additionally intend to focus more heavily on incor-
porating the efficiency of the detectors. We did not have
time to incorporate this into the mass distribution for
this project, but in the future, it is important to consider
whether or not our detectors would be able to recover a
given event. We can simulate this by only analyzing the
masses from signals that have an SNR above the thresh-
old we set, as described above.

Moving forward, we must also be cognizant of errors in
the mass values. LIGO does not recover an exact value
for mass, but rather a range of masses which very likely
contains the true value. It is important to acknowlege
the potential for error in our recovered distributions due
to this.
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