

Exploration of Metamaterial Designs for LIGO Mechanical Systems

Mahiro Abe

Mentors: Aaron Markowitz, Christopher Wipf, Rana Adhikari

08/23/2019

LIGO-T1900386-v1

- Overview of metamaterials
- Metamaterial applications for LIGO
- Analytical models

- Finite element analysis
- Geometry optimization

- Materials engineered to produce exotic behaviors based on their structure
- Can manipulate the propagation of waves through an object

Metamaterials for LIGO

Three possible metamaterial applications for LIGO

Cryo Lab

 Cryogenic silicon measurements for LIGO Voyager noise budget

SURF 2019 presentation by Shubhabroto Mukherjee (DCC T1900384-v1)

LIGO-T1900386-v1

LIGO

- Control system temperature via conduction cooling
- Mimic mechanical isolation with a metamaterial layer between a clamped frame and the disk
- Target the 1kHz butterfly mode

 Used spring-mass system to study the transfer function for a series of resonators

- Bandgap produced by alternating spring constant/mass values [1], more effective with more resonators
- Analogous to Bragg reflection analysis for LIGO mirror coatings [2]

[1] Jensen, J.S.. (2003). Phononic band gaps and vibrations in one- and two-dimensional mass–spring structures. Journal of Sound and Vibration. 266. 1053-1078. 10.1016/S0022-460X(02)01629-2.
[2] Maria Principa. " Opt. Express 22, 10028, 10056 (2015).

[2] Maria Principe, " Opt. Express 23, 10938-10956 (2015)

LIGO-T1900386-v1

LIGO Laboratory

Silica

Titania

doped

Tantala

 $d_L = 195.49nm$ $d_R = 112.10nm$

Form F0900043-v2

Spring-Mass Model Results

Transfer Function of 20-Mass System

- Build resonator systems and study their reactions to external loads using COMSOL
- Resonator requirements
 - Sub-cm scale
 - ~1kHz eigenfrequency
 - Coupling to transverse modes
 - Structural stability/simplicity

Loss Characterization

 $\varphi_{total} = \varphi_{disk} + \varphi_{TL} + \varphi_{clamped end}$

Can probe strain energy in different domains in COMSOL

• Isolation mechanism at 1kHz

Simulation Results

Strain Energy in the System

- Minimize the losses φ_{TL} , $\varphi_{clamped}$ introduced by the metamaterial
- Constrained nonlinear optimization algorithm 'fmincon' in MATLAB

Cantilever Length = 9.268 mm Cantilever Thin End = 2.984 mm Frame Length = 0.366 mm

- Resonator-based metamaterials can be used for mechanical isolation
- Cantilever resonators at sub-cm scale can be used to target the 1kHz butterfly mode of a silicon disk

Next Steps

- Simulate full system including the disk in COMSOL
- Fabricate system in a nanofabrication cleanroom
- Test!

- Aaron Markowitz, Christopher Wipf, Rana Adhikari
- LIGO SURF Program
- NSF
- Caltech

Other Ideas

- Buckling geometry to achieve same frequency resonances at smaller scale
- Spiderweb structure utilizing larger-scale structures as resonators

Full System Concept

- Fails to account for coupling of modes
- Butterfly modes of the disk are transverse, will not couple well to torsional oscillators

