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1 Analytic formalism

1.1 Goal

The aim of the formalism described in the subsequent sections is to calculate the total mode-
matching loss (consequently the squeezing loss) in a complex optical system as a function of
small perturbations of the mirror positions and curvatures. This is achieved by developing a
machinery that can handle arbitrary optical configurations and capture the coupled-cavity
interactions in LIGO.

1.2 Optical field vector

We represent the electric field of an optical beam at any point in the system in the Laguerre-
Gaussian eigenbasis of the Output Mode Cleaner (OMC). The OMC is the final cavity in the
LIGO system and defines an invariant reference basis, since it is not going to be perturbed.
In general this vector space is infinite-dimensional, since there are an infinite number of
mode orders. However, in this paper we consider only small perturbations in mirror position
and radius of curvature from the perfectly mode-matched system. This results in significant
transfer of power from the fundamental mode into only the LG10 mode [1, 2].

Under this assumption, we consider only a two-dimensional vector space whose basis vectors
are the LG00 and LG10 eigenmodes of the OMC cavity. Using the Dirac notation, we thus
represent the electric field at any point as

|Ψ〉 =

(
α
β

)
= α |LG00〉+ β |LG10〉

(1)

As the Laguerre-Gauss modes are orthonormal, we have an orthonormal basis, i.e.,

〈LGm0|LGn0〉 = δmn (2)

where m,n ∈ {0, 1}

1.3 Mode Mixing Matrices

Initially, we start with a purely Gaussian input beam. We now consider that the beam
goes through an optical element which may couple it to the LG10 mode. We represent this
phenomenon by a 2× 2 scattering matrix, say A, such that

|Ψout〉 = A× |Ψin〉 (3)

If the beam goes through multiple consecutive elements with the scattering matricesA0, A1, ...An,
we have

|Ψout〉 = An × ...A1 × A0 × |Ψin〉 (4)

page 2



LIGO-T2000338–v1

In this way we use this formalism to keep track of the power losses to the first-order mode.

1.3.1 Reflection matrix

The scattering matrix for reflection of a beam from a mirror having amplitude reflectivity
coefficient r is given by

r =

(
r 0
0 r

)
(5)

The modified reflection matrix for a radius of curvature perturbation δR in a mirror of radius
of curvature R is given by

r′ = a.r =

(
r
√

1− a2 −ιra
−ιra r

√
1− a2

)
(6)

with a = πω2(zm)
2λR2 δR where ω(zm) is the beam size at the mirror position zm and λ is the

wavelength of the beam. The derivation has been given in Appendix A.1.

1.3.2 Transmission matrix

The scattering matrix for transmission of a beam through a mirror having amplitude trans-
missivity coefficient t is given by

t =

(
t 0
0 t

)
(7)

1.3.3 Propagation matrix

Let kL be the phase accumulated by a plane-wave upon one-way propagation across a distance
or cavity. If this one-way propagation accumulates a phase φ0 in the LG00 mode,

φ0 = kL− φG (8)

where φG is a corrective term known as the Gouy phase. The Gouy phase accounts for the
fact that the LG00 field propagates at a slower phase velocity than a plane-wave due to its
finite transverse localization. Similarly, the correction for mode order LGpl is (2p+ |l|)φG.
Thus if one the one–way propagation accumulates a phase φ1 in the LG10 mode, we have
φ1 = kL− 3φG = φ0 − 2φG. This phase accumulation during propagation can be represented
by the scattering matrix

Φ =

(
eιφ0 0
0 eιφ1

)
(9)

page 3



LIGO-T2000338–v1

Figure 1: Fabry-Perot cavity before the OMC.

The modified propagation matrix for a position perturbation δz in a mirror of radius of
curvature R

Φ′ = b.Φ =

(√
1− b2eιφ0 −beιφ1
−beιφ0

√
1− b2eιφ1

)
(10)

with b = δz
R

. The derivation has been given in Appendix A.2.

