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Abstract: Quantum structures resulted from exotic matters near where the horizon would have been or modi-
fied gravity may set a reflecting boundary for gravitational waves (GWs) and result in echoes. The GW echoes, if
exist, would allow testing theories of gravity in the near-horizon region. We construct echo waveforms based on
Teukolsky-Sasaki-Nakamura formalism for spinning exotic compact objects (ECOs), by simulating ringdown
signals with plunging particles and Gaussian sources. The delay time between individual echoes is calculated,
taking into consideration the additional shifts due to the frequency dependent reflectivity from the Teukolsky
potential. The impact of superradiance and the stability of spinning ECOs are discussed. The resulting echo
waveforms can be used in the searches for echo signals from detected compact binary coalescences and other
GW sources, including extreme-mass-ratio inspirals, accessible to future detectors.
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I. INTRODUCTION

LIGO’s detection of binary black hole(BH) merger event GW150914 [1] and binary neutron star merger
GW170817 [2] has opened up the era of gravitational wave (GW) astronomy. Together with Virgo[3], the
LIGO-Virgo Collaboration has confirmed over ten gravitational wave events[4]. With the new messenger to
observe signals from strong gravity region, we are able to study theory of gravity in a way that was never
accessible before. In the third observation run starting this year, the upgraded detectors will see further in
space and probably observe more abundant details in the signal.

Black holes have been the paradigm for compact objects, but the spacetime near horizon could have
a different structure if the compact object is formed by exotic matter or the spacetime is governed by a
modified theory of gravity. The exotic matter may modify the metric near horizon, leading to a potential
barrier which reflects GWs [5]. When the spacetime is described by wormholes, the GW can be reflected
between Teukolsky potentials in the two worlds connected by the wormhole [6]. As results of quantum
theories of gravity, quantum structures near horizon may also reflect GWs [7, 8].

Gravitational wave echoes, the GW reflected from certain boundaries outside of horizon, could help
us probe Planck scale structure near horizon and therefore is of significant importance in GW physics
[9].Although there’s still no significant evidence for echoes in current data[10, 11], echo signal is a promis-
ing candidate for probing physics beyond General Relativity (GR) and many groups have been trying to
search echo signals from LIGO data based on reliable statistical methods [12–15].

Previous works about GW echoes are mostly from non-rotating spacetime background described by
Schwarzschild metric. For instance, Mark et al. studied echo modes of scalar waves in some exotic com-
pact pbject(ECO) models by solving scalar perturbation equations with reflecting boundary[16]. Du et al.
solved GW echo modes based on Sasaki-Nakamura formalism and studied its contribution to stochastic
background[17]. Huang et al. developed Fredholm method and a diagrammatic representation of echo so-
lution for general wave equations[18].

In general situation, astrophysical objects have both mass and angular momentum and the spacetime
around them is described by Kerr metric. Estimating spin of BHs from LIGO/VIRGO events can also help
understand the formation history of them and their stellar environments[19]. As for echo, some works have
been devoted to searching echo signals from spinning ECOs based on phenomenological model[5, 20]. In
order to understand spin effects from echo signal, a well-developed theoretical model for generating echo
templates is needed. Some works in this direction are [5, 21, 22]. Nakano et al. have constructed a model
for echoes from spinning ECOs[22], where the asymptotic behavior of solutions to Teukolsky equation is
used to analyze reflectivity and echo modes, but the reflecting surface is assumed to be located exactly at the
horizon and the incident wave is phenomenological in [22]. We will try to extend [16] to GW perturbation
and Kerr cases based on Teukolsky formalism and develop a more realistic echo model.

Whether ECO can exist stably and generate echoes is still an open problem. Different instabilities could
potentially kill echo signals or make the generation of echo unphysical. Energy flux by incoming GW
could make the ECO collapse [23]. Spinning ECO without a horizon may also be killed by superradiance.
The superradiance for different kinds of perturbation fields around Kerr-like spacetime has been studied in
[22, 24–26]. The manifestation of superradiance is reflectivity larger than unity for the scattering process
[22, 25, 26]. The superradiance is expected to be quenched when the reflectivity of ECO surface is small
[24].

