ON REWEIGHING SINGLE-EVENT POSTERIORS WITH POPULATION PRIORS

R. Essick

Kavli Institute for Cosmological Physics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
M. Fishbach

Dept. of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637

LIGO-T1900895-v2

Let us consider the posterior for individual event parameters (θ_{i} for $\left.i=1,2, \ldots, N\right)$ and population parameters (Λ) so that

$$
\theta_{i} \sim p(\theta \mid \Lambda)
$$

We begin with the inhomogeneous Poisson likelihood and priors for Λ and R to obtain

$$
p\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N}, \Lambda, R \mid d_{1}, d_{2}, \ldots, d_{N}\right)=\frac{p(R) p(\Lambda)}{p\left(d_{1}, d_{2}, \ldots, d_{N}\right)} e^{-R \beta(\Lambda)} \prod_{i=1}^{N}\left[p\left(d_{i} \mid \theta_{i}\right) R p\left(\theta_{i} \mid \Lambda\right)\right]
$$

where

$$
\beta(\Lambda)=\int d \vartheta P(\operatorname{det} \mid \vartheta) p(\vartheta \mid \Lambda)
$$

with $P(\operatorname{det} \mid \theta)$ the probability of detecting a signal with individual event parameters θ. If we assume $p(R) \sim 1 / R$, we can marginalize to obtain

$$
p\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N}, \Lambda \mid d_{1}, d_{2}, \ldots, d_{N}\right)=\frac{p(\Lambda)}{p\left(d_{1}, d_{2}, \ldots, d_{N}\right)} \prod_{i=1}^{N}\left[\frac{p\left(d_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \Lambda\right)}{\beta(\Lambda)}\right]
$$

Now, let us continue to marginalize over all single-event parameters except for one event

$$
\begin{aligned}
p\left(\theta_{1} \mid d_{1}, d_{2}, \ldots, d_{N}\right) & =\int d \Lambda d \theta_{2} \cdots d \theta_{N} \frac{p(\Lambda)}{p\left(d_{1}, d_{2}, \ldots, d_{N}\right)} \prod_{i}^{N}\left[\frac{p\left(d_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \Lambda\right)}{\beta(\Lambda)}\right] \\
& =\int d \Lambda \frac{p(\Lambda)}{p\left(d_{1}, d_{2}, \ldots, d_{N}\right)} \frac{p\left(d_{1} \mid \theta_{1}\right) p\left(\theta_{1} \mid \Lambda\right)}{\beta(\Lambda)} \prod_{i=2}^{N}\left[\int d \vartheta \frac{p\left(d_{i} \mid \vartheta\right) p(\vartheta \mid \Lambda)}{\beta(\Lambda)}\right] \\
& =\int d \Lambda p\left(d_{1} \mid \theta_{1}\right) p\left(\theta_{1} \mid \Lambda\right)\left(\frac{p(\Lambda)}{\beta(\Lambda) p\left(d_{1}, d_{2}, \ldots, d_{N}\right)} \prod_{i=2}^{N}\left[\int d \vartheta \frac{p\left(d_{i} \mid \vartheta\right) p(\vartheta \mid \Lambda)}{\beta(\Lambda)}\right]\right) \\
& =p\left(d_{1} \mid \theta_{1}\right) \int d \Lambda p\left(\theta_{1} \mid \Lambda\right)\left(\frac{p\left(\Lambda \mid d_{2}, \ldots, d_{N}\right)}{\beta(\Lambda)} \frac{p\left(d_{2}, \ldots, d_{N}\right)}{p\left(d_{1}, d_{2}, \ldots, d_{N}\right)}\right)
\end{aligned}
$$

