Reduction and Identification of Scattered Light noise at LIGO

Siddharth Soni Louisiana State University Detchar Award Talk LIGO Seminar Jan 20 2021

- Scattered Light Noise
- Slow Scattering in LIGO detectors
- Reaction Chain Tracking
- GravitySpy Retraining and Reclassification
- Impact of Retraining

Light scattering

David J Ottaway, Peter Fritschel, and Samuel J. Waldman

<u>T Accadia et al</u>

Scattering arches in h(t)

Time [seconds]

Glitch 🗢	Count -	Percent +
Scattered_Light	58739	71.4%
Extremely_Loud	5604	6.8%
Koi_Fish	3710	4.5%
Blip	3410	4.1%
Blip_Low_Frequency	1928	2.3%
Low_Frequency_Burst	1885	2.3%

H1 GravitySpy O3b

Glitch	Count	Percent \$		4
Scattered_Light	44682	32.4%		
Fast_Scattering	36918	26.8%		
Tomte	22361	16.2%	-	
Blip_Low_Frequency	8728	6.3%	•	
Whistle	5381	3.9%	•	
Extremely_Loud	3461	2.5%	L	
	L1 Gro	avitySp	y O3b	

Slow Scattering in LIGO detectors

Slow Scattering arches

- Multiple scattering arches due to multiple reflection
- High microseism (0.1 Hz 0.3 Hz), Earthquakes (0.03 Hz - 0.1 Hz)
- Noise in the band 10 Hz 120 Hz
- The overall O3 rate of Slow Scattering 7.85/hr and 9.8/hr at LLO and LHO respectively
- During O3b, this rate is 15.5/hr at LLO, and 18.8/hr at LHO because of high microseism in winter
- Two separate couplings found during O3

Microseismic Ground motion and Slow Scattering

Earthquakes, microseism and Slow Scattering

L2 Stage OSEM

L2 OSEM and Slow Scattering

• If relative displacement is larger than the wavelength

$$\delta x_{sc}(t) > \lambda$$

• Noise is upconverted to higher frequencies and appears as arches

$$h_{
hoh}(t) = K \sin(rac{4\pi\delta x_{
m sc}(t)}{\lambda})$$

• Fringe frequency motion

$$f_{max} = \frac{2nv}{\lambda}$$

- DARM control drive applied in between the chains creates relative motion between them
- A fraction of light hits the Gold ESD, reflects back and joins the main beam after ETM transmission
- Scattering arches in h(t)

Robert's alog 54298

Hiro's document DCC

h(t) noise spectrum

• Arches in spectrogram appears as scattering shelves in the h(t) spectra

$$h_{ph}(f) = \frac{\lambda T_{end} \sqrt{f_r}}{8\pi L} \mathcal{F}[\sin[\frac{4\pi}{\lambda} \delta x_{sc}(t)]] \qquad h_{rad}(f) = T_{end} \sqrt{f_r} \frac{2\Gamma P}{Mc} \frac{2}{\Omega^2 - \omega^2} \mathcal{F}[\cos[\frac{4\pi}{\lambda} \delta x_{sc}(t)]]$$
$$\mathcal{F} \rightarrow \text{Fourier transform}$$

Reaction Chain Tracking

- Noise is due to the relative motion between the chains
- Take the motion from L2 stage and feed it to Ro stage.
- This reduces the relative motion and the peak frequency of the arches

$$f_{max} = \frac{2nv}{\lambda}$$

RC tracking alogs <u>50851</u>, <u>54506</u>

Reducing Scattered Light in LIGO's Third Observing Run. S Soni et al link

RC tracking impact on Rate and SNR

End Test Mass-Transmission Motor System Scattering

- A small fraction of light is received by the Photodiodes located behind the End test mass mirrors.
- Some of that light gets reflected back to the test mass mirror and joins the main beam
- The noise depends on the relative motion between the test mass and the TMS.
- The noise shows up as arches in h(t) as well as the transmon channels

Scattering arches in Transmons

- Scattering arches in TMS Photo-diodes at the same frequency as h(t)
- Hveto correlations between h(t) and TMS PD channels
- Added TMS PD's on Scattering summary page
- Tests confirmed noise in DARM and TMS
- TMS tracking before O4

alogs <u>52204</u>, <u>52118</u>

Post RC h(t)

