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The LIGO and Virgo detectors have been observing the cosmos in search of gravitational waves
(GW) since 2000. All three detectors were upgraded to Advanced versions, which for LIGO began
observing in 2015 and for Virgo in 2017. In Advanced LIGO’s first (12 September 2015 to 19
January 2016) and second (30 November 2016 to 25 August 2017) observing runs (O1 and O2,
respectively), the detectors found 10 GW signals from binary black hole (BBH) mergers, and 1 from
a binary neutron star (BNS) merger, all with high significance, or low probability of being due to
instrumental noise fluctuations. Already in the first several months of O3, which began in April
2019, dozens of candidates have been seen with such high significance. The two aforementioned
categories, along with neutron star/black hole mergers (NSBH), are collectively known as compact
binary coalescence (CBC). In the coming years, as the detectors’ sensitivities are improved, we
expect to accumulate tens, hundreds, or thousands of CBC events. From such large samples, we
expect to be able to infer the underlying population of CBC systems as a function of their masses,
component black hole spins, and redshift. This, in turn, will allow us to better understand the
astrophysical processes governing the formation, evolution, and final fate of such systems, as tracers
of the most massive stars. In this project, we aim to develop tools and techniques to accomplish
this through detailed simulation and Bayesian inference. We report seven weeks of progress during
this project.

I. INTRODUCTION

Since Advanced LIGO began collecting data in 2015
(and Advanced Virgo in 2017), the collaboration has
made many detections of CBC events. As the detec-
tors improve, the number of events that we are able to
recover will increase drastically. With a population size
akin to the one we expect to see, we are able to identify
and measure the event rate as a function of mass, spin,
redshift. We may then use this information to infer the
mechanisms of formation and evolution that govern such
binaries.

Since we expect to accumulate large amounts of events
in the future, it is now the optimal time to develop and
debug the tools necessary to use when such a time comes.
Therefore, in this project, we concentrate on developing
the tools and techniques to do so.

II. MOTIVATIONS

A. Measuring binaries with gravitational waves

Gravitational radiation comes from rapidly-changing
gravitational fields, and is observed in the form of a wave
which propagates at the speed of light. When a GW
propagates, it distorts spacetime, causing a change in
the distance between objects. We thus observe a change
in the length of the arms of our Michelson laser interfer-
ometer. This quantity is called strain:

h =
∆L

L
, (1)

where L is the original length of the detector arm, and
∆L is the change in that length as induced by a GW of
strain h.

General relativity allows us to compute the strain of a
GW if we know the binary’s parameters. Strain depends
primarily on the intrinsic parameters, mass and spin,
which directly affect the shape of the observed waveform.
The other parameters, which are all extrinsic (observer-
dependent), govern only the strength of the signal. We
can thus analyze the evolution of the waveform’s shape
by using Bayesian inference techniques to determine the
chirp mass M, as well as the symmetric mass ratio η.
The component masses are implicit in η [1]:

η =
m1m2

M2
tot

=

(
M
Mtot

) 5
3

. (2)

The ultimate goal of this project is to learn about the
universe’s more massive stars, which lead to the forma-
tion of BBHs. The component masses of a BBH are re-
lated to the masses of its progenitor stars. More mas-
sive stars, such as those that form BBHs, have lower
metallicity and were formed early in the universe’s evolu-
tion (before heavier elements existed). Younger, higher-
metallicity stars have masses too small to form BBH; as
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such, it is important to determine the underlying distri-
bution of the high-mass progenitor stars so that we may
be informed about their evolution into BBHs.

At present, there exist well-supported models of the
star formation rate as a function of redshift (z), such as
the Salpeter Initial Mass Function [2] and the Madau-
Dickinson model [3]. These models are based on obser-
vations from electromagnetic radiation [4, 5]. For BHs,
we postulate a relation between BH event rate density
R, z, and mass. We describe R, or the number of events
per unit comoving volume per unit time, as

R(m1,m2, z) =
dN

dVcdts
. (3)

We aim to determine the dependence of R on z, m1,
and m2. Such a measurement will allow us to infer the
underlying mass distribution and track the evolution of
BBHs in cosmic spacetime.

