Draft version October 30, 2022
Typeset using $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ twocolumn style in AASTeX62

Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB During the LIGO-Virgo Observing Run O3a
R. Abbott, ${ }^{1}$ T. D. Abbott, ${ }^{2}$ F. Acernese,,${ }^{3,4}$ K. Ackley, ${ }^{5}$ C. Adams, ${ }^{6}$ N. Adhikari, ${ }^{7}$ R. X. Adhikari, ${ }^{1}$ V. B. Adya, ${ }^{8}$ C. Affeldt, $9,{ }^{9} 10$ D. Agarwal, ${ }^{11}$ M. Agathos, ${ }^{12,13}$ K. Agatsuma, ${ }^{14}$ N. Aggarwal, ${ }^{15}$ O. D. Aguiar, ${ }^{16}$ L. Aiello, ${ }^{17}$ A. Ain, ${ }^{18}$ P. Ajith, ${ }^{19}$ T. Akutsu, ${ }^{20,21}$ S. Albanesi, ${ }^{22}$ A. Allocca,,${ }^{23,4}$ P. A. Altin, ${ }^{8}$ A. Amato, ${ }^{24}$ C. Anand, ${ }^{5}$ S. Anand, ${ }^{1}$ A. Ananyeva, ${ }^{1}$ S. B. Anderson, ${ }^{1}$ W. G. Anderson, ${ }^{7}$ M. Ando, $,{ }^{25},{ }^{26}$ T. Andrade, ${ }^{27}$ N. Andres, ${ }^{28}$ T. Andrić, ${ }^{29}$ S. V. Angelova, ${ }^{30}$ S. Ansoldi, ${ }^{31,32}$ J. M. Antelis, ${ }^{33}$ S. Antier, ${ }^{34}$ S. Appert, ${ }^{1}$ Koji Arai, ${ }^{1}$ Koya Arai, ${ }^{35}$ Y. Arai, ${ }^{35}$ S. Araki, ${ }^{36}$ A. Araya, ${ }^{37}$ M. C. Araya, ${ }^{1}$ J. S. Areeda, ${ }^{38}$ M. Arène, ${ }^{34}$ N. Aritomi,,${ }^{25}$ N. Arnaud,,${ }^{39,40}$ S. M. Aronson, ${ }^{2}$ K. G. Arun, ${ }^{41}$ H. Asada, ${ }^{42}$ Y. Asali, ${ }^{43}$ G. Ashton, ${ }^{5}$ Y. Aso, ${ }^{44,45}$ M. Assiduo, ${ }^{46}, 47$ S. M. Aston, ${ }^{6}$ P. Astone, ${ }^{48}$ F. Aubin, ${ }^{28}$ C. Austin, ${ }^{2}$ S. Babak, ${ }^{34}$ F. Badaracco, ${ }^{49}$ M. K. M. Bader, ${ }^{50}$ C. Badger, ${ }^{51}$ S. Bae, ${ }^{52}$ Y. Bae, ${ }^{53}$ A. M. Baer, ${ }^{54}$ S. Bagnasco, ${ }^{22}$ Y. Bat, ${ }^{1}$ L. Baiotti, ${ }^{55}$ J. Baird,,${ }^{34}$ R. Bajpai, ${ }^{56}$ M. Ball,,${ }^{57}$ G. Ballardin, ${ }^{40}$ S. W. Ballmer, ${ }^{58}$ A. Balsamo, ${ }^{54}$ G. Baltus, ${ }^{59}$ S. Banagiri, ${ }^{60}$ D. Bankar,,${ }^{11}$ J. C. Barayoga, ${ }^{1}$ C. Barbieri, ${ }^{61,62,63}$ B. C. Barish, ${ }^{1}$ D. Barker,,${ }^{64}$ P. Barneo,,${ }^{27}$ F. Barone,,${ }^{65,4}$ B. Barr,,${ }^{66}$ L. Barsotti, ${ }^{67}$ M. Barsuglia,,${ }^{34}$ D. Barta, ${ }^{68}$
J. Bartlett, ${ }^{64}$ M. A. Barton, ${ }^{66,20}$ I. Bartos, ${ }^{69}$ R. Bassiri, ${ }^{70}$ A. Basti, ${ }^{71,18}$ M. Bawaj, ${ }^{72,73}$ J. C. Bayley, ${ }^{66}$ A. C. Baylor, ${ }^{7}$ M. Bazzan, ${ }^{74,75}$ B. Bécsy, ${ }^{76}$ V. M. Bedakihale, ${ }^{77}$ M. Bejger, ${ }^{78}$ I. Belahcene, ${ }^{39}$ V. Benedetto, ${ }^{79}$ D. Beniwal, ${ }^{80}$ T. F. Bennett, ${ }^{81}$ J. D. Bentley, ${ }^{14}$ M. BenYala, ${ }^{30}$ F. Bergamin, ${ }^{9,10}$ B. K. Berger, ${ }^{70}$ S. Bernuzzi, ${ }^{13}$ C. P. L. Berry, ${ }^{15,66}$ D. Bersanetti, ${ }^{82}$ A. Bertolini, ${ }^{50}$ J. Betzwieser, ${ }^{6}$ D. Beveridge, ${ }^{83}$ R. Bhandare, ${ }^{84}$ U. Bhardwaj, ${ }^{85,50}$ D. Bhattacharjee, ${ }^{86}$ S. Bhaumik, ${ }^{69}$ I. A. Bilenko,,${ }^{87}$ G. BillingSley, ${ }^{1}$ S. Bini, ${ }^{88,89}$ R. Birney, ${ }^{90}$ O. Birnholtz, ${ }^{91}$ S. Biscans, ${ }^{1,67}$ M. Bischi, ${ }^{46,47}$ S. Biscoveanu, ${ }^{67}$ A. Bisht,,${ }^{9,10}$ B. Biswas, ${ }^{11}$ M. Bitossi, ${ }^{40,18}$ M.