Pre RC h(t)

Pre RC Transmon PD

Pre RC and Post RC tracking Comparison

Pre RC tracking

Post RC tracking

Pre RC tracking Shelf at f Hz in TMS → Shelf at f, 2f, 4f Hz and so on in h(t)

Post RC tracking Shelf at f Hz in TMS → Shelf at f Hz in h(t)

- RC Tracking implemented in Jan 2020 reduced the rate of Slow scattering due to ETM-AERM noise coupling
- TMS tracking system to be implemented before the start of O4
- Reducing Scattered Light in the Third Observing Run of LIGO. S Soni et al paper link
- Hiro's Technical document <u>DCC</u>
- RC Tracking alogs <u>54298</u>, <u>50851</u>, <u>51594</u>, <u>51613</u>, <u>53499</u>
- TMS noise alogs <u>52071</u>, <u>52118</u>, <u>52204</u>, <u>52224</u>

GravitySpy Retraining and Reclassification

What is GravitySpy?

- It is an image recognition algorithm based on convolutional neural networks (CNN)
- Classifies transient noise at LIGO in 23 classes/labels
- <u>https://ldvw.ligo.caltech.edu/ldvw/gspySearch</u> web interface of GravitySpy
- Download the data in csv format for further analysis
- GravitySpy <u>paper</u>
- GravitySpy guide <u>DCC</u>

Training set

- The algorithm is trained on time-frequency spectrograms of noise transients
- For each event, the training set contains 4 images of 0.5, 1, 2 and 4 secs.

• These 4 images are then concatenated to form a single image used for training.

Model details

- Number of layers: 5 + 1
 - 4 CNN, 1 fully connected layer + softmax output layer.
- The output of softmax layer is:

 $o_c^i = \frac{e^{w_c^T x}}{\sum_{c=1}^{C} e^{w_c^T x}}$ for ith image, c = 1 to C, the number of classes

• Loss function : Cross entropy

$$-\sum_{i=1}^N\sum_{c=1}^C y_c^i\log o_c^i$$

yⁱ denotes the binary label for sample i.

Fast scattering

Short duration fast scattering arches

- A new transient noise noticed in O3
- Strong correlation with ground motion in microseism (0.1 Hz 0.3 Hz) and anthropogenic (1 Hz 6 Hz) band
- Not recognized by GravitySpy, was classified as Slow Scattering or None of the Above

Blips and Low frequency blips

All four triggers assigned as Blips with confidence above 0.95 by the current GravitySpy model

They may have different origins due to different bandwidth

Low frequency blips

Training set

- Total 23 classes
- Addition of two new classes
 - Fast scattering
 - Low frequency blips
- Removed None of the above glitch category

df_fastblip2['Label'].value_counts()

Blip	1821
Koi_Fish	706
Tomte	703
Blip_Low_Frequency	630
Low_Frequency_Burst	621
Scattered_Light	593
Light_Modulation	512
Power_Line	449
Low_Frequency_Lines	447
Extremely_Loud	447
Violin_Mode	412
Fast_Scattering	400
Scratchy	337
1080Lines	327
Whistle	299
Helix	279
Repeating_Blips	263
No_Glitch	117
1400Ripples	81
Chirp	60
Air_Compressor	58
Wandering_Line	42
Paired_Doves	27
Name: Label, dtype:	int64

Training set

Testing on O3 sample

- Confirmed the new model is recognizing Fast Scattering and Low Frequency Blips
- Classified 20% of the O3 gravity spy triggers at L1 and H1 with the new model
- Some of the questions we can ask are:
 - Is there a big change in confidence assigned to the triggers by the new model?
 - What percentage of triggers are labelled with a different classification?
 - For triggers assigned a different class, what is the distribution of new labels?
 - Does the change make sense?