Although there are six parameters used to describe
spin, only two combinations of them dominate in the
phase and amplitude evolution of a gravitational wave-
form: χeff and χp. χeff is the mass-weighted combination
of the component spins along the binary’s orbital angu-
lar momentum vector [6]. χp refers to the components
of spin perpendicular to the orbital angular momentum
which cause the binary’s orbit to precess. These quanti-
ties carry information about the mechanisms by which a
binary was formed, and are described [7] by

χeff =
a1m1cosθ1 + a2m2cosθ2

m1 +m2
, (4)

and

χp = max
(
a1sinθ1, (

4m1 + 3m2

4m2 + 3m1
)(
m1

m2
)a2sinθ2

)
, (5)

where θ1 and θ2 are the angles between the angular mo-
mentum vectors of each component and the binary’s total
angular momentum vector.

Because spin is a higher-order effect in gravitational
waveform evolution, it is more difficult to measure,
whereas mass is of first-order and its range of values can
be more accurately constrained. As such, we will primar-
ily focus on mass for now.

B. Channels of formation

If we are able to determine the underlying distribu-
tion of masses, we are then able to gain valuable insights
into possible methods by which a binary in question was
formed. There are many proposed formation channels,
but two (shown in Fig. 1) that are of particular inter-
est to us [8]. The first main channel is common evo-
lution. In one common evolution sub-channel marked

by a common envelope phase, the BBH evolves via tra-
ditional collapse of both components from a progenitor
stellar binary, within a single cloud of gas. In another
sub-channel, the BBH forms via chemically homogeneous
evolution, in which the orbit of the binary components
does not expand traditionally during main sequence he-
lium production, but rather remains compact [9].

FIG. 1. Formation channels of interest for binary black holes.
The first such channel is common evolution, in which bina-
ries are either formed from common envelope evolution or
chemically-homogeneous evolution. The second such channel
is dynamical formation, in which black holes formed in sepa-
rate environments interact, in either two-body or three-body
interactions.

The second main channel is dynamical formation,
which entails the interaction of components formed in-
dependently of each other. In one such case, a binary
system interacts with a third body in a dense stellar
cluster, which results in the ejection of the binary’s less
massive component and the capture of the third, more
massive body into the binary. In another dynamical for-
mation case, one single body captures a second body via
the gravitational Bremsstrahlung radiation caused by the
acceleration of the second body through the first body’s
gravitational field. We aim to be able to distinguish
between these formation channels, primarily from mass,
then eventually from spin.

C. Populations, mass distributions, and mass gaps

Within the mass distribution of CBC events (shown
in Fig. 2), there exist three proposed regions of scarcity
(mass gaps): one below 1 M�, one between ∼2-5 M�,
and another between ∼50-150 M�. The first is proposed
to exist due to the small likelihood that traditional stellar
collapse mechanisms would produce any compact bodies
in this region [10]. The second mass gap is thought to be
caused by a disparity in NS and BH masses; NS masses
gather between 1-2 M�, whereas BH masses tend to begin
around 5 M� [11]. The latter mass gap is proposed to
exist due to pulsational pair-instability supernovae [12],
in which progenitor binary stars with component masses
between 100-150 M� eject a significant amount of their
mass upon going supernova. This theoretically causes the
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subsequent BBH component masses to settle around ∼40
M� [13]. We can thus infer truths about this particular
mass gap by measuring the underlying mass distribution
of BBH.

FIG. 2. Distribution of NS and BH masses. Yellow repre-
sents NS detected via electromagnetic radiation, and orange
represents NS detected via Advanced LIGO. Purple repre-
sents BHs detected via electromagnetic radiation, and blue
represents BHs detected via Advanced LIGO. There are re-
gions of scarcity below 1 M� and between ∼2-5 M�, as well
as a possible mass gap between ∼50-150 M�. The x-axis does
not have significance in this figure.

III. PROJECT

At present, LIGO has catalogued over 30 CBC events,
most of which have been detected solely in the third ob-
serving run. As our detectors improve, the volume of
spacetime in which LIGO is able to observe increases.
This quantity is known as the sensitive spacetime vol-
ume

〈V T 〉 =
4

3
πD3

avgT, (6)

where Davg represents LIGO’s sensitive distance and T
represents the observation time of the LIGO detectors
[10]. This represents the sensitive spacetime volume in
Euclidean space, and this equation no longer holds in the
presence of cosmological effects. It is important to note
that Davg is a strong function of mass; systems with a
larger overall mass produce louder GW, and result in a
larger Davg. Because 〈V T 〉 is proportional to the sen-
sitivity of our detectors, we are able to observe larger
regions of spacetime as we produce higher-sensitivity de-
tectors.