1.4 Total loss

After passing through a complex optical system, let the final beam that reaches the Output
Mode Cleaner cavity be |ΨOMC〉. When this beam reaches the OMC cavity, only the LG00

mode component couples with the cavity. The LG10 mode component is reflected from the
cavity and this is the power loss in the system. Thus the total fractional power loss in the
system is given by

L =
〈ΨOMC| |LG10〉 〈LG10| |ΨOMC〉

〈ΨOMC| |ΨOMC〉
(11)

1.5 Example case for a Fabry-Perot cavity

Consider the setup given in Figure 1, where the input beam with field |Ψin〉, and Fabry-Perot
cavity consisting of mirrors M1 and M2 are mode-matched to the OMC cavity. We assume
the input beam is

|Ψin〉 =

(
1
0

)
(12)

The mirrors M1 and M2 have radii of curvature R1 and R2, and reflectivity and transmissivity
r1, r2 and t1, t2 respectively. Let the scattering matrices for reflection by M1, M2 be r1, r2
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and the scattering matrices for transmission from M1, M2 be t1, t2 (given by eqns. 5, 7). if
one-way propagation across the Fabry-Perot cavity accumulates a phase φ0 in the LG00 mode
and φ1 in the LG10 mode, this can be represented by the scattering matrix given by eq. 9.

Now for the internal field in the Fabry-Perot cavity, just inside of mirror M1, we have

|Ψcav〉 = t1 |Ψin〉+ r1.Φ.r2.Φ |Ψcav〉
= t1 |Ψin〉+ FRT |Ψcav〉

(13)

where

FRT = r1.Φ.r2.Φ (14)

is the total scattering matrix for a complete round-trip in the Fabry-Perot cavity starting
from just inside mirror M1. Thus we have

(I− FRT) |Ψcav〉 = t1 |Ψin〉 (15)

=⇒ |Ψcav〉 = (I− FRT)−1t1 |Ψin〉 (16)

Similarly for the reflected field we have

|Ψrefl〉 = −r1 |Ψin〉+ t1.Φ.r2.Φ |Ψcav〉
= −r1 |Ψin〉+ FE |Ψcav〉
= −r1 |Ψin〉+ FE(I− FRT)−1t1 |Ψin〉
= rFP |Ψin〉

(17)

where FE = t1.Φ.r2.Φ, and rFP = FE(I−FRT)−1t1−r1 is the scattering matrix for reflection
the Fabry-Perot cavity.

Similarly for the transmitted field we have

|Ψtrans〉 = t2.Φ |Ψcav〉
= t2.Φ(I− FRT)−1t1 |Ψin〉
= tFP |Ψin〉

(18)

where tFP = t2.Φ(I − FRT)−1t1 is the scattering matrix for transmittance through the
Fabry-Perot cavity. Thus we have effectively reduced the Fabry-Perot cavity to a single
mirror MFP with t = tFP and r = rFP as shown in Figure 2.
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Figure 2: Fabry-Perot cavity before the OMC reduced to a single mirror.

Initially, when the input beam and the two cavities are perfectly mode-matched, we calculate
the transmittance matrix by simply substituting eqns. 5, 7, 9, 14. After solving the matrix
algebra we get

tFP =

(
t1t2eιφ0

1−r1r2e2ιφ0
0

0 t1t2eιφ1

1−r1r2e2ιφ1

)
(19)

=⇒ |Ψtrans〉 =

(
t1t2eιφ0

1−r1r2e2ιφ0
0

0 t1t2eιφ1

1−r1r2e2ιφ1

)(
1
0

)
=

t1t2e
ιφ0

1− r1r2e2ιφ0
|LG00〉

(20)

Thus from eq. 11 we have loss L = 0. This is consistent as we have not made any perturbations
yet, and so there is no scattering.