In this article, we present the methods for constructing echo waveforms from spinning ECOs based on
Teukolsky equations. In Sec. II, we formulate the problem, start from BH background and derive the
waveform for ECO solution by solving Teukolsky equations. Sec. III briefly introduces the results from
this study. The full description of the echo waveforms from different sources, and the discussions about
superradiance and the energy carried by echoes are given in Appendices B-C, which partly depends on some
ongoing work and will be completed in our future paper. At last, we summarize and conclude in Sec. IV.
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II. FORMULATION FOR ECHO CONSTRUCTION

We develop our formalism for gravitational wave echoes based on black hole perturbation theory. We
briefly review how GW waveform is solved based on BH perturbation theory in Sec. II A. Sasaki-Nakamura
method is used for solving Teukolsky equation, as described in Appendix A. The code implementation is
already developed by Han and Cao [27][28], which will be incorporated in our study. We construct echo
waveforms for spinning ECOs assuming that a reflecting boundary is located at r∗0 with reflectivity R̃(ω) as
shown in Sec. II B. Throughout this article, we will keep the notation consistent with [29].

A. GW from BH background

We compute the GW waveform based on BH perturbation theory. Consider the projection of Weyl tensor
ψ4, which has the asymptotic behavior at infinity ψ4(r → ∞) → 1

2 (ḧ+ − iḧ×). After the decomposition
ψ4 = ( 1

r−ia cos θ )4
∫ +∞
−∞ dω

∑
lmRlmω(r) −2S

aω
lm(θ)eimφe−iωt where −2S

aω
lm is spin-weighted spheroidal

harmonic, the radial function Rlmω satisfies Teukolsky master equation, which is an ordinary differential
equation.

When the central object is a BH, we impose the boundary conditions so that the wave is only ingoing at
horizon and only out going at infinity. The solution has the following asymptotic behavior:

RBH
lmω(r →∞) = ZH

lmωr
3eiωr∗, (1)

RBH
lmω(r → r+) = Z∞lmω∆2e−ipr∗. (2)

where ZH,∞
lmω are amplitudes and their detailed expression can be found in Appendix. At infinity, ψ4 is related

to familiar polarizations of GW by ψ4(r → ∞) → 1
2 (ḧ+ − iḧ×). Therefore, the gravitational waveform,

observed from distance R, latitude angle Θ and azimuthal angle Φ, is given by:

hBH
+ (R,Θ,Φ, t)− ihBH

× (R,Θ,Φ, t) =
2

R

∑
lm

∫ +∞

−∞
dω

1

ω2
ZH
lmω −2S

aω
lm(Θ)ei(mΦ−ω[t−r∗]). (3)

B. Constructing Echo Modes

The ECO surface, or the ”quantum structure” near horizon is regarded as a reflecting boundary located at
r∗ = r∗0 (or, equivalently, at r = r0 = r+(1+ε) where ε is ”compactness”) with reflectivity R̃(ω). Similar to
RBH, TBH in Eq. (A17), we define the reflectivity of ECO boundary in terms of Sasaki-Nakamura function.
Namely, we consider one solution of homogeneous Sasaki-Nakamura equationXref satisfying the reflecting
boundary condition:

Xref ∝ e−ip(r∗−r0∗) + R̃eip(r∗−r0∗) r∗ → r0∗ (4)

The corresponding Teukolsky function is Rref , defined by the transformation law (Eq. A11). Then we
impose that the ECO solution to Teukolsky equation RECO be proportional to Rref near r0:

RECO ∝ Rref r → r0 (5)
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Similar to the BH solution, given the boundary condition at horizon given above and the only outgoing
condition at infinity, ECO solution can be obtained using Green function method. The counterpart of Eq.
(A3) for RECO is:

RECO
lmω (r) =

R∞lmω(r)