-A. Bizouard, ${ }^{92}$ J. K. Blackburn, ${ }^{1}$ C. D. Blair, ${ }^{83,6}$ D. G. Blair, ${ }^{83}$ R. M. Blair, ${ }^{64}$ F. Bobba,,${ }^{93,94}$ N. Bode,,${ }^{9,10}$ M. Boer,,92 G. Bogaert,,${ }^{92}$ M. Boldrini, ${ }^{95,48}$ L. D. Bonavena, ${ }^{74}$ F. Bondu,${ }^{96}$ E. Bonilla, ${ }^{70}$ R. Bonnand, ${ }^{28}$ P. Booker,,${ }^{9,10}$ B. A. Boom,${ }^{50}$ R. Bork, ${ }^{1}$ V. Boschi, ${ }^{18}$ N. Bose, ${ }^{97}$ S. Bose, ${ }^{11}$ V. Bossilkov, ${ }^{18}$ V. Boudart, ${ }^{59}$ Y. Bouffanais, ${ }^{74,75}$ A. Boumerdassi, ${ }^{17}$ A. Bozzi, ${ }^{40}$ C. Bradaschia, ${ }^{18}$ P. R. Brady, ${ }^{7}$ A. Bramley, ${ }^{6}$ A. Branch, ${ }^{6}$ M. Branchesi, ${ }^{29,98}$ J. E. Brau, ${ }^{57}$ M. Breschi, ${ }^{13}$ T. Briant, ${ }^{99}$ J. H. Briggs,,${ }^{66}$ A. Brillet, ${ }^{92}$ M. Brinkmann, ${ }^{9,10}$ P. Brockill, ${ }^{7}$ A. F. Brooks, ${ }^{1}$ J. Brooks, ${ }^{40}$ D. D. Brown, ${ }^{80}$ S. Brunett, ${ }^{1}$ G. Bruno, ${ }^{49}$ R. Bruntz, ${ }^{54}$ J. Bryant, ${ }^{14}$ J. Buchanan, ${ }^{54}$ T. Bulik, ${ }^{100}$ H. J. Bulten ${ }^{50}$ A. Buonanno, ${ }^{101,102}$ R. Buscicchio, ${ }^{14}$ D. Buskulic, ${ }^{28}$ C. Buy, ${ }^{103}$ R. L. Byer, ${ }^{70}$ L. Cadonati, ${ }^{104}$ G. Cagnoli, ${ }^{24}$ C. Cahillane, ${ }^{64}$ J. Calderón Bustillo, ${ }^{105,106}$ J. D. Callaghan, ${ }^{66}$ T. A. Callister,,${ }^{107,108}$ E. Calloni, ${ }^{23,4}$ J. Cameron, ${ }^{83}$ J. B. Camp, ${ }^{109}$ M. Canepa, ${ }^{110,82}$ S. Canevarolo, ${ }^{111}$ M. Cannavacciuolo, ${ }^{93}$ K. C. Cannon ${ }^{26}$ H. CaO ${ }^{80}$ Z. CaO, ${ }^{112}$ E. Capocasa, ${ }^{20}$ E. Capote, ${ }^{58}$ G. Carapella, ${ }^{93,94}$ F. Carbognani, ${ }^{40}$ J. B. Carlin, ${ }^{113}$ M. F. Carney, ${ }^{15}$ M. Carpinelli, ${ }^{114,115,40}$ G. Carrillo, ${ }^{57}$ G. Carullo, ${ }^{71,18}$ T. L. Carver, ${ }^{17}$ J. Casanueva Diaz, ${ }^{40}$ C. Casentini, ${ }^{116,117}$ G. Castaldi, ${ }^{118}$ S. Caudill, ${ }^{50,111}$ M. Cavaglià, ${ }^{86}$ F. Cavalier, ${ }^{39}$ R. Cavalieri, ${ }^{40} \mathrm{M}$. Ceasar, ${ }^{119}$ G. Cella, ${ }^{18}$ P. Cerdá-Durán, ${ }^{120}$ E. Cesarini, ${ }^{117}$ W. Chaibi, ${ }^{92}$ K. Chakravarti, ${ }^{11}$ S. Chalathadka Subrahmanya, ${ }^{121}$ E. Champion, ${ }^{122}$ C.