1.5.1 Curvature perturbation of the second mirror

We now introduce a radius of curvature perturbation δR in mirror M2 of the Fabry-Perot

cavity. Thus from eq. 6 we have with a = πω2(z)

2λR2
2
δR the scattering matrix for reflection from

mirror M2

r′2 =

(
r2

√
1− a2 −ιr2a

−ιr2a r2

√
1− a2

)
(21)

We now repeat the matrix algebra with F′RT = r1.Φ.r
′
2.Φ and t′FP = t2.Φ(I− F′RT)−1t1 to

get
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t′FP =
t1t2

1− r1r2

√
1− a2(e2ιφ0 + e2ιφ1) + r2

1r
2
2e

2ι(φ0+φ1)

×
(
eιφ0(1− r1r2

√
1− a2e2ιφ1) −ιr1r2ae

ι(2φ0+φ1)

−ιr1r2ae
ι(φ0+2φ1) eιφ1(1− r1r2

√
1− a2e2ιφ0)

) (22)

=⇒ |Ψ′trans〉 =
t1t2

1− r1r2

√
1− a2(e2ιφ0 + e2ιφ1) + r2

1r
2
2e

2ι(φ0+φ1)

×
(
eιφ0(1− r1r2

√
1− a2e2ιφ1)

−ιr1r2ae
ι(φ0+2φ1)

) (23)

Thus from eq. 11 we have loss

L =
r2

1r
2
2a

2

1 + r2
1r

2
2 − 2r1r2 cos 2φ1

√
1− a2

(24)

Assuming a << 1, we have
√

1− a2 ≈ 1. Substituting in the above equation

L =
r2

1r
2
2

1 + r2
1r

2
2 − 2r1r2 cos 2φ1

(
πω2(z)

2λR2
2

)2

δR2 (25)

We define the sensitivity to loss as the amount of loss per curvature perturbation δR

∂L

∂(∆R)

∣∣∣∣
∆R=δR

=
2r2

1r
2
2

1 + r2
1r

2
2 − 2r1r2 cos 2φ1

(
πω2(z)

2λR2
2

)2

δR (26)

We now verify this result using simulations in Finesse. We simulate the set-up given in Fig. 1
with the Fabry-Perot cavity initially mode matched to the OMC. We then plot the power loss
percentage at the output of the OMC as a function of the radius of curvature perturbation
percentage in mirror 2, keeping all other parameters stable. The results are shown in Fig. 3.

1.5.2 Curvature perturbation of the first mirror

We now introduce a radius of curvature perturbation δR in mirror M1 of the Fabry-Perot

cavity. Thus from eq. 6 we have with a = πω2(z)

2λR2
1
δR the scattering matrix for reflection from

mirror M2

r′1 =

(
r1

√
1− a2 −ιr1a

−ιr1a r1

√
1− a2

)
(27)

We now repeat the same matrix algebra as in the above section with F′RT = r′1.Φ.r2.Φ and
t′FP = t2.Φ(I− F′RT)−1t1 to get
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Figure 3: Analytic and simulation results for power loss percentage at output of the OMC
cavity as a function of curvature perturbation percentage at mirror 2 of the Fabry-Perot
cavity. Initially, the Fabry-Perot cavity is mode-matched to the OMC and we have used
cavity parameters: r1 = r2 = 0.9, t1 = t2 = 0.1, R1 = −17m, R2 = 20m, L = 10m

|Ψ′trans〉 =
t1t2

1− r1r2

√
1− a2(e2ιφ0 + e2ιφ1) + r2

1r
2
2e

2ι(φ0+φ1)

×
(
eιφ0(1− r1r2

√
1− a2e2ιφ1)

−ιr1r2ae
ι(2φ0+φ1)

) (28)

Thus from eq. 11 we have loss

L =
r2

1r
2
2a

2

1 + r2
1r

2
2 − 2r1r2 cos 2φ1

√
1− a2

(29)

which is the same as for perturbation of the second mirror.