As larger regions of spacetime are observed, LIGO is
expected to recover events in larger and larger numbers.
A larger sample size of BBHs offers the unique oppor-
tunity to reveal the underlying naturally-occurring rela-
tionship between merger rate and BBH masses, spins,

and redshift. By studying populations of BBHs, we may
better understand the relationship between the progen-
itor star initial mass function and the mass function
that governs BBH. We also stand to uncover informa-
tion about models that describe formation channels for
BBHs, and which formation channel is most prevalent in
nature. We plan to carry out detailed simulation and
Bayesian inference to do so.

The actual number of events that we have observed (or
our collected data) is described as N . The true number
of events that occur in nature is described as

N̂true =

∫
dN

dm1dm2dzdts
dm1dm2dzdts. (7)

The component masses m1 and m2, as well as source time
ts and z, can be written as a series of parameters called
~θ. We assume that N̂true depends on m1 and m2, the
distribution of which we will describe by hyperparame-
ters α and β, respectively. We also assume that R has a
dependence on z, which is described by another hyperpa-
rameter γ. Collectively, we denote these hyperparamters
~λ. Spin is also believed to be a dependent of N̂true; how-
ever, we will not address spin at this point in the project.
We can thus rewrite Eqn. (7) as

N̂true =

∫
dN(λ)

d~θ
d~θ, (8)

where

dN(λ)

d~θ
= R(1 + z)γf(m1|α)f(m2|β)

dVc
dz

dtd
dts

1

Td
, (9)

with td being the time as measured at the detector (which
has been dilated with respect to the time at the source
due to cosmological expansion), Td the observation time
of the detector, and Vc the comoving volume, whose re-
lation to z is determined in accordance with the ΛCDM
cosmological model [14]. From this, we can construct an
expression for the expected amount of events that we will
observe:

N̂det =

∫
dN(~λ)

d~θ
E(~θ)d~θ, (10)

where E(~θ) represents the efficiency of detection. Upon
collecting N , we can construct a Poissonian probability
distribution for N such that

P (N |N̂det, ~λ) =
N̂N
dete

−N̂det

N !
. (11)

However, we are looking to infer what the true, naturally-
occurring number of events is; thus, we step through this
process in the reverse.
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To do this, we are currently randomly generating a
population of masses and proposing possible values for

the hyperparameters enveloped in ~λ. We will develop

methodology for measuring ~λ using Bayesian inference to
compare how close our experimentally-recovered values
are to our proposed values. In particular, we will use
the dynamic nested sampler dynesty [15] to carry this
process out. We will do this in three major steps:

(1) Simulate a dataset consisting of many observed bi-
nary systems, following the distribution outlined in Eqn.

(9) with an arbitrary choice of ~λ.
(2) Use Bayesian inference techniques to recover the

most accurate posterior probability distribution for the

underlying ~λ.
(3) Reconstruct the distribution for N̂true.

FIG. 3. Differential merger rate distribution for BBHs as
a function of primary mass and mass ratio (q) for proposed
Models A, B, and C in [16]. At lower masses, Model C follows
a power law distribution, and at higher masses, it follows
a Gaussian distribution. This distribution is based on data
from O1 and O2 only (10 BBH mergers); we plan to begin
our testing using this model.

This has been attempted by other groups. In [16],
three models were presented for the BBH primary mass
distribution, denoted Models A, B, and C. Model A fixes
mmin to be 5 M�, and allows mmax to vary. Model B
allows both mass limits to vary. Model C allows multiple
functions to describe the distribution; a second compo-
nent of Gaussian nature appears due to the pair instabil-
ity in massive progenitor stars. As such, for Model C, a
power law distribution fits at lower masses, and a Gaus-
sian distribution fits at higher masses. In this case, α
and β generally refer to the power law indices, and γ de-
scribes the Gaussian component. We plan to use Model
C for the analysis done in this project.

IV. PROGRESS

Thus far, I have worked on generating my own distri-
butions and conducting parameter estimation on them.
My warm-up assignment was to generate a distribution

of masses that followed a power law (in particular, the
Salpeter Initial Mass Function (IMF), N = M−2.35). I
did this using 50 randomly-generated points governed by
Gaussian distributions with standard deviations of 0.002,
shown in Fig. 4.

FIG. 4. Results from the initial random generation of masses
following the Salpeter IMF; the red curve is the actual dis-
tribution, whereas the blue curve represents the 50 generated
points and their Poisson errors.