-H. Chan, ${ }^{123}$ C. Chan, ${ }^{26}$ C. L. Chan, ${ }^{106}$ K. Chan, ${ }^{106}$ M. Chan, ${ }^{124}$ K. Chandra, ${ }^{97}$ P. Chanial, ${ }^{40}$ S. Chao, ${ }^{123}$ P. Charlton,,${ }^{125}$ E. A. Chase,,${ }^{15}$ E. Chassande-Mottin, ${ }^{34}$ C. Chatterjee, ${ }^{83}$ Debarati Chatterjee, ${ }^{11}$ Deep Chatterjee, ${ }^{7}$ M. Chaturvedi, ${ }^{84}$ S. Chaty, ${ }^{34}$ C. Chen, ${ }^{126,127}$ H. Y. Chen, ${ }^{67}$ J. Chen, ${ }^{123}$ K. Chen,,${ }^{128}$ X. Chen, ${ }^{83}$ Y.-B. Chen,${ }^{129}$ Y.-R. Chen, ${ }^{130}$ Z. Chen, ${ }^{17}$ H. Cheng, ${ }^{69}$ C. K. Cheong, ${ }^{106}$ H. Y. Cheung, ${ }^{106}$ H. Y. Chia, ${ }^{69}$ F. Chiadini, ${ }^{131,94}$ C-Y. Chiang, ${ }^{132}$ G. Chiarini, ${ }^{75}$ R. Chierici, ${ }^{133}$ A. Chincarini, ${ }^{82}$ M. L. Chiofalo, ${ }^{71,18}$ A. Chiummo, ${ }^{40}$ G. Cho, ${ }^{134}$ H. S. Cho, ${ }^{135}$ R. K. Choudhary, ${ }^{83}$ S. Choudhary, ${ }^{11}$ N. Christensen, ${ }^{92}$ H. Chu, ${ }^{128}$ Q. Chu,,83 Y-K. Chu, ${ }^{132}$ S. Chua, ${ }^{8}$ K. W. Chung, ${ }^{51}$ G. Ciani, ${ }^{74,75}$ P. Ciecielag, ${ }^{78}$ M. Cieślar, ${ }^{78}$ M. Cifaldi, ${ }^{116,117}$ A. A. Ciobanu, ${ }^{80}$ R. Ciolfi, ${ }^{136,75}$ F. Cipriano, ${ }^{92}$ A. Cirone, ${ }^{110,82}$ F. Clara, ${ }^{64}$ E. N. Clark, ${ }^{137}$ J. A. Clark, ${ }^{1,104}$ L. Clarke, ${ }^{138}$ P. Clearwater, ${ }^{139}$ S. Clesse, ${ }^{140}$ F. Cleva, ${ }^{92}$ E. Coccia, ${ }^{29,98}$ E. Codazzo, ${ }^{29}$ P.-F. Cohadon, ${ }^{99}$ D. E. Cohen ${ }^{39}$ L. Cohen, ${ }^{2}$ M. Colleoni, ${ }^{141}$ C. G. Collette, ${ }^{142}$ A. Colombo, ${ }^{61}$ M. Colpi,,${ }^{61,62}$ C. M. Compton, ${ }^{64}$ M. Constancio Jr., ${ }^{16}$ L. Conti, ${ }^{75}$ S. J. Cooper, ${ }^{14}$ P. Corban, ${ }^{6}$ T. R. Corbitt, ${ }^{2}$ I. Cordero-Carrión, ${ }^{143}$ S. Corezzi, ${ }^{73,72}$ K. R. Corley ${ }^{43}$ N. Cornish, ${ }^{76}$ D. Corre, ${ }^{39}$ A. Corsi, ${ }^{144}$ S. Cortese, ${ }^{40}$ C. A. Costa, ${ }^{16}$ R. Cotesta, ${ }^{102}$ M. W. Coughlin, ${ }^{60}$ J.-P. Coulon,${ }^{92}$ S. T. Countryman, ${ }^{43}$ B. Cousins, ${ }^{145}$ P. Couvares, ${ }^{1}$ D. M. Coward, ${ }^{83}$ M. J. Cowart, ${ }^{6}$ D. C. Coyne, ${ }^{1}$ R. Coyne, ${ }^{146}$ J. D. E. Creighton, ${ }^{7}$ T. D. Creighton, ${ }^{147}$ A. W. Criswell, ${ }^{60}$ M. Croquette, ${ }^{99}$ S. G. Crowder, ${ }^{148}$ J. R. Cudell, ${ }^{59}$ T. J. Cullen, ${ }^{2}$ A. Cumming, ${ }^{66}$ R. Cummings, ${ }^{66}$ L. Cunningham, ${ }^{66}$ E. Cuoco, ${ }^{40,149,18}$ M. Curyło, ${ }^{100}$ P. Dabadie, ${ }^{24}$ T. Dal Canton, ${ }^{39}$ S. Dall'Osso, ${ }^{29}$ G. Dálya, ${ }^{150}$ A. Dana, ${ }^{70}$ L. M. DaneshgaranBajastani, ${ }^{81}$ B. D'Angelo, ${ }^{110,82}$ S. Danilishin, ${ }^{151,50}$ S. D'Antonio, ${ }^{117}$ K. Danzmann, ${ }^{9,10}$ C. Darsow-Fromm, ${ }^{121}$ A. DasGupta, ${ }^{77}$ L. E. H. Datrier, ${ }^{66}$ S. Datta, ${ }^{11}$ V. Dattilo, ${ }^{40}$ I. Dave, ${ }^{84}$ M. Davier, ${ }^{39}$ G. S. Davies, ${ }^{152}$ D. Davis, ${ }^{1}$ M. C. Davis,,${ }^{119}$ E. J. Daw, ${ }^{153}$ R. Dean, ${ }^{119}$ D. DeBra, ${ }^{70}$ M. Deenadayalan, ${ }^{11}$ J. Degallaix, ${ }^{154}$ M. De Laurentis, ${ }^{23,4}$ S. Deléglise, ${ }^{99}$ V. Del Favero, ${ }^{122}$ F. De Lillo, ${ }^{49}$ N. De Lillo, ${ }^{66}$ W. Del Pozzo, ${ }^{71,18}$ L. M. DeMarchi, ${ }^{15}$ F. De Matteis, ${ }^{116,117}$