We now verify this result using simulations in Finesse. We simulate the set-up given in Fig. 1
with the Fabry-Perot cavity initially mode matched to the OMC. We then plot the power loss
percentage at the output of the OMC as a function of the radius of curvature perturbation
percentage in mirror 1, keeping all other parameters stable. The results are shown in Fig. 4.

1.5.3 Position perturbation of the second mirror

We now introduce a perturbation δz in the longitudinal position of mirror M2 of the Fabry-
Perot cavity. Thus from eq. 10 we have with b = δz

R2
the modified scattering matrix for

propagation matrix for the cavity
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Figure 4: Analytic and simulation results for power loss percentage at output of the OMC
cavity as a function of curvature perturbation percentage at mirror 1 of the Fabry-Perot
cavity. Initially, the Fabry-Perot cavity is mode-matched to the OMC and we have used
cavity parameters: r1 = r2 = 0.9, t1 = t2 = 0.1, R1 = −17m, R2 = 20m, L = 10m

Φ′ =

(√
1− b2eιφ0 −beιφ1
−beιφ0

√
1− b2eιφ1

)
(30)

We now repeat the matrix algebra with F′RT = r1.Φ
′.r2.Φ

′ and t′FP = t2.Φ
′(I−F′RT)−1t1 to

get

t′FP =
t1t2

1− r1r2((1− b2)e2ιφ0 + 2b2eι(φ0+φ1) + e2ιφ1(1− b2 − (1− 2b2)2e2ιφ0r1r2))

×
(√

1− b2eιφ0(1− (1− 2b2)e2ιφ1r1r2) −beιφ0(1− (1− 2b2)r1r2e
ι(φ0+φ1))

−beιφ1(1− (1− 2b2)r1r2e
ι(φ0+φ1))

√
1− b2eιφ1(1− (1− 2b2)e2ιφ0r1r2)

) (31)

Assuming b << 1, we approximate up to first order in b

t′FP ≈
t1t2

1− r1r2(e2ιφ0 + e2ιφ1(1− e2ιφ0r1r2))

×
(

eιφ0(1− e2ιφ1r1r2) −beιφ0(1− eι(φ0+φ1)r1r2)
−beιφ1(1− eι(φ0+φ1)r1r2) eιφ1(1− e2ιφ0r1r2)

) (32)
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Figure 5: Analytic and simulation results for power loss percentage at output of the OMC
cavity as a function of position perturbation percentage at mirror 2 of the Fabry-Perot cavity.
Initially, the Fabry-Perot cavity is mode-matched to the OMC and we have used cavity
parameters: r1 = r2 = 0.9, t1 = t2 = 0.1, R1 = −17m, R2 = 20m, L = 10m

=⇒ |Ψ′trans〉 =
t1t2

1− r1r2(e2ιφ0 + e2ιφ1(1− e2ιφ0r1r2))

×
(

eιφ0(1− e2ιφ1r1r2)
−beιφ1(1− eι(φ0+φ1)r1r2)

) (33)

Thus from eq. 11 and b << 1 we have loss

L =
1 + r2

1r
2
2 − 2r1r2 cos(φ0 + φ1)

1 + r2
1r

2
2 − 2r1r2 cos(2φ1)

b2 (34)

We define the sensitivity to loss as the amount of loss per position perturbation δz

∂L

∂(∆z)

∣∣∣∣
∆z=δz

=
1 + r2

1r
2
2 − 2r1r2 cos(φ0 + φ1)

1 + r2
1r

2
2 − 2r1r2 cos(2φ1)

2

R2
2

δz (35)

We now verify this result using simulations in Finesse. We simulate the set-up given in Fig. 1
with the Fabry-Perot cavity initially mode matched to the OMC. We then plot the power loss
percentage at the output of the OMC as a function of the position perturbation percentage
in mirror 2, keeping all other parameters stable. The results are shown in Fig. 5.
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2 Numerical optimisation of design parameters

