

SIS20 Primer Hiro Yamamoto / LIGO

- Introduction
 - Real world vs simulation
- Simple system
 - ≻ FP
 - Field, power distribution, etc
 - FP with maps and point absorber
 - Round trip loss, modes, mirror surface, etc
- > LLO
 - DRFPI with point absorber
 - Round trip loss, PRG, etc

real hardware vs SIS

		Real HW	Simulation
	Building block	Laser, Mirror, Cavity	IFOBuilder : tool package FFTIFO (base class), LaserObj, MirrorObj, PropObj
	IFO	40m, iLIGO, aLIGO	DRFPM, FP, Mirror (derived class of FFTIFO using objects defined in IFOBuilder)
	Operation	Laser on, locking	lock, calc (calculate fields with / without cavity locking)
	Analysis	Measure error signal, modes in cavity, power on baffle	 demod, power, gaussFit (FFT fields) HGPower, mainLGs (HG and LG mode analysis) PointScatter, getField (large angle scattering)

FFT Basic : Field on optics + propagation

Three basic formulas

 $\delta(x,y) = \frac{r^2}{2ROC} + HR_phase$

F_{cav}(kx,ky)

• Transmission

- » $E_{tra}(x, y) = t_{opt} \cdot \exp(i\varphi_t) \cdot \exp(-ik(n-1)\delta) \cdot E_{in}(x, y)$
- » t_{opt} =amplitude transmittance, φ_t =transmission phase, k= $2\pi/\lambda$, n = refractive index, $\delta = surface \ height$, RoC=radius of curvature
- Reflection
 - » $E_{ref}(x, y) = r_{opt} \cdot \exp(2ik\delta) \cdot E_{in}(x, y)$
 - » r_{opt} =amplitude reflectance

• Propagation

- » $E_{out}(x, y) = IFFT[Prop(fx, fy, L, n_0) FFT[E_{in}(x, y)]]$
- » FFT(IFFT) = (inverse) Fast Fourier Transform,
 - $L = propagation distance, n_0 = refractive index of space$

Simple FP simulation FPIF00.m

FPprop ITM ETM laser classdef FPIF00 < FFTIF0Acc methods ITM-HR-o ITM-AR-i ETM-HRfunction obj = FPIF00(varargin) obj@FFTIF0Acc(varargin{:}); end ITM-AR-o ETM-HR-o ITM-HR-i function defineIFO(obj, varargin) %% add optics % laser source obj.addLaser('laser'); % ITM obj.addMirror('ITM', 'invRoC', 1/1934, 'Aperture', 0.34, 'T', 0.014, 'Thick', 0.2); % ETM obj.addMirror('ETM', 'invRoC', 1/2245, 'Aperture', 0.34, 'T', 5e-6); %% define connections among optics obj.addProp('', 'laser', 'ITM-AR'); obj.addProp('FPprop', 'ITM-HR', 'ETM-HR', 4000); end end

End

Examine FP cavity same procedure for any

* Build an IFO
fp = FPbasic;

% define FP

* Lock the cavity
fp.lock;

```
* Study system
fp.power('ITM-HR-o');
fp.roundtripLoss('ITM-HR-o');
fp.gaussFit('ITM-HR-o')
fp.HGCoef('ITM-HR-o',0:1,0:1)
```

fp.printAll

% lock FP

```
% power of outgioing field from ITM HR
% round trip loss
% gaussfit of a field
% HG(0,0), (1,0), (0,1), (1,1) amplitude
```

% print all information about fp

```
% field of incoming field to ETM HR
% E(j,i) is the amplitude of the field at (x,y) = (x(i), x(j))
[E,x,y] = fp.getField('ETM-HR-i');
semilogy( x.^2, abs(E(end/2,:)).^2 )
```

LIGO-G2000796

Outputs

fp = FPbasic; (the mode is defined using FP cavity RoCs and length)
Cavity mode defined using field 'ITM-HR-o' with w = 0.0534211, RoC = -1934
fp.lock;
1 (FFT = 0.0200.01)

1 (FFT 8) : 'ITM-HR-o' Pwr= 2.832e+02, Err= 9.930e-01, ... (change cavity length until converges) 9 (FFT 72) : 'ITM-HR-o' Pwr= 2.835e+02, Err= 8.077e-07, ... delL=-3.376e-16

fp.roundtripLoss('ITM-HR-o') C 02482 07

6.9348e-07

fp.HGCoef('ITM-HR-o',0:1,0:1) % HG(0,0), (0,1); (1,0), (1,1) amplitude 1.6837e+01 + 3.1260e-03i 2.7750e-10 - 1.9355e-10i 6.3478e-11 + 1.8906e-10i 2.0643e-11 - 1.3251e-11i