V. D'Emilio, ${ }^{17}$ N. Demos, ${ }^{67}$ T. Dent, ${ }^{105}$ A. Depasse, ${ }^{49}$ R. De Pietri, ${ }^{155,156}$ R. De Rosa, ${ }^{23,4}$ C. De Rossi, ${ }^{40}$ R. DeSalvo, ${ }^{118}$ R. De Simone, ${ }^{131}$ S. Dhurandhar, ${ }^{11}$ M. C. Díaz, ${ }^{147}$ M. Diaz-Ortiz Jr., ${ }^{69}$ N. A. Didio, ${ }^{58}$ T. Dietrich, ${ }^{102,50}$ L. Di Fiore, ${ }^{4}$ C. Di Fronzo, ${ }^{14}$ C. Di Giorgio,,${ }^{93,94}$ F. Di Giovanni, ${ }^{120}$ M. Di Giovanni, ${ }^{29}$ T. Di Girolamo, ${ }^{23,4}$ A. Di Lieto,,71,18 B. Ding, ${ }^{142}$ S. Di Pace, ${ }^{95,48}$ I. Di Palma, ${ }^{95,48}$ F. Di Renzo, ${ }^{71,18}$ A. K. Divakarla, ${ }^{69}$ A. Dmitriev, ${ }^{14}$ Z. Doctor, ${ }^{57}$ L. D'Onofrio,,${ }^{23,4}$ F. Donovan, ${ }^{67}$ K. L. Dooley, ${ }^{17}$ S. Doravari, ${ }^{11}$ I. Dorrington, ${ }^{17}$ M. Drago, ${ }^{95,48}$ J. C. Driggers,,${ }^{64}$ Y. Drori, ${ }^{1}$ J.-G. Ducoin, ${ }^{39}$ P. Dupej, ${ }^{66}$ O. Durante, ${ }^{93,94}$ D. D'Urso, ${ }^{114,115}$ P.-A. Duverne, ${ }^{39}$ S. E. Dwyer, ${ }^{64}$ C. Eassa, ${ }^{64}$ P. J. Easter, ${ }^{5}$ M. Ebersold, ${ }^{157}$ T. Eckhardt, ${ }^{121}$ G. Eddolls, ${ }^{66}$ B. Edelman, ${ }^{57}$ T. B. Edo, ${ }^{1}$ O. Edy ${ }^{152}$ A. Effler, ${ }^{6}$ S. Eguchi, ${ }^{124}$ J. Eichholz, ${ }^{8}$ S. S. Eikenberry, ${ }^{69}$ M. Eisenmann,,${ }^{28}$ R. A. Eisenstein, ${ }^{67}$ A. Ejlli, ${ }^{17}$ E. Engelby, ${ }^{38}$ Y. Enomoto, ${ }^{25}$ L. Errico, ${ }^{23,4}$ R. C. Essick, ${ }^{158}$ H. Estellés,,${ }^{141}$ D. Estevez, ${ }^{159}$ Z. Etienne, ${ }^{160}$ T. Etzel, ${ }^{1}$ M. Evans,,${ }^{67}$ T. M. Evans, ${ }^{6}$ B. E. Ebing, ${ }^{145}$ V. Fafone, ${ }^{116,117,29}$ H. Fair, ${ }^{58}$ S. Fairhurst, ${ }^{17}$ A. M. Farah, ${ }^{158}$ S. Farinon, ${ }^{82}$ B. Farr, ${ }^{57}$ W. M. Farr, ${ }^{107,} 108$ N. W. Farrow, ${ }^{5}$ E. J. Fauchon-Jones, ${ }^{17}$ G. Favaro, ${ }^{74}$ M. Favata, ${ }^{161}$ M. Fays, ${ }^{59}$ M. Fazio, ${ }^{162}$ J. Feicht, ${ }^{1}$ M. M. Fejer, ${ }^{70}$ E. Fenyvesi, ${ }^{68,163}$ D. L. Ferguson, ${ }^{164}$ A. Fernandez-Galiana, ${ }^{67}$ I. Ferrante, ${ }^{71,18} 18$ T. A. Ferreira, ${ }^{16}$ F. Fidecaro,,71,18 P. Figura, ${ }^{100}$ I. Fiori, ${ }^{40}$ M. Fishbach, ${ }^{15}$ R. P. Fisher,,${ }^{54}$ R. Fittipaldi, ${ }^{165,}{ }^{94}$ V. Fiumara, ${ }^{166,94}$