2.1 Curvature and Position Perturbations in a Fabry-Perot Cavity

Using Finesse we simulate Fig. 1, which represents a Fabry-Perot cavity consisting of mirrors
M1 and M2 before the Output Mode Cleaner cavity. In the Fabry Perot cavity as shown, M1
is the input mirror, or the ITM, and M2 is the end mirror, or the ETM. For the purpose of this
preliminary analysis, we choose random parameters for the OMC and mode-match the Fabry-
Perot cavity parameters accordingly. In this simulation we have used, rITM = rETM = 0.9,
tITM = tETM = 0.1, RITM = −17m, RETM = 20m, zITM = 10m, zETM = 20m. Thus the length
of the Fabry-Perot cavity is L = 10m.

2.1.1 Monte Carlo perturbation analysis

We perturb the parameters RITM, RETM, zITM, and zETM within a ±2% margin around
the true values, and generate the density plots for total mode-matching percentage to the
unperturbed TEM00 mode, as shown in Fig. 6.

We now perform a Monte Carlo optimisation for the same set-up. We optimise the mode-
matching percentage to the unperturbed TEM00 mode at the output of the Fabry-Perot
cavity with respect to the 4 parameters - RITM, RETM, zITM, and zETM. This optimisation is
done within a ±2% perturbation around the true values. The results have been shown in Fig.
7

2.1.2 Particle swarm optimisation of parameters

Particle swarm optimisation (PSO) is a computational method for optimising a given function.
We will now use this method to maximise the final mode overlap of the setup while also
minimising its sensitivity.

We begin by maximising the mode overlap using PSO. We do so by varying the radii of
curvature and positions of the ITM and ETM (RITM, RETM, zITM, and zETM) and finding the
values that maximise the final mode overlap. Using PSO, we don’t just restrict ourselves to a
±2% perturbation around the initial true values. Instead we allow a perturbation of ±1m for
zITM and zETM, and allow the radii of curvature to take any value such that abs(R) ≥ 0.5m.
The corner plot for this optimisation has been shown in Fig. 8. The final values for maximum
mode-matching that we get are RITM = −17.36m, RETM = 20.09m, zITM = 10.36m, and
zETM = 19.97m. This configuration is one of the many possible configurations for a perfectly
mode-matched system within the given perturbations. In the next step we will find the
minimally sensitive of all these configurations.

We now use PSO to maximise the final mode overlap of the setup while also minimising its
sensitivity. Here we define sensitivity of the setup by the partial derivatives of the final mode
overlap with respect to the four parameters (RITM, RETM, zITM, and zETM). This is defined
as the amount of change in the final mode overlap for a small change in these parameters.
The function we now wish to maximise is a weighted sum of the mode overlap and the partial
derivatives.
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Figure 6: Total mode-matching percentage to the unperturbed TEM00 mode at the output
of the Fabry-Perot cavity.
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Figure 7: Optimising the total mode-matching percentage at the output of the Fabry-Perot
cavity. For the Monte Carlo simulation, we have used: number of walkers = 100, number of
steps = 1000.
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number of particles = 20, number of steps = 500.
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Let the final mode overlap be represented by the function f(RITM,RETM, zITM, zETM). The
function we wish to maximise is then given by

F (RITM,RETM, zITM, zETM) = af − b

(∣∣∣∣ ∂f

∂RITM

∣∣∣∣+

∣∣∣∣ ∂f

∂RETM

∣∣∣∣+

∣∣∣∣ ∂f

∂zITM

∣∣∣∣+

∣∣∣∣ ∂f

∂zETM

∣∣∣∣) (36)

where a, b > 0 are weights to ensure mode matching while minimising sensitivity. This means
that

af >> b

(∣∣∣∣ ∂f

∂RITM

∣∣∣∣+

∣∣∣∣ ∂f

∂RETM

∣∣∣∣+

∣∣∣∣ ∂f

∂zITM

∣∣∣∣+

∣∣∣∣ ∂f

∂zETM

∣∣∣∣) (37)

We allow a perturbation of ±1m for zITM and zETM, and allow the radii of curvature to take
any value such that abs(R) ≥ 0.5m. The corner plot for this this optimisation has been
shown in Fig. 9. The final values for minimum sensitivity in a mode-matched system that we
get are RITM = −17.59m, RETM = 21.12m, zITM = 10.54m, and zETM = 19.65m.