2iωBin
lmωD

∞
lmω

∫ r

r+

dr′
Rref
lmω(r′)Tlmω(r′)

∆(r′)2
+

Rref
lmω(r)

2iωBin
lmωD

∞
lmω

∫ ∞
r

dr′
R∞lmω(r′)Tlmω(r′)

∆(r′)2

(6)
To get the gravitational waveforms, we see the solution at infinity:

RECO
lmω (r →∞) = Zref

lmωr
3eiωr∗ (7)

where the amplitude is given by:

Zref
lmω =

1

2iωBin
lmω

∫ ∞
r+

dr′
Rref
lmω(r′)Tlmω(r′)

∆(r′)2
(8)

This gives the GW waveform from ECO:

hECO
+ (R,Θ,Φ, t)−ihECO

× (R,Θ,Φ, t) =
2

R

∑
lm

∫ +∞

−∞
dω

1

ω2
Zref
lmω −2S

aω
lm(Θ)ei(mΦ−ω[t−r∗]). (9)

Then we will express Zref by ZH,∞ of BH solution with some transfer function. First, we see Xref
lmω is

related to XH,∞
lmω by:

Xref
lmω = KX∞lmω +XH

lmω, (10)

K =
Ahole

C∞
R̃e−2ipr0∗TBH

1− R̃e−2ipr0∗RBH

, (11)

which can be directly verified by taking Eq. (A13,A14) into equations above.
Due to linearity of Sasaki-Nakamura transformation, we also have Rref

lmω = KR∞lmω +RH
lmω. Taking into

Eq. (8), we get the relation between Zref and ZH,∞:

Zref
lmω =

D∞lmω
Bhole
lmω

KZ∞lmω + ZH
lmω (12)

Note that the homogeneous solutions are determined up to two constants, i.e. we can transform XH →
PXH, X∞ → QX∞ (and consequently RH → PRH, R∞ → QR∞) with P,Q being two arbitrary
complex number, the final solution with source term (Eq. A3,6) and the waveform (Eq. 3,9) does not
change. So we have the freedom to choose Ahole = 1, C∞ = 1

III. MAJOR RESULTS

We derive echo waveforms from plunging particles, Gaussian sources, and ingoing and outgoing wave
packets. The impacts of superradiance and energy flux are discussed. Further studies are being carried
out to understand the ingoing energy spectra near the horizon from multiple formalisms. The methods of
integrating the resulting waveforms into echo searches are being investigated. Hence the full results and
discussions are temporarily given in Appendices B and C, which will be added into the major sections in
this paper when the ongoing work is completed.
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IV. CONCLUSION

In this article we present construction of echo waveforms from spinning ECOs based on Teukolsky equa-
tion and Sasaki-Nakamura formalism. ECOs are regarded as reflecting boundaries near horizon and the
sources of GW are plunging particle or Gaussian distributions. We show some examples of echo signals
from different sources. The shapes of each echoes are compared and the frequency of late-time echo is
lower, which is consistent with the findings in [30]. Also we point out that there are shifts of delay time
between each echoes due to the frequency dependence ofRBH, TBH.

Stability of ECO is an important problem. Apart from the superradiance discussed in our work, there are
other kinds of instabilities. The energy of spinning can be dissipated due to Penrose process in ergo-region.
Also recently it’s pointed out that highly compact ECO may collapse due to the incoming energy of GW[23].
We will also study further on the stability of ECO in the future.

Although no significant evidence for echo is found in data yet, lots of data analysis work is still ongoing to
find possible sources of echoes. With more data and higher accuracy in the third observation run of advanced
LIGO, we should be able to stronger constraint on ECO assumption for each event or possibly find echoes.
Since BH merger is major source of event for LIGO and therefore the final product of merger is usually
spinning, waveforms for spinning ECO are needed to perform a comprehensive search. This work will help
echo searches and we’ll perform data analysis based on spinning ECO model soon.