R. Flaminio, ${ }^{28,20}$ E. Floden, ${ }^{60}$ H. Fong, ${ }^{26}$ J. A. Font, ${ }^{120,167}$ B. Fornal,,${ }^{168}$ P. W. F. Forsyth, ${ }^{8}$ A. Franke, ${ }^{121}$ S. Frasca, ${ }^{95,48}$ F. Frasconi, ${ }^{18}$ C. Frederick, ${ }^{169}$ J. P. Freed, ${ }^{33}$ Z. Frei, ${ }^{150}$ A. Freise, ${ }^{170}$ R. Frey, ${ }^{57}$ P. Fritschel, ${ }^{67}$ V. V. Frolov, ${ }^{6}$ G. G. Fronzé, ${ }^{22}$ Y. Fujii, ${ }^{171}$ Y. Fujikawa, ${ }^{172}$ M. Fukunaga, ${ }^{35}$ M. Fukushima, ${ }^{21}$ P. Fulda, ${ }^{69}$ M. Fyffe, ${ }^{6}$ H. A. Gabbard, ${ }^{66}$ B. U. Gadre, ${ }^{102}$ J. R. Gair, ${ }^{102}$ J. Gais, ${ }^{106}$ S. Galaudage, ${ }^{5}$ R. Gamba, ${ }^{13}$ D. Ganapathy, ${ }^{67}$ A. Ganguly, ${ }^{19}$ D. Gao, ${ }^{173}$ S. G. Gaonkar, ${ }^{11}$ B. Garaventa, ${ }^{82,110}$ C. García-Núñez, ${ }^{90}$ C. García-Quirós,,${ }^{141}$ F. Garufi,,${ }^{23,4}$ B. Gateley,${ }^{64}$ S. Gaudio, ${ }^{33}$ V. Gayathri, ${ }^{69}$ G.-G. Ge, ${ }^{173}$ G. Gemme, ${ }^{82}$ A. Gennai, ${ }^{18}$ J. George, ${ }^{84}$ O. Gerberding, ${ }^{121}$ L. Gergely, ${ }^{174}$ P. Gewecke, ${ }^{121}$ S. Ghonge, ${ }^{104}$ Abhirup Ghosh, ${ }^{102}$ Archisman Ghosh, ${ }^{175}$ Shaon Ghosh, ${ }^{7,161}$ Shrobana Ghosh, ${ }^{17}$ B. Giacomazzo, ${ }^{61,62,63}$ L. Giacoppo, ${ }^{95,48}$ J. A. Giaime, ${ }^{2,6}$ K. D. Giardina, ${ }^{6}$ D. R. Gibson, ${ }^{90}$ C. Gier, ${ }^{30}$ M. Giesler, ${ }^{176}$ P. Giri, ${ }^{18,71}$ F. Gissi, ${ }^{79}$ J. Glanzer, ${ }^{2}$ A. E. Gleckl, ${ }^{38}$ P. Godwin, ${ }^{145}$ E. Goetz, ${ }^{177}$ R. Goetz, ${ }^{69}$ N. Gohlke, ${ }^{9,10}$ B. Goncharov, ${ }^{5},{ }^{29}$ G. González, ${ }^{2}$ A. Gopakumar, ${ }^{178}$ M. Gosselin, ${ }^{40}$ R. Gouaty, ${ }^{28}$ D. W. Gould, ${ }^{8}$ B. Grace, ${ }^{8}$ A. Grado, ${ }^{179,4}$ M. Granata, ${ }^{154}$ V. Granata, ${ }^{93}$ A. Grant, ${ }^{66}$ S. Gras,${ }^{67}$ P. Grassia, ${ }^{1}$ C. Gray, ${ }^{64}$ R. Gray, ${ }^{66}$ G. Greco, ${ }^{72}$ A. C. Green ${ }^{69}$ R. Green, ${ }^{17}$ A. M. Gretarsson, ${ }^{33}$ E. M. Gretarsson, ${ }^{33}$ D. Griffith, ${ }^{1}$ W. Griffiths, ${ }^{17}$ H. L. Griggs, ${ }^{104}$ G. Grignani, ${ }^{73,72}$ A. Grimaldi, ${ }^{88,89}$ S. J. Grimm,,${ }^{29,98}$ H. Grote, ${ }^{17}$ S. Grunewald,,${ }^{102}$ P. Gruning, ${ }^{39}$ D. Guerra, ${ }^{120}$ G. M. Guidi, ${ }^{46,47}$ A. R. Guimaraes, ${ }^{2}$ G. Guixé, ${ }^{27}$ H. K. Gulati, ${ }^{77}$ H.-K. Guo, ${ }^{168}$ Y. Guo, ${ }^{50}$ Anchal Gupta, ${ }^{1}$ Anuradha Gupta, ${ }^{180}$ P. Gupta,,${ }^{50,111}$ E. K. Gustafson, ${ }^{1}$ R. Gustafson, ${ }^{181}$ F. Guzman, ${ }^{182}$ S. Ha, ${ }^{183}$ L. Haegel, ${ }^{34}$ A. Hagiwara,,${ }^{35,184}$ S. Haino, ${ }^{132}$ O. Halim, ${ }^{32,185}$ E. D. Hall, ${ }^{67}$ E. Z. Hamilton, ${ }^{157}$ G. Hammond, ${ }^{66}$ W.-B. Han, ${ }^{186}$ M. Haney, ${ }^{157}$ J. Hanks, ${ }^{64}$ C. Hanna, ${ }^{145}$ M. D. Hannam, ${ }^{17}$ O. Hannuksela, ${ }^{111,50}$ H. Hansen, ${ }^{64}$ T. J. Hansen, ${ }^{33}$ J. Hanson, ${ }^{6}$ T. Harder, ${ }^{92}$ T. Hardwick, ${ }^{2}$ K. Haris, ${ }^{50,111}$ J. Harms, ${ }^{29,98}$ G. M. Harry, ${ }^{187}$ I. W. Harry, ${ }^{152}$ D. Hartwig, ${ }^{121}$ K. Hasegawa, ${ }^{35}$ B. Haskell, ${ }^{78}$ R. K. Hasskew, ${ }^{6}$ C.