2.2 Curvature and Position Perturbations in X-Arm Cavity and Signal Recy-
cling Cavity of the aLIGO System

Using Finesse we simulate Fig. 10, which represents the X-arm cavity and the signal recycling
cavity of the aLIGO system. The parameters of the optical setup used for the simulation are
the actual aLIGO design parameters. We also place a squeezer vacuum input at the output
of the SRC, as shown in the figure.

We once again use particle swarm optimisation to minimise the sensitivity of this setup. This
time, we define the sensitivity in terms of output squeezing level instead of mode matching -
i.e., we want to minimise the sensitivity to degradation in squeezing level with respect to
perturbations in the apparatus. First, we fix the X-arm cavity parameters and minimise the
sensitivity with respect to the positions and curvatures of the SRC mirrors (SR3, SR2, SRM).
We thus optimise over the six parameters - RSR3, RSR2, RSRM, LSR3, LSR2, LSR1, allowing the
radii of curvature to take any value such that abs(R) ≥ 1m and the lengths to take any values
as long as the total length of the SRC remains constant. We also put conditions to ensure
that the beam size at the SRM does not become too large (≤ 1cm) and the interferometer
remains locked. During the sensitivity analysis, the input laser beam remains mode-matched
to the unperturbed cavity. The results of this optimisation, i.e., the final values for minimum
sensitivity in a mode-matched system that we get are given in Table 1.

RSR3 RSR2 RSRM LSR3 LSR2 LSR1

aLIGO parameters (m) 35.97 -6.41 -5.69 19.37 15.44 15.76
Optimised parameters (m) 41.14 -20.32 -4.36 14.56 13.69 22.32

Table 1: Optimised SRC parameters for minimum sensitivity to degradation in squeezing
level.
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Figure 9: Fabry-Perot before the OMC: Optimising the sensitivity of the setup while ensuring
mode-matching. For the particle swarm optimisation, we have used: number of particles
= 20, number of steps = 500.
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Figure 10: X-arm cavity and the signal recycling cavity of the aLIGO system.
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Figure 11: Probability distribution of squeezing levels across 2,000 realisations of the set-up
given in Fig. 10 with randomly perturbed SRC mirrors about the aLIGO parameters and
optimised parameters given in Table 1.

We now make a quantitative comparison between the squeezing level with the optimised
parameters and the actual aLIGO parameters. We quantify the optical setup by the expected
level of squeezing at 50% confidence. We first assume typical uncertainties on the curvatures
and positions of the SRC mirrors: ∆R ∼ N(µ = 0, σ = 0.33%R) and ∆z ∼ N(µ = 0, σ =
3mm), where ∼ N indicates a normal distribution. We randomly draw a set of ∆R and
∆z perturbations for every optical element (SR3, SR2, SRM), and compute the squeezing
level for this set of perturbations. During this computation, the input laser beam remains
mode-matched to the unperturbed cavity. We repeat this procedure 2,000 times, each time
with a different set of randomly-drawn perturbations, and plot the probability distribution
of squeezing levels across all 2,000 realizations. We then compute the 50th percentile of the
distribution. These results for the aLIGO parameters and the optimised parameters are given
in Fig. 11.