With the planned launch of Laser Interferometer Space Antenna in 2030s, we will be able to probe GW
from Extreme-Mass-Ratio Inspirals (EMRIs). If the central object of the EMRI system is ECO instead of
BH, we would expect echoes of continuous signal. The interference between direct signal and subsequent
echoes will result in enhancement or reduction in energy flux dissipated by the test particle. This will change
the evolution path of the system or contribute a phase shift, which are sensitive parameters in data analysis.
Preliminary analysis in this direction is also in order.
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A. Teukolsky-Sasaki-Nakamura Formalism

Astrophysical black holes with mass M and angular momentum J are described by Kerr metric. Pertur-
bations of spin-0, spin-1 (e.g. electromagnetic fields) and spin-2 (e.g. Gravitational waves) fields in Kerr
spacetime are governed by Teukolsky equations[31], which is a set of ordinary differential equations, sepa-
rated in Boyer-Lindquist coordinates. For GW, the perturbation field ψ4, decomposed in frequency domain
ψ4 = ρ4

∫ +∞
−∞ dω

∑
lmRlmω(r) −2S

aω
lm(θ)eimφe−iωt where −2S

aω
lm is spin-weighted spheroidal harmonic

with eigenvalue Elm, obeys:

∆2 d

dr

(
1

∆

dRlmω
dr

)
− V (r)Rlmω = −Tlmω(r), (A1)

where Tlmω(r) is the source term and the potential is

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λ, (A2)

where K = (r2 + a2)ω −ma, λ = Elm + a2ω2 − 2amw − 2 and ∆ = r2 − 2Mr + a2.
For black holes, we impose the boundary conditions that RBH

lmω is only ingoing at horizon and only out
going at infinity. Using method of Green function, the solution of the radial Teukolsky equation is given by:

RBH
lmω(r) =

R∞lmω(r)

2iωBin
lmωD

∞
lmω

∫ r

r+

dr′
RH
lmω(r′)Tlmω(r′)

∆(r′)2
+

RH
lmω(r)

2iωBin
lmωD

∞
lmω

∫ ∞
r

dr′
R∞lmω(r′)Tlmω(r′)

∆(r′)2

(A3)
where RH, R∞ are solutions to homogeneous equation. RH satisfies the boundary condition at horizon and
R∞ satisfies the boundary condition at infinity, with following asymptotic amplitudes:

RH
lmω = Bhole

lmω∆2e−ipr∗, r → r+

RH
lmω = Bout

lmωr
3eiωr∗ + r−1Bin

lmωe
−iωr∗, r →∞; (A4)

R∞lmω = Dout
lmωe

ipr∗ + ∆2Din
lmωe

−ipr∗, r → r+

R∞lmω = r3D∞lmωe
iωr∗, r →∞, (A5)

The solution RBH
lmω is only ingoing at horizon and only outgoing at infinity:

RBH
lmω(r →∞) = ZH

lmωr
3eiωr∗, (A6)

RBH
lmω(r → r+) = Z∞lmω∆2e−ipr∗. (A7)
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By taking the limit at r → ∞ and r → r+ of the solution (Eq. A3), with the asymptotic behavior of
homogeneous solutions (Eq. A4, A5), one can find the amplitudes ZH,∞lmω :

ZH
lmω =

1

2iωBin
lmω

∫ ∞
r+

dr′
RH
lmω(r′)Tlmω(r′)

∆(r′)2
(A8)

Z∞lmω =
Bhole
lmω

2iωBin
lmωD

∞
lmω

∫ ∞
r+

dr′
R∞lmω(r′)Tlmω(r′)

∆(r′)2
(A9)

At infinity, ψ4 is related to familiar polarizations of GW by ψ4(r →∞)→ 1
2 (ḧ+ − iḧ×). Therefore, the

gravitational waveform, observed from distance R, latitude angle Θ and azimuthal angle Φ, is given by:

hBH
+ (R,Θ,Φ, t)− ihBH

× (R,Θ,Φ, t) =
2

R

∑
lm

∫ +∞

−∞
dω

1

ω2
ZH
lmω −2S

aω
lm(Θ)ei(mΦ−ω[t−r∗]). (A10)

