

The EGG (Exchange Gas Guard)

Edgard Bonilla, Faith Stults, Aaron Galper and Brian Lantz

LVK meeting, Lake Geneva 2020

<u>Outline</u>

- Motivation and previous results
- The idea
 - How can we trap the Exchange Gas?
 - The EGG Prototype
- Results
 - Pictures!
 - Okay, but did the bag work?
- Conclusions

Outline

Motivation and previous results

124 K Silicon Test Mass (Reduces Thermal Noise)

- ✓ 124 K Silicon Test Mass
- ✓ Steady state radiative cooling

- ✓ 124 K Silicon Test Mass
- ✓ Steady state radiative cooling
- × Slow Initial Cooldown

Why Faster Cooldown?

The ice problem

- Water condensing in the optic surfaces can compromise the sensitivity of the interferometer.
 [see Hasegawa (2019) or Steinlechner (2019)]
- It might take ~2 weeks for the water vapor in the vacuum chamber to be low enough for safe cryo operations. [see, T1900786]

Why Faster Cooldown?

- The ice problem
- Water condensing in the optic surfaces can compromise the sensitivity of the interferometer.
 [see Hasegawa (2019) or Steinlechner (2019)]
- It might take ~2 weeks for the water vapor in the vacuum chamber to be low enough for safe cryo operations. [see, T1900786]

• Faster iteration time:

- Numerical estimates set the initial cooldown time between 3 days and a week.
- Reducing this time to 1-2 days can save a lot of time when at the start of any run.

Why Faster Cooldown?

- The ice problem
- Water condensing in the optic surfaces can compromise the sensitivity of the interferometer.
 [see Hasegawa (2019) or Steinlechner (2019)]
- It might take ~2 weeks for the water vapor in the vacuum chamber to be low enough for safe cryo operations. [see, T1900786]
- Faster iteration time:
- Numerical estimates set the initial cooldown time between 3 days and a week.
- Reducing this time to 1-2 days can save a lot of time when at the start of any run.

Prototype facilities

Any test facilities for cryo GW observatories would greatly benefit from the fast iteration time.

- ✓ 124 K Silicon Test Mass
- ✓ Steady state radiative cooling
- Exchange Gas Initial Cooldown*

Outer Shield

1 kg Silicon Mass results: (see G1900526)

+ Additionally, we can model the heat transfer rates within 5% accuracy by using the Sherman-Lees formula for heat conduction in gases.

- ✓ 124 K Silicon Test Mass
- ✓ Steady state radiative cooling
- Exchange Gas Initial Cooldown

- ✓ 124 K Silicon Test Mass
- Steady state radiative cooling
- ✓ Exchange Gas Initial Cooldown
- × Gas Leaks!

<u>Outline</u>

Motivation and previous results

- The idea
 - How can we trap the Exchange Gas?
 - The EGG Prototype

Trapping the Exchange Gas

Requirements:

Trapping the Exchange Gas

Requirements:

• Pressure Differential.

VIRC

<u>Requirements:</u>

- Pressure Differential.
- Temperature Differential

Requirements:

- Pressure Differential.
- Temperature Differential
- Reproducible/Consistent
- Vacuum Compatible

Trapping the Exchange Gas

Requirements:

- Pressure Differential.
- Temperature Differential
- Reproducible/Consistent
- Vacuum Compatible

Exchange Gas Guard (EGG) VIRC

* Made with a thin film of PTFE. The EGG Shell's consistency is that of a bag

* We also monitored the Vacuum Chamber's Pressure and the Temperature of the optics Table underneath the EGG.

Experimental Setup

3 Turbos @ 550 l/s

- Can the prototype EGG hold the pressure differential?
- Can it sustain the temperature difference?
- Can it be operated reproducibly under vacuum?

<u>Outline</u>

Motivation and previous results The idea How can we trap the Exchange Gas? The EGG Prototype

- Results
 - Pictures!
 - Okay, but did the bag work?

<u>Results:</u> Nominal Operation

<u>Results:</u> Nominal Operation

<u>Results:</u> Nominal Operation

• The Vacuum Chamber returns to its base pressure in under 2 minutes

<u>Outline</u>

Motivation and previous results

The idea

How can we trap the Exchange Gas?

The EGG Prototype

Results

Pictures!

Okay, but did the bag work?

Conclusions

Conclusions

- We prototyped a simple design (the EGG) to keep the pressure differential required for the exchange gas to be viable.
- The design, while simple, can support a Liquid nitrogen temperature object inside of it.
- The materials and pieces are either vacuum compatible or can be made with ease.

<u>Next Steps:</u>

- Consolidate the Exchange Gas Information in a document
- [Tentative] Test EGG with a radiatively cooled 'test mass'.
- Investigate other cryo technologies of interest (neon cooling, thermosiphons, etc)

THANK YOU!

The relaxation time is $\mathbf{T} \sim 30$ min.

The Ice Problem

The Ice Problem

Typical LLO Pumpdown: Aug 2018

Source: T1400226

Gas Trap Comparison

	Easy to Test	Cryo Compatible	Easy to Integrate	Reproducible
Shield Door				
Over Bag				
lris Valve				

GREAT	OKAY	CHALLENGING	IMPOSSIBLE
GREAT	ΟΚΑΥ	CHALLENGING	IMPOSSIBI F

Gas Trap Comparison

GREAT OKAY CHALLENGING IMPOSSIBLE
EXCHANGE GAS GUARD (EGG)