

Constraining the Properties of Kilonovae Based on Zwicky Transient Facility Searches for 13 Neutron Star Mergers

Priyadarshini Rajkumar Mentor: Shreya Anand

Electromagnetic (EM) Counterpart to GW Events

300

GW170817

Credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet

GW170817

Gravitational-wave strain

Optical/Infrared and X-ray image of the counterpart of GW170817

Troja+2017

Kilonova - the most promising EM Counterpart of a Compact Binary Merger

Metzger+2019

BNS vs NSBH Light Curves

BNS

Credit: Polina Petrov

The Zwicky Transient Facility

Laher+2017

Credit: IPAC/Caltech

- Optical survey on Samuel Oschin 48in telescope
- Site: Palomar, CA, USA
- Field of View: 47 sq.deg.
- 3750 sq. deg. / hour
- Median depth: r = 20.5 mag

Searching for Kilonovae using ZTF

Credit: Michael Coughlin

Simsurvey - simulation software

Input Parameters:

- 3-D GW sky map
- ZTF observational log

Detection Criteria:

- One 5sigma detection
- KN falling with observed area

Detection Efficiencies

Kasliwal+2020

Kilonovae Luminosity Function

$$(1 - CL) = \prod_{i=1}^{N} (1 - f_b * p_i)$$

- f_b fraction of kilonovae brighter than a given absolute magnitude.
- p_i the recovery fraction from the simsurvey injections
- *CL* confidence Level

According to <u>Kasliwal+2020</u>, for flat evolution, no more than 34% of kilonovae could be brighter than -20 mag.

Color Evolution of Kilonovae

GOAL 1 & 2

Linear Model of Kilonovae

 $M(t) = M_0 + \alpha t$

 $M_0 \rightarrow$ Extrapolated Peak Magnitude; $\alpha \rightarrow$ Decay Rate

BNS Models

Annotations \rightarrow Decay Rate (mag per day)

NSBH

Composite Efficiency Map

$p(det|\theta)$

p(**det** | **Л**)

GOAL 2

Constraints on Kilonova Source Properties

Conclusion and Future Work

1. GOAL 1:

With more events and better sensitivity, the weighted efficiencies can be used to place tighter constraints on kilonova luminosity function.

- a. Relax the assumptions made in the analysis.
- b. Use other theoretical models and compare the results.

2. GOAL 2:

We can use the non-detection of kilonovae to place constraints on the kilonova source properties.

- a. Potentially translate even to constraints on the component masses or chirp mass
- b. Perform the same analysis for constraining the NSBH kilonova source properties

Acknowledgements

- Shreya Anand (Mentor)
- Michael Coughlin
- Colm Talbot
- Jack Heinzel
- Alan Weinstein
- Everyone in LIGO Data Analysis Group

Thank you for listening and for a great summer!

BNS Decay Rate Distribution

NSBH Decay Rate Distribution