Computing GW waveform thus boils down to solving homogeneous Teukolsky equation and determining
the asymptotic amplitudes Bhole, Bin, Bout, Din, Dout, D∞. However, Teukolsky potential is long-ranged,
making it hard to numerically extract certain parameters in homogeneous solution, e.g. Bin, which is over-
whelmed by Bout at infinity. Sasaki et al. transformed the radial equation so that the potential is short-
ranged and the equation become numerical computable[32]. Moreover, asymptotic behavior of solutions to
Sasaki-Nakamura equation are purely sinuous, making it easier to generalize to echo construction.

Transformation between Teukolsky function Rlmω and Sasaki-Nakamura function Xlmω is given by[29]:

Rlmω =
1

η

[(
α+

β,r
∆

)
∆Xlmω√
r2 + a2

− β

∆

d

dr

∆Xlmω√
r2 + a2

]
. (A11)

Taking Eq. (A11) into Teukolsky equation, one can find the equation for Sasaki-Nakamura function
Xlmω:

d2Xlmω

dr∗2
− F (r)

dXlmω

dr∗
− U(r)Xlmω = 0. (A12)

The detailed expressions of the functions α, β, η and the potentials F (r), U(r) can be found in [29].
The Sasaki-Nakamura equation admits two homogeneous solution having the purely sinuous asymptotic

behavior due to the short-rangeness of potential U(r):

XH
lmω = Ahole

lmωe
−ipr∗, r → r+,

XH
lmω = Aout

lmωe
iωr∗ +Ain

lmωe
−iωr∗, r →∞;

(A13)

and

X∞lmω = Cout
lmωe

ipr∗ + C in
lmωe

−ipr∗, r → r+,

X∞lmω = C∞lmωe
iωr∗, r →∞,

(A14)

XH,∞ are related toRH,∞ by Eq. (A11) and thus the asymptotic amplitudesAhole, Ain, Aout, C in, Cout, C∞



9

and Bhole, Bin, Bout, Din, Dout, D∞ have following relations[33]:

Bin
lmω =− 1

4ω2
Ain
lmω

Bout
lmω =− 4ω2

−12iωM + λ(λ+ 2)− 12aω(aω −m)
Aout
lmω

Bhole
lmω ={

√
2Mr+[(8− 24iMω − 16M2ω2)r2

+ + (12iam− 16M + 16amMω+

24iM2ω)r+ − 4a2m2 − 12iamM + 8M2]}−1Ahole
lmω

(A15)

Din
lmω ={

√
2Mr+[(8− 24iMω − 16M2ω2)r2

+ + (12iam− 16M + 16amMω+

24iM2ω)r+ − 4a2m2 − 12iamM + 8M2]}−1C in
lmω

Dout
lmω =−

4p
√

2Mr+(2Mr+p+ i
√
M2 − a2)

η(r+)
Cout
lmω

D∞lmω =− 4ω2

−12iωM + λ(λ+ 2)− 12aω(aω −m)
C∞lmω

(A16)

The homogeneous solution X∞ can be regarded as a incident wave coming out near the horizon with
amplitude Cout

lmω scattered off the Sasaki-Nakamura potential. We can thus define the reflection and trans-
mission factors RBH and TBH, which reduces to energy reflectivity and transmissivity in Schwarzschild
case:

TBH =
C∞

Cout
, RBH =

C in

Cout
(A17)

To summarize, we numerically integrate Sasaki-Nakamura equation (A12) to get the solutions XH,∞

and asymptotic amplitudes. Then by the transformation law (Eq. A11,A15,A16), we have the solutions to
homogeneous Teukolsky equation RH,∞ and asymptotic amplitudes. Integrating RH,∞ with source term,
we get ZH,∞ from Eq. (A8,A9). Finally, for black holes, the gravitational waveform observed at infinity is
given by Eq. (3).
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