-J. Haster, ${ }^{67}$ K. Hattori, ${ }^{188}$ K. Haughian, ${ }^{66}$ H. Hayakawa, ${ }^{189}$ K. Hayama, ${ }^{124}$ F. J. Hayes, ${ }^{66}$ J. Healy, ${ }^{122}$ A. Heidmann, ${ }^{99}$ A. Heidt, ${ }^{9,10}$ M. C. Heintze, ${ }^{6}$ J. Heinze, ${ }^{9,10}$ J. Heinzel, ${ }^{190}$ H. Heitmann, ${ }^{92}$ F. Hellman, ${ }^{191}$ P. Hello, ${ }^{39}$ A. F. Helmling-Cornell,,${ }^{57}$ G. Hemming, ${ }^{40}$ M. Hendry, ${ }^{66}$ I. S. Heng, ${ }^{66}$ E. Hennes, ${ }^{50}$ J. Hennig, ${ }^{192}$ M. H. Hennig, ${ }^{192}$ A. G. Hernandez, ${ }^{81}$ F. Hernandez Vivanco, ${ }^{5}$ M. Heurs, ${ }^{9,10}$ S. Hild, ${ }^{151,50}$ P. Hill, ${ }^{30}$ Y. Himemoto, ${ }^{193}$ A. S. Hines, ${ }^{182}$ Y. Hiranuma, ${ }^{194}$ N. Hirata, ${ }^{20}$ E. Hirose, ${ }^{35}$ S. Hochheim, ${ }^{9,10}$ D. Hofman, ${ }^{154}$ J. N. Hohmann, ${ }^{121}$ D. G. Holcomb, ${ }^{119}$ N. A. Holland, ${ }^{8}$ I. J. Hollows, ${ }^{153}$ Z. J. Holmes,,${ }^{80}$ K. Holt, ${ }^{6}$ D. E. Holz, ${ }^{158}$ Z. Hong, ${ }^{195}$ P. Hopkins, ${ }^{17}$ J. Hough, ${ }^{66}$ S. Hourihane, ${ }^{129}$ E. J. Howell, ${ }^{83}$ C. G. Hoy, ${ }^{17}$ D. Hoyland, ${ }^{14}$ A. Hreibi, ${ }^{9,10}$ B-H. Hsieh, ${ }^{35}$ Y. Hsu, ${ }^{123}$ G-Z. Huang, ${ }^{195}$ H-Y. Huang, ${ }^{132}$ P. Huang, ${ }^{173}$ Y-C. Huang, ${ }^{130}$ Y.-J. Huang, ${ }^{132}$ Y. Huang, ${ }^{67}$ M. T. Hübner, ${ }^{5}$ A. D. Huddart, ${ }^{138}$ B. Hughey, ${ }^{33}$ D. C. Y. Hui, ${ }^{196}$ V. Hui, ${ }^{28}$ S. Husa, ${ }^{141}$
S. H. Huttner, ${ }^{66}$ R. Huxford, ${ }^{145}$ T. Huynh-Dinh, ${ }^{6}$ S. Ide, ${ }^{197}$ B. Idzkowski, ${ }^{100}$ A. Iess, ${ }^{116,117}$ B. Ikenoue, ${ }^{21}$ S. Imam, ${ }^{195}$ K. Inayoshi, ${ }^{198} \mathrm{C}$. Ingram, ${ }^{80}$ Y. Inoue,,${ }^{128} \mathrm{~K}$. Ioka, ${ }^{199} \mathrm{M}$. Isi, ${ }^{67} \mathrm{~K}$. Isleif, ${ }^{121} \mathrm{~K}$. Ito, ${ }^{200}$ Y. Itoh, ${ }^{201, ~ 202} \mathrm{~B}$. R. Iyer, ${ }^{19}$ K. Izumi, ${ }^{203}$ V. JaberianHamedan, ${ }^{83}$ T. Jacqmin, ${ }^{99}$ S. J. Jadhav, ${ }^{204}$ S. P. Jadhav, ${ }^{11}$ A. L. James, ${ }^{17}$ A. Z. Jan, ${ }^{122}$ K. Jani, ${ }^{205}$ J. Janquart, ${ }^{111,50}$ K. Janssens, ${ }^{206,92}$ N. N. Janthalur, ${ }^{204}$ P. Jaranowski, ${ }^{207}$ D. Jariwala, ${ }^{69}$ R. Jaume, ${ }^{141}$ A. C. Jenkins, ${ }^{51}$ K. Jenner, ${ }^{80}$ C. Jeon, ${ }^{208}$ M. Jeunon, ${ }^{60}$ W. Jia, ${ }^{67}$ H.-B. Jin, ${ }^{209,} 210$ G. R. Johns, ${ }^{54}$ A. W. Jones, ${ }^{83}$ D. I. Jones,,${ }^{211}$ J. D. Jones,,${ }^{64}$ P. Jones, ${ }^{14}$ R. Jones, ${ }^{66}$ R. J. G. Jonker, ${ }^{50}$ L. Ju, ${ }^{83}$ P. Jung,,${ }^{53}$ K. Jung, ${ }^{183}$