fp.printAll outputs

=== Information about fields === 3) name: ITM-HR-i ==== Power = 283.481, E(analytic) = -16.8377, [status = 1024] RoC = 1934, w = 0.0534211, z = 1837.22, z0 = 421.68, 1/phiCorr = 1844.22q = 1837.22 + i 421.68, 1/q = 0.000517063 - i 0.000118677=== Information about optics === 2) name: 'ITM', Wfft = 0.854768, Nfft = 256 inPorts = [3 4] loss for each input port = [2.10749e-07 1.66283e-09] outPorts = $\begin{bmatrix} 5 & 6 \end{bmatrix}$ loss 3.91984e-05 in 'ITM-HR-i'+'ITM-AR-i'->'ITM-HR-i'+'ITM-AR-i' R = 0.986, T = 0.014, L = 0Roc(HR) = 1934, Aperture = 0.340000, Thickness = 0.200000, n = 1.449630, ... === Information about propagators === 3) name: FPprop prop loss = 4.85674e-07Prop from 'ITM-HR-o'[5] to 'ETM-HR-i'[7] L0 = 4000, propL0 = 4000, delL = 4.61187e-07, lockPhase/pi = 0, gouy00 = 2.72342 nRef = 1, ratio = -1.16894, CLa = -0.00046387, (-k*L+(1+n+m)gouy00)/pi = 1.83876e-08

FP with surface aberration

FPwMaps.m

- Variables can be set at run time
 - » fp = FPwMaps('ITMID', 4, 'ETMID', 10, 'xPoE', 0.02, 'pointPwrE', 0.03);
- Mirrors can be specified by ID
 - » Data files should be in ./Data0/
- Simple ring heater
- Thermal distortions by coating absorption
- Point absorbers at multiple locations
- Spatial resolution can be specified if you need fine structure
- Poorman's WFS
- Support tools
 - » Mode analysis
 - » Inspection of surface map

Implementing surface aberration

% dat = calcThermal(elph, r, Psub, Pcoat, w, thickness, radius) thermal deformation by absorption using Hello-Vinet formula % % del = pointAbs(x, y, x0, y0, Pabs, absRadius) % % parametrization of surface aberration by point absorber % (x0, y0) : location of point absorber in m Pabs : amount of absorption in W % % multiple absorbers : x0 = [0.02, 0.03], y0 = [-0.01, 0.02],% Pabs = [0.04, 0.02]

% ITM HR surface

```
obj.setHRfiles( 'ITM', ITMmap, ...
'map + rsq*delRoCI/2 + calcThermal(0, r, 0, PcoatI, wI, 0.2, 0.175 )
        + pointAbs(x,y,xPoI, yPoI, pointPwrI)', ...
0.16, ITMRoC, 0, ...
'delRoCI', delRoCI, 'PcoatI', PcoatI, 'wI', 0.053,
'xPoI', xPoI, 'yPoI', yPoI, 'pointPwrI', pointPwrI );
```


LLO simulation

- Dual recycled FP Michelson with LLO maps
 - » Stable power recycling and signal recycling cavities
- All the map aberrations in FPwMaps are included for both arms
 - » Effects of point absorbers
- Beam off-centering in the arm tricky way
- Misc
 - » Extra arm loss of 30ppm added by hand to make the PRG to be 50

LLO runs with point absorber

llo = LLODRFPMAcc; llo.lock('errorLimit',1e-3)

```
: 'PRM-HR-o' Pwr= 5.186e+01, Err= 2.278e-04, delL=-1.231e-12
: 'SRM-HR-o' Pwr= 5.986e-02, Err= 2.950e-04, delL=-1.203e-11
: 'ITMX-HR-o' Pwr= 6.948e+03, Err= 7.878e-04, delL= 1.626e-15
: 'ITMY-HR-o' Pwr= 6.785e+03, Err= 7.715e-04, delL= 1.577e-15
llo.roundtripLoss('ITMX-HR-o') : 5.315445166031996e-05
llo.roundtripLoss('ITMY-HR-o') : 5.931360270183816e-05
% with point absorber on ETMY
```

```
llo = LLODRFPMAcc('xPoY', 0.02, 'yPoY', 0, 'PpointEY', 0.05 );
```

```
: 'PRM-HR-o' Pwr= 3.013e+01, Err= 7.783e-05, delL= 2.503e-12
: 'SRM-HR-o' Pwr= 9.942e-02, Err= 3.720e-04, delL= 2.699e-11
: 'ITMX-HR-o' Pwr= 3.996e+03, Err= 8.830e-04, delL=-3.660e-17
: 'ITMY-HR-o' Pwr= 3.932e+03, Err= 9.296e-04, delL=-4.301e-15
```

```
llo.roundtripLoss('ITMX-HR-o') : 5.317286612804839e-05
llo.roundtripLoss('ITMY-HR-o') : 1.597188171539310e-04
LIC
```


llo = LLODRFPMAcc('res', 2e-3, 'armPower', 0, 'xPoY', 0.02, 'yPoY', 0, 'PpointEY', 0.05, 'posEYX', -0.02);

No thermal by coating absorption Point absorber on ETMY at (2cm,0) 50mW Beam on ETMY at (-2cm,0)

PRG and arm loss

Point absorber on ETMY	Beam center on ETMY	PRG	X arm loss	Y arm loss
none	(0,0)	51.0	53 ppm	59 ppm
(2cm,0) 50mW	(0,0)	29.1	53 ppm	160 ppm
(2cm,0) 50mW	(-2cm,0)	32.8	53 ppm	108 ppm
(2cm,0) 50mW	(2cm,0)	33.5	53 ppm	141 ppm
(2cm,-1cm) 30mW (0,-1cm) 50mW	(2cm,0)	28.2	53 ppm	155 ppm