We now want to see the effect of perturbations in each individual parameter, to find the
parameters to which the design is most sensitive. We thus repeat the same analysis as above
for each of the six parameters - RSR3, RSR2, RSRM, LSR3, LSR2, LSR1 - perturbing them one at
a time. The distributions for the squeezing level are given in Fig. 12.
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Figure 12: Comparing the probability distributions of squeezing levels perturbing one
parameter at a time for the aLIGO parameters and the optimised parameters given in Table
1.
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A Derivations of the LG00-LG10 scattering matrices

A.1 Mirror curvature perturbation

Consider the setup given in Figure 13, where the input beam is initially mode-matched to
the cavity consisting of mirrors M1 and M2 having radii of curvature R1 and R2 at positions
z = 0 and z = zm respectively. At the position of the second mirror (z = zm), we have
initially the input beam matched to the LG00 radial eigenmode, U00(r, zm)

U00(r, zm) =

√
2

π

1

ω(zm)
exp(ιψ(zm)) exp

[
−r2

(
1

w2(zm)
+ ι

π

λR(zm)

)]
(38)

where ω(z) is the beam size, λ is the wavelength, R(z) is the wavefront curvature, and ψ(z)
is the Guoy phase. For the eigenmode, the wavefront curvature at the position of M2 is
equal to the mirror curvature R2, i.e., R(zm) = R2. We now make the radius of curvature
perturbation R2 → R2(1 + ε). This will scatter the mode-matched beam into the LG10 radial
eigenmode of the unperturbed eigenbasis given by

U10(r, zm) = U00(r, zm) exp(2ιψ(zm))

(
1− 2r2

ω2(zm)

)
(39)

Since we are considering the LG10 mode at the point of its creation (z = zm), i.e., no
propagation has occurred yet, the accumulated phase lag is zero and we have

U10(r, zm) = U00(r, zm)

(
1− 2r2

ω2(zm)

)
(40)

Now the new eigenmode of the perturbed cavity at z = zm is given by

U ′00(r, zm) =

√
2

π

1

ω(zm)
exp(ιψ(zm)) exp

[
−r2

(
1

w2(zm)
+ ι

π

λR2(1 + ε)

)]
≈
√

2

π

1

ω(zm)
exp(ιψ(zm)) exp

[
−r2

(
1

w2(zm)
+ ι

π

λR2

)](
1 + ι

πr2ε

λR2

) (41)

for ε << 1 upto first-order. Now rearranging the perturbed eigenmode to express it in terms
of the unperturbed eigenbasis we have from eqns. 38 and 40

U ′00(r, zm) = (1 + ιa)U00(r, zm)− ιaU10(r, zm) (42)

where

a =
πω2(zm)

2λR2
2

δR (43)

page 20



LIGO-T2000338–v1

Figure 13: Mirror curvature perturbation.

with ε = δR
R

. As ε << 1, we have 1 + ιa ≈ 1 and hence

U ′00(r, zm) = U00(r, zm)− ιaU10(r, zm) (44)

Thus at this point, we have scattering of the input beam into the LG10 mode. In the
unperturbed eigenbasis (eigenbasis of the input beam), we can now represent this by the
scattering matrix

a =

(√
1− a2 −ιa
−ιa

√
1− a2

)
(45)

Here the first column of the matrix represents the scattering from the LG00 mode to the
LG00 and LG10 modes. The second column represents the scattering from the LG10 mode to
the LG00 and LG10 modes, since there is also a transfer back of power from the LG10 mode.
The reason for this is explained in Vajente (2014): The amount of scattering for the cases
LG00 → LG00, LG10 and LG10 → LG10, LG00 is determined by the mode-overlap integrals,

OL =

∫ ∫
U ′00(r, zm)U10(r, zm) dx dy (46)

and

OL =

∫ ∫
U ′10(r, zm)U00(r, zm) dx dy (47)

which are identical [3]. We have explicitly derived the LG00 → LG00, LG10 case, and we thus
assume equal amplitude for the opposite case.