I then used dynesty for parameter estimation, and
generated posterior distributions for both hyperparame-
ters of the power law, the amplitude and power law slope.
Overall, the true values and the data values were consis-
tent, as shown in Fig. 5.

FIG. 5. Posterior distributions for amplitude and power law
slope as generated by dynesty, along with the parameters’
correlation.

I then repeated this process using a different method
called the Inverse Transform Method, which entails using
the inverse cumulative density function (CDF) to sam-
ple the original distribution. This is done by generating
numbers selected from a uniform distribution between 0
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and 1, and transforming them into points on the original
distribution using the inverse CDF.

I have recently been working on writing scripts for use
in this project using Python 3.7 code. There is a series
of four scripts that I have written to carry out the work
for this project.

The first such script focuses on the generation of one
“injection.” An injection is a waveform that we have cre-
ated from predetermined parameters (such as mass, spin,
etc.). To do this, I have used LIGO-created software
called PyCBC. This code allows one to use already-defined
programs and functions to generate waveforms, in both
the time and frequency domains. As such, I used my
script to first generate a waveform in the time domain.

I then applied more PyCBC code to translate the ideal
waveform to what would be seen in the detector’s frame.
Because CBC systems are usually very far away in the
universe and are relativistic in nature, the waveform that
is emitted from the CBC system is not what is observed
on Earth. We observe the now redshifted and time-
dilated event occurring at lower frequencies and higher
masses, and must subsequently correct for this.

FIG. 6. A gravitational wave pictured in the time domain.
This signal has been tapered at the beginning. Inspiral occurs
until approximately 485s, at which point merger causes the
signal to sharply spike, and ringdown follows.

Because we are concerned with populations of BBH, we
must repeat this process for many iterations. I created a
second script that does just this. The second script calls
the “make injection” function I defined in the first script
repeatedly. It is also here that the parameters for each
waveform are randomly generated from their respective
distributions. At present, we are generating masses from
the same power law distribution as before (the Salpeter
IMF). The spin, right ascension, polarization angle, coa-
lescence phase, inclination, and time are all drawn from
uniform distributions. Declination (δ) is determined by
drawing from a distribution uniform in sin(δ). Distance
is determined by drawing from a distribution uniform

FIG. 7. A gravitational wave pictured in the frequency do-
main. Here, we see the chirp at a seemingly low frequency.
This may be due to the masses of the component BHs, as
higher masses result in lower merger frequencies.

in comoving volume; here, we must be sure to deter-
mine what the maximum distance (rather, redshift) will
be. These parameters are generated for each individual
waveform. The second script stores these parameters in
a file.

FIG. 8. Primary mass vs. secondary mass for 10,000 events,
drawn from a power law distribution (the Salpeter IMF). The
code that generates these masses will later be altered to al-
ways use the larger of the two masses as the primary mass.

It is important to consider whether or not we would
be able to recover these simulated waveforms in applica-
tion. The efficiency referenced in Eqn.(10) plays a large
part in whether or not we are able to recover a signal.
To test this, I have written a third script (yet to be fi-
nalized) that recovers the optimal signal-to-noise ratio
(SNR) from each dataset. This can be done two ways;
the first is to run a matched-filter-based search on each
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FIG. 9. Histogram of effective spin for 10,000 events, as cal-
culated from Eqn.(4). The z-component of each BH’s spin
is drawn from a Gaussian distribution centered at 0.1 with
standard deviation 0.2.

dataset using PyCBC code to recover the SNR time se-
ries, and respectively the peak SNR. The second is to
calculate the optimal SNR for each dataset using

ρ2
opt =

∫
ĥ∗(f)h(f)

S(f)
df, (12)

where ĥ∗(f) and h(f) both represent the waveform (since
we are working with the optimal SNR), and S(f) is the
PSD (power spectral density, generated from Advanced
LIGO’s colored noise curve). We will use the second
method. These mathematics must be done in the fre-
quency domain, so it is essential to first use PyCBC code
to convert both the template and signal to frequency
series, as the PSD is already in the frequency domain.
To determine if we will recover or miss an injection, we
will compute both the individual detector SNRs and the
network SNR. We will account for noise by drawing a
random number from a Gaussian centered at 0 with a
standard deviation of 1; we will then add this number to
the SNR value. For an injection, if any detector’s SNR
is greater than 4, it is factored into the network SNR;
otherwise, it is not. Then, if the injection has a network
SNR above the threshold of 9, it is recovered; otherwise,
the injection is missed. To differentiate between the two,
recovered injections will be assigned a value of 1, and
missed injections will be assigned a value of 0. We can
then see how the recovered and missed distributions com-
pare.

