

IFO Performance During Earthquakes

Eyal Schwartz 04/08/2020

Arnaud Pele, Jim Warner, Brian Lantz, Kate Dooley

On behalf of LIGO seismic team and many others at the sites

DCC paper: LIGO-P2000072

Why seismic isolation: sensitivity and duty cycle

Network duty facto

Triple interferometer [49.5%]

Double interferemeter [25.0%]

Single interferometer [11.6%]

No interferometer [3.9%]

Vajente, G1900851 Pele, G2000186

https://earth.nullschool.net/

So what is the problem???

Well.... One of many....

https://youtu.be/sv7JwrWURyQ

So what is the problem???

So what is the problem???

Sensor correction 101 Active isolation, general control scheme

Blend for virtual inertial sensor

Pele, G2000186

Sensor correction 101

Sensor correction 101

Sensor correction 101

Problem:

- We get hit right where it hurts... Gain peaking at 50-80 mHz.
- Why we lose lock??

What can we do to deal with this?

- Better predictions for earthquakes arrival time and magnitude.
- Optimize IFO seismic state for earthquake passing.
- Transition safely between states during lock.
- Understand the local and global behavior.

Sensor correction 102?

Seismic Optimization

Goals

• REDUCE local platform motion & drive - Local

- REDUCE differential motion of arm Global
- Keep stability of IFO lock.

Lets look at ground motion during earthquake:

Common mode is dominating – lets take it out!

The new control scheme for earthquakes

Goals

- REDUCE local platform motion and drive
- REDUCE differential motion of arm

How?

- Remove Common motion at earthquake band.
- Design different sensor correction filter.

Sensor correction 102?

CM filter

Seismic Optimization

Coupling!Differential platforms motionCoupling to other DOF – this is just weird...

$$X_{S}^{EQ} = [X_{G} \cdot (1 - SC) + CM \cdot \mathscr{L}_{CM} \cdot SC + \gamma X_{\perp} \cdot SC - (\eta_{BRS} - \eta_{CM}^{BRS}) \cdot SC] \cdot L - (\eta_{CPS} \cdot L + \eta_{in} \cdot H)$$

 $X_S^{NOM} = [X_G \cdot (1 - SC) - \eta_{BRS} \cdot SC + \gamma X_{\perp} \cdot SC] \cdot L - (\eta_{CPS} \cdot L + \eta_{in} \cdot H)$

Global controls - Automation

Global controls - Automation

Results! Local platform motion and drive

Results! Differential platforms motion

Results! DARM controls

Optical controls

Pele G2000186

Results - Statistics

Earthquakes are annoying

O3a 1238166018-1253977218 Home Summary Analysis - Locking - Range Segments Time accounting - Links -

Time accounting : LLO

Detailed mode information

Detailed observatory mode statistics as recorded in L1: ODC-OBSERVATORY_MODE

Index	Name	Active seconds	Hours	%
10	Observing	12127613.9	3368.8	76.7
21	Acquiring	1082494.8	300.7	6.8
22	Aligning	188481.4	52.4	1.2
31	Wind	126785.9	35.2	0.8
32	Seismic	2135.9	0.6	0.0
33	Microseism	121086.2	33.6	0.8
34	Earthquake	624606.0	173.5	4.0
35	Train	3407.2	0.9	0.0
36	Logging	5382.9	1.5	0.0
37	Other	205.2	0.1	0.0
38	Unavoidable	309658.4	86.0	2.0
40	Commissioning	345437.9	96.0	22

Earthquakes are a bit less annoying

O3a 1238166018-1253977218 Home Summary Analysis - Locking - Range Segments Time accounting - Links -

Time accounting : LLO

O3b 1256655618-1269363618 Home Summary Analysis - Locking - Range Segments Time accounting - Links -

Detailed mode information

Detailed observatory mode statistics as recorded in L1:ODC-OBSERVATORY_MODE

Index	Name	Active seconds	Hours	%
10	Observing	10054269.1	2792.9	79.1
21	Acquiring	853029.4	237.0	6.7
22	Aligning	116014.9	32.2	0.9
31	Wind	43746.9	12.2	0.3
32	Seismic	0.0	0.0	0.0
33	Microseism	458210.1	127.3	3.6
34	Earthquake	309364.6	85.9	2.4
35	Train	0.0	0.0	0.0
36	Logging	0.0	0.0	0.0

In action during O3a/b

Summary and what's next?

- We are getting a suppression factor of 3-4 for differential motion and 2-3 for platform motion and drive at EQ band.
- We reduce optical control signals during EQ and can use CPS to optimize the performance in low frequencies.
- Increased duty cycle of interferometers.

Summary and what's next?

- Earthquakes predictions. Seismon, picket fence.
- Multi-scenario optimization SC & CM filters, blends.
- Optimize for multi-frequency band excitations.
- Understand cross-couplings from all DOF Tilt.
- Optimize performance of IFO based on seismic at low frequencies.
- Automation, automation, automation....