Hence we now have the modified reflection matrix for a radius of curvature perturbation δR
in a mirror of radius of curvature R
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Figure 14: Mirror position perturbation.

r′ = a.r =

(
r
√

1− a2 −ιra
−ιra r

√
1− a2

)
(48)

with a = πω2(zm)
2λR2 δR

A.2 Mirror position perturbation

Consider the setup given in Figure 14, where the input beam is initially mode-matched to
the cavity consisting of mirrors M1 and M2 having radii of curvature R1 and R2 at positions
z = 0 and z = zm respectively. At the position of the second mirror (z = zm), we have
initially the input beam matched to the LG00 radial eigenmode, U00(r, zm), given by eq. 38.
For the eigenmode, the wavefront curvature at the position of M2 is equal to the mirror
curvature R2, i.e., R(zm) = R2.

We now make a perturbation to the second mirror position zm → zm + δz. This will scatter
the mode-matched beam into the LG10 radial eigenmode of the unperturbed eigenbasis given
by eq. 40

Now the new eigenmode of the perturbed cavity at the new position of the second mirror,
z = zm + δz is given by

U ′00(r, zm + δz) =

√
2

π

1

ω(zm + δz)
exp(ιψ(zm + δz)) exp

[
−r2

(
1

w2(zm + δz)
+ ι

π

λR(zm + δz)

)]
=

√
2

π

1

ω(zm + δz)
exp(ιψ(zm + δz)) exp

[
−r2

(
1

w2(zm + δz)
+ ι

π

λR2

)]
(49)
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since M2 has now been moved to zm + δz and hence for the perturbed cavity eigenmode,
R(zm + δz) = R2.

The beam size at the new mirror location is

ω(zm + δz) = ω0

√
1 +

(
zm − z0 + δz

zR

)2

≈ ω(zm)

(
1 +

zm − z0

(zm − z0)2 + z2
R

δz

) (50)

assuming δz << zR and taking upto first order in δz, where ω0 is the beam waist and zR is
the Rayleigh range.

From [4] we have

zR =
πω2

0

λ
(51)

ω2
0 =

ω2(zm)

1 +
(
πω2(zm)
λR2

)2 (52)

zm − z0 =
R2

1 +
(

λR2

πω2(zm)

)2 (53)

Now let α = λR2

πω2(zm)
. Then we have

zm − z0 =
R2

1 + α2
(54)

and

zR = α(zm − z0) (55)

=⇒ zm − z0

(zm − z0)2 + z2
R

=
1

R2

(56)

Thus we have

ω(zm + δz) = ω(zm)

(
1 +

δz

R2

)
(57)

Now we calculate the Guoy phase at the new mirror location
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ψ(zm + δz) = arctan

(
zm − z0 + δz

zR

)
≈ arctan

(
zm − z0

zR

)
+

zR δz

(zm − z0)2 + z2
R

= ψ(zm) +
λ δz

πω2(zm)

≈ ψ(zm)

(58)

using λ << ω(zm) and δz ∼ ω(zm).

Substituting eqns. 57, 58 in eq. 49, we rewrite the new eigenmode of the perturbed cavity at
z = zm + δz as

U ′00(r, zm + δzm) =

√
2

π

1

ω(zm)

(
1 +

δz

R2

)−1

exp(ιψ(zm)) exp

[
−r2

(
1

w2(zm)

(
1 +

δz

R2

)−2

+ ι
π

λR2

)]

≈ U00(r, zm)

[
1− δz

R2

(
1− 2r2

ω2(zm)

)]
(59)

using δz << R2 and calculating upto first order in δz. Thus rearranging the perturbed
eigenmode to express it in terms of the unperturbed eigenbasis we have

U ′00(r, zm + δzm) = U00(r, zm)− δz

R2

U10(r, zm) (60)

Thus at this point, we have scattering of the input beam into the LG10 mode. In the
unperturbed eigenbasis (eigenbasis of the input beam), we can now represent this by the
scattering matrix

b =

(√
1− b2 −b
−b

√
1− b2

)
(61)

where b = δz
R2

. Hence we now have the modified propagation matrix for a position perturbation
δz in a mirror of radius of curvature R

Φ′ = b.Φ =

(√
1− b2eιφ0 −beιφ1
−beιφ0

√
1− b2eιφ1

)
(62)

with b = δz
R
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