We note that we do not simply compute the leave-one-out posterior predictive distribution (PPD) as the leave-one-out posterior distribution on Λ comes along with another factor the selection function $\beta(\Lambda)$. This is because we condition on having detected N events, while the leave-one-out PPD only conditions on having detected $N-1$ events.
We also note that, to avoid having to generate separate leave-one-out posteriors for Λ for each event we wish to reweigh, we can instead use

$$
\frac{p\left(d_{2}, \ldots, d_{N}\right)}{p\left(d_{1}, d_{2}, \ldots, d_{N}\right)} \frac{p\left(\Lambda \mid d_{2}, \ldots, d_{N}\right)}{\beta(\Lambda)}=\frac{p\left(\Lambda \mid d_{1}, d_{2}, \ldots, d_{N}\right)}{\int d \vartheta p\left(d_{1} \mid \vartheta\right) p(\vartheta \mid \Lambda)}
$$

to obtain

$$
p\left(\theta_{1} \mid d_{1}, d_{2}, \ldots, d_{N}\right)=p\left(d_{1} \mid \theta_{1}\right) \int d \Lambda p\left(\theta_{1} \mid \Lambda\right) \frac{p\left(\Lambda \mid d_{1}, d_{2}, \ldots, d_{N}\right)}{\int d \vartheta p\left(d_{1} \mid \vartheta\right) p(\vartheta \mid \Lambda)}
$$

Within this approach, we compute an "effective prior" and the reweigh single-event posteriors as needed. This means that we can generate a single posterior for Λ using all events and then weigh catalog samples by that posterior divided

[^0]by the evidence for a single event given $p(\theta \mid \Lambda)$. In this way, we account for the fact that we detected all N events when reweighing each individual event within the catalog.

Furthermore, we also note that one can efficiently sample from the joint posterior for Λ and any number of single event parameters for one or more events without explicitly constructing an effective prior. Specifically, if we iteratively draw Λ samples from the hyperposterior conditioned on all N events and draw a θ_{i} sample from the corresponding reweighed single event posterior conditioned on the drawn hyperparameters for each hyperparameter sample

$$
\begin{gathered}
\Lambda^{(j)} \sim p\left(\Lambda \mid d_{1}, d_{2}, \ldots, d_{N}\right) \\
\theta_{i}^{(j)} \sim p\left(\theta_{i} \mid d_{i}, \Lambda^{(j)}\right)
\end{gathered}
$$

then we effectively draw samples from the joint distribution

$$
\begin{aligned}
\Lambda^{(j)}, \theta_{i}^{(j)} & \sim p\left(\Lambda \mid d_{1}, d_{2}, \ldots, d_{N}\right) p\left(\theta \mid d_{i}, \Lambda^{(j)}\right) \\
& \propto\left(p(\Lambda) \prod_{k}^{N}\left[\frac{\int d \vartheta p\left(d_{k} \mid \vartheta\right) p(\vartheta \mid \Lambda)}{\beta(\Lambda)}\right]\right)\left(\frac{p\left(d_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \Lambda\right)}{\left.\int d \vartheta p\left(d_{i} \mid \vartheta\right) p(\vartheta) \mid \Lambda\right)}\right) \\
& \propto p\left(d_{i} \mid \theta_{i}\right) \frac{p\left(\theta_{i} \mid \Lambda\right) p(\Lambda)}{\beta(\Lambda)} \prod_{k \neq i}^{N}\left[\frac{\int d \vartheta p\left(d_{k} \mid \vartheta\right) p(\vartheta \mid \Lambda)}{\beta(\Lambda)}\right]
\end{aligned}
$$

which is as desired. That is, instead of computing a new effective prior by marginalizing over reweighed Λ samples and then reweighing single-event posteriors, this combined sampling procedure can rapdily draw joint samples for both Λ and θ_{i}. We also note that, in the effective prior approach, one would need to recompute different effective priors for different sets of single-event posteriors (or combinations of events), which may become computationally intractable. This joint sampling procedure can be extended to simultaneously sample hyperparameters and an arbitrary number of single-event parameters from an arbitrary number of events in a straightforward manner.

[^0]: reed.essick@gmail.com
 maya.fishbach@gmail.com