J. Junker, ${ }^{9,10}$ V. Juste, ${ }^{159}$ K. Kaihotsu, ${ }^{200}$ T. Kajita, ${ }^{212}$ M. Kakizaki, ${ }^{188}$ C. V. Kalaghatgi, ${ }^{17,111}$ V. Kalogera, ${ }^{15}$ B. Kamai, ${ }^{1}$ M. Kamizumi, ${ }^{189}$ N. Kanda, ${ }^{201,202}$ S. Kandhasamy, ${ }^{11}$ G. Kang, ${ }^{213}$ J. B. Kanner, ${ }^{1}$ Y. Kao, ${ }^{123}$ S. J. Kapadia, ${ }^{19}$ D. P. Kapasi, ${ }^{8}$ S. Karat, ${ }^{1}$ C. Karathanasis, ${ }^{214}$ S. Karki, ${ }^{86}$ R. Kashyap, ${ }^{145}$ M. Kasprzack, ${ }^{1}$ W. Kastaun, ${ }^{9,10}$ S. Katsanevas, ${ }^{40}$ E. Katsavounidis, ${ }^{67}$ W. Katzman, ${ }^{6}$ T. Kaur, ${ }^{83}$ K. Kawabe, ${ }^{64}$ K. Kawaguchi, ${ }^{35}$ N. Kawai, ${ }^{215}$ T. Kawasaki, ${ }^{25}$ F. Kéfélian, ${ }^{92}$ D. Keitel, ${ }^{141}$ J. S. Key, ${ }^{216}$ S. Khadka, ${ }^{70}$ F. Y. Khalile, ${ }^{87}$ S. Khan, ${ }^{17}$ E. A. Khazanov, ${ }^{217}$ N. Khetan, ${ }^{29,98}$ M. Khursheed, ${ }^{84}$ N. Kijbunchoo, ${ }^{8}$ C. Kim, ${ }^{218}$ J. C. Kim, ${ }^{219}$ J. Kim, ${ }^{220}$ K. Kim, ${ }^{221}$ W. S. Kim, ${ }^{222}$ Y.-M. Kim, ${ }^{223}$ C. Kimball, ${ }^{15}$ N. Kimura, ${ }^{184}$ M. Kinley-Hanlon, ${ }^{66}$ R. Kirchhoff, ${ }^{9}$, 10 J. S. Kissel, ${ }^{64}$ N. Kita, ${ }^{25}$ H. Kitazawa, ${ }^{200}$ L. Kleybolte, ${ }^{121}$ S. Klimenko, ${ }^{69}$ A. M. Knee,,${ }^{177}$ T. D. Knowles, ${ }^{160}$ E. Knyazeve ${ }^{67}$ P. Koch, ${ }^{9,10}$ G. Koekoek, ${ }^{50,151}$ Y. Kojima, ${ }^{224}$ K. Kokeyama, ${ }^{225}$ S. Koley, ${ }^{29}$ P. Kolitsidou, ${ }^{17}$ M. Kolstein, ${ }^{214}$ K. Komori, ${ }^{67,25}$ V. Kondrashov, ${ }^{1}$ A. K. H. Kong, ${ }^{226}$ A. Kontos, ${ }^{227}$ N. Koper, ${ }^{9,10}$ M. Korobko, ${ }^{121}$ K. Kotake, ${ }^{124}$ M. Kovalam, ${ }^{83}$ D. B. Kozak, ${ }^{1}$ C. Kozakai, ${ }^{44}$ R. Kozu, ${ }^{189}$ V. Kringel,,${ }^{9,10}$ N. V. Krishnendu, ${ }^{9,10}$ A. Królak, ${ }^{228,} 229$ G. Kuehn, ${ }^{9,10}$ F. Kuei, ${ }^{123}$ P. Kuijer, ${ }^{50}$ A. Kumar, ${ }^{204}$ P. Kumar, ${ }^{176}$ Rahul Kumar, ${ }^{64}$ Rakesh Kumar, ${ }^{77}$ J. Kume, ${ }^{26}$
K. Kuns, ${ }^{67}$ C. Kuo, ${ }^{128}$ H-S. Kuo, ${ }^{195}$ Y. Kuromiya, ${ }^{200}$ S. Kuroyanagi, ${ }^{230,}{ }^{231}$ K. Kusayanagi, ${ }^{215}$ S. Kuwahara, ${ }^{26}$ K. Kwak,,${ }^{183}$ P. Lagabbe, ${ }^{28}$ D. Laghi, ${ }^{71,18}$ E. Lalande, ${ }^{232}$ T. L. Lam, ${ }^{106}$ A. Lamberts, ${ }^{92,233}$ M. Landry, ${ }^{64}$
B. B. Lane, ${ }^{67}$ R. N. Lang, ${ }^{67}$ J. Lange, ${ }^{164}$ B. Lantz, ${ }^{70}$ I. La Rosa, ${ }^{28}$ A. Lartaux-Vollard, ${ }^{39}$ P. D. Lasky, ${ }^{5}$ M. Laxen, ${ }^{6}$ A. Lazzarini, ${ }^{1}$ C. Lazzaro, ${ }^{74,75}$ P. Leaci, ${ }^{95,48}$ S. Leavey, ${ }^{9,10}$ Y. K. Lecoeuche, ${ }^{177}$ H. K. Lee, ${ }^{234}$ H. M. Lee, ${ }^{134}$ H. W. Lee, ${ }^{219}$ J. Lee, ${ }^{134}$ K. Lee, ${ }^{235}$ R. Lee, ${ }^{130}$ J. Lehmann,,${ }^{9,10}$ A. Lemaître, ${ }^{236}$ M. Leonardi, ${ }^{20}$ N. Leroy,,39 N. Letendre, ${ }^{28}$ C. Levesque, ${ }^{232}$ Y. Levin, ${ }^{5}$ J. N. Leviton, ${ }^{181}$ K. Leyde, ${ }^{34}$ A. K. Y. Li, ${ }^{1}$ B. Li, ${ }^{123}$ J. Li, ${ }^{15}$ K. L. Li, ${ }^{237}$ T. G. F. Li, ${ }^{106}$ X. Li, ${ }^{129}$ C-Y. Lin, ${ }^{238}$ F-K. Lin, ${ }^{132}$ F-L. Lin, ${ }^{195}$ H. L. Lin, ${ }^{128}$ L. C.