A fourth script (also yet to be finalized) will then read
the injections file to retrieve the mass distribution. It
will run parameter estimation on the distribution using
dynesty as the preferred sampler, and will recover the
hyperparameters of the distribution (in the initial case
of a power law, the amplitude and power law slope). We

FIG. 10. A gravitational wave in the time domain within
noise. This noise will be simulated by drawing a randomly-
generated number from a Gaussian distribution centered at 0
with a standard deviation of 1, and adding it to the SNR.

will then produce, for each distribution, a corner plot
detailing the hyperparameters and their respective cor-
relations with the expected values. We will also be able
to compare the distribution that was generated initially
to the distribution that was recovered.

In the past month, I have made a great deal of progress
on the aforementioned scripts. I started with a blank
Python notebook and have been able to successfully write
programs that carry out these processes.

In regards to data, at this time we are only able to
view the parameters that have been randomly generated,
such as mass, spin, etc., and are therefore able to view
the waveforms that correspond to each parameter set.
However, the most interesting data will come in the form
of a finished fourth script that runs parameter estimation
on the generated distributions. Here, we will be able to
see how well, in the future, we will be able to infer the
underlying distributions and their connection to redshift
and event rate. At present, we are only working with a
power law distribution for the masses in order to test the
scripts. Later, we will analyze the more complex Model
C from [16], which involves a power law component at
low masses, but evolves into a Gaussian distribution at
higher masses. These changes and observations will be
made in the final three weeks of this project.

V. CHALLENGES AND FUTURE PROSPECTS

In the beginning, the main sources of my challenges
were figuring out how to use dynesty and using the In-
verse Transform Method. At first, I had trouble under-
standing exactly what dynesty was used for and how it
tied into the work I would be doing. During my time
working on this project, I have been able to use dynesty
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to complete the warm-up exercise and have learned quite
a bit about Bayesian inference, which has aided in my un-
derstanding of dynesty’s use. However, I am still learn-
ing more about Bayesian inference and dynesty’s appli-
cations, so although it remains challenging, I hope that
as I continue to learn even more, it will become easier to
use – this is my experience with the code I have written
thus far. In regards to the Inverse Transform Method, I
carried out the process both analytically and numerically.
I spent a while working on it analytically before realizing
that I was working with the wrong function, which was
a seemingly trivial and thus frustrating mistake. How-
ever, once I was using the correct function, I was able to
complete the exercise with no problems.

Overall, my largest challenge has been successfully ex-
ecuting the scripts. I have experience with Python, but
not in the regard of writing from scratch. For prior re-
search, I generally only needed to change minor things
about already-written scripts to do my work, and the
single programming class I have taken did not teach
anything past extremely basic concepts. I subsequently
struggled quite a bit to write my own scripts efficiently,
but I absolutely feel that I learned a lot from this expe-
rience and have become a much better programmer as a
result (which was my foremost goal for the summer).

The most prominent challenge with the code has been
identifying what within the first and third scripts causes
a certain recurring error. In order to do the aforemen-

tioned mathematical analysis of a waveform to find the
SNR, the three components (template, data, PSD) must
be the same length. My code generated these compo-
nents, but with different lengths for all three. It was
a challenge to figure out how to fix this, but it was ul-
timately resolved for the first script by making all the
components the length of the template. We have run
into a similar issue for the third script. However, this
error is more interesting to fix; the length of the data
and PSD is exactly twice the length of the template, and
thus the program will not run. We believe this particular
error may be due to a mistake in specifying the time step
or frequency step of the template, and are working on
resolving this issue presently.

For the remainder of this project, my goals are to finish
the third and fourth scripts using the power law distribu-
tion to complete initial testing, and later produce a final
parameter estimation analysis of Model C from [16]. Ul-
timately, by the end of this project, I would like to be
able to visualize how the Model C mass distribution is
connected to redshift/event rate.

This is a similar but different goal from what I had in
mind at the beginning of this project. I think writing the
scripts to do the analysis has taken significantly longer
than was planned. To adjust for this, I believe I may
possibly only have time to analyze Model C. Depending
on how quickly I finish with Model C, I may still be able
to analyze other models, but my primary goal is to do an
in-depth analysis of only Model C.
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