Confidence comparison

Change in confidence assigned to the glitches is minimal

Change in class labels

O3 classification by the new model wrt old model at L1

Distribution of new labels at H1

Distribution of new labels at L1

O3 classification by the new model wrt old model at L1

Glitch class assigned to these triggers

Old classification to new

- New model to identify
 - Fast scattering
 - \circ Low frequency blips
- It should not affect other classes

Heatmap on next slide

- We consider those glitches that are assigned a different glitch class by the new model
- For each old label we look at the distribution of new labels assigned

H1 old to new

Old classification

New classification

- Slow Scattering and None of the above → Fast Scattering
- No unexpected change in labels

- A fraction of Extremely_Loud triggers classified as Scattering at H1.
- <u>Omega scans</u> show those triggers are indeed scattered light noise.

Impact of Reclassification

Fast Scattering in O3

Fast Scattering in Feb 2020

Fast scattering triggers in Feb 2020 at LLO, identified by GravitySpy with confidence above 0.9

Types of Fast scatter

Non 4 Hz fast scatter

- Correlates with ground motion in the microseism band
- Dominant type of scatter on Feb 6, Feb 14, Feb 21 at LLO

LVC talk DCC

- Correlates with motion in anthropogenic
- band (1 Hz 6 Hz) band
- Trains near the Y end at LLO, thunderstorms near the site, delivery trucks shake the ground

- Retrained GravitySpy to identify Fast Scattering and Low frequency Blips
- Reclassified the O3 data with the new model
- Improved characterization of Fast Scattering
- GravitySpy paper draft at <u>DCC</u>
- LVC talk on Fast Scattering DCC
- GravitySpy guide <u>DCC</u>

Thank You! Questions?

Extra Slides

ISI shaking test

- Test confirmed noise in DARM and TMS
- TMS tracking before 04
- alogs <u>52204</u>, <u>52118</u>

11]:	Blip 1	821
	Koi_Fish	706
	Low_Frequency_Burst	621
	Light_Modulation	512
	Power_Line	449
	Extremely_Loud	447
	Low_Frequency_Lines	447
	Scattered_Light	443
	Violin_Mode	412
	Scratchy	337
	1080Lines	327
	Whistle	299
	Helix	279
	Repeating_Blips	263
	No_Glitch	117
	Tomte	103
	None_of_the_Above	81
	1400Ripples	81
	Chirp	60
	Air_Compressor	58
	Wandering_Line	42
	Paired_Doves	27
	Name: true_label, dtype:	int64

df_fastblip2['Label'].value_counts()

Blip	1821
Koi_Fish	706
Tomte	703
Blip_Low_Frequency	630
Low_Frequency_Burst	621
Scattered_Light	593
Light_Modulation	512
Power_Line	449
Low_Frequency_Lines	447
Extremely_Loud	447
Violin_Mode	412
Fast_Scattering	400
Scratchy	337
1080Lines	327
Whistle	299
Helix	279
Repeating_Blips	263
No_Glitch	117
1400Ripples	81
Chirp	60
Air_Compressor	58
Wandering_Line	42
Paired_Doves	27
Name: Label, dtype:	int64

Old training set

New training set

Testing on Fast scattering and Low frequency Blips

- Randomly sample 100 triggers currently classified as Scattering at L1 by GravitySpy between June, 1, 2019 and June, 30, 2019, with q between 8 and 14
- The new model classified all of them as **Fast Scattering**
- Random visual inspection of the omega scans of these 100 triggers to confirm correct classification
- These scans are stored <u>here</u>

- Randomly sampled 79 triggers currently classified as Blip at L1 by GravitySpy between Feb, 1, 2020 and Mar, 1, 2020 with peak frequency between 10 and 50 Hz
- The new model classified 78 of these as
 Blip_Low_Frequency and 1 as
 Tomte
- Visually inspected the scans
- These scans are stored <u>here</u>

Blip_Low_Frequency

Fast_Scattering

Training set

- All training images taken from O3 classification are with confidence above 0.95
- For fast scattering, 400 triggers currently classified as scattering with Q-value between 8 and 14
- For low frequency blips, 630 Blips with peak frequency between 10 and 50 Hz
- 150 slow scattering (Scattered_Light) images
- 300 Tomte
- Removed None_of_the_Above
- Valid acc: 0.988, Training acc: 0.999

Scattered_Light triggers wrongly classified as Extremely_Loud by the older model

Cryo Baffle Resonances

During the EY vent at L1, we plan to damp the cryo baffle, and retest. If successful, propagate to all stations including H1

Noise in TMS PD's