-C. Lin, ${ }^{183}$ F. Linde, ${ }^{239}, 50$ S. D. Linker, ${ }^{81}$ J. N. Linley, ${ }^{66}$ T. B. Littenberg, ${ }^{240}$ G. C. Liu, ${ }^{126}$ J. Liu,,${ }^{9,10}$ K. Liu, ${ }^{123}$ X. Liu, ${ }^{7}$ F. Llamas,,${ }^{147}$ M. Llorens-Monteagudo, ${ }^{120}$ R. K. L. Lo, ${ }^{1}$ A. Lockwood, ${ }^{241}$ L. T. London, ${ }^{67}$ A. Longo, ${ }^{242,243}$ D. Lopez, ${ }^{157}$ M. Lopez Portilla, ${ }^{111}$ M. Lorenzini, ${ }^{116,117}$ V. Loriette, ${ }^{244}$ M. Lormand, ${ }^{6}$ G. Losurdo, ${ }^{18}$ T. P. Lott, ${ }^{104}$ J. D. Lough,,${ }^{9}{ }^{10}$ C. O. Lousto, ${ }^{122}$ G. Lovelace, ${ }^{38}$ J. F. Lucaccioni, ${ }^{169}$ H. Lück, ${ }^{9,10}$ D. Lumaca, ${ }^{116,117}$ A. P. Lundgren, ${ }^{152}$ L.-W. Luo, ${ }^{132}$ J. E. Lynam, ${ }^{54}$ R. Macas,,${ }^{152}$ M. MacInnis, ${ }^{67}$ D. M. Macleod, ${ }^{17}$ I. A. O. MacMillan, ${ }^{1}$ A. Macquet, ${ }^{92}$ I. Magaña Hernandez, ${ }^{7}$ C. Magazzù,${ }^{18}$ R. M. Magee, ${ }^{18}$ R. Maggiore, ${ }^{14}$ M. Magnozzi, ${ }^{82,110}$ S. Mahesh, ${ }^{160}$ E. Majorana,,${ }^{95,48}$ C. Makarem, ${ }^{1}$ I. Maksimovic,,${ }^{244}$ S. Maliakal, ${ }^{1}$ A. Malik, ${ }^{84}$ N. Man,${ }^{92}$ V. Mandic,,${ }^{60}$ V. Mangano, ${ }^{95,48}$ J. L. Mango, ${ }^{245}$ G. L. Mansell,,${ }^{64,67}$ M. Manske, ${ }^{7}$ M. Mantovani, ${ }^{40}$ M. Mapelli, ${ }^{74,75}$ F. Marchesoni, ${ }^{246,72,247}$ M. Marchio, ${ }^{20}$ F. Marion, ${ }^{28}$ Z. Mark, ${ }^{129}$ S. Márka, ${ }^{43}$ Z. Márka, ${ }^{43}$ C. Markakis, ${ }^{12}$ A. S. Markosyan,70 A. Markowitz, ${ }^{1}$ E. Maros, ${ }^{1}$ A. Marquina,,${ }^{143}$ S. Marsat, ${ }^{34}$ F. Martelli, ${ }^{46,47}$ I. W. Martin, ${ }^{66}$ R. M. Martin, ${ }^{161}$ M. Martinez, ${ }^{214}$ V. A. Martinez, ${ }^{69}$ V. Martinez, ${ }^{24}$ K. Martinovic, ${ }^{51}$ D. V. Martynov, ${ }^{14}$ E. J. Marx, ${ }^{67}$ H. Masalehdan ${ }^{121}$ K. Mason, ${ }^{67}$ E. Massera, ${ }^{153}$ A. Masserot, ${ }^{28}$ T. J. Massinger, ${ }^{67}$ M. Masso-Reid, ${ }^{66}$ S. Mastrogiovanni, ${ }^{34}$ A. Matas, ${ }^{102}$ M. Mateu-Lucena, ${ }^{141}$ F. Matichard, ${ }^{1,67}$ M. Matiushechkina, ${ }^{9,10}$ N. Mavalvala, ${ }^{67}$ J. J. McCann, ${ }^{83}$ R. McCarthy, ${ }^{64}$ D. E. McClelland, ${ }^{8}$ P. K. McClincy, ${ }^{145}$ S. McCormick, ${ }^{6}$ L. McCuller,,${ }^{67}$ G. I. McGhee, ${ }^{66}$ S. C. McGuire, ${ }^{248}$ C. McIsaac, ${ }^{152}$ J. McIver, ${ }^{177}$ T. McRae, ${ }^{8}$ S. T. McWilliams, ${ }^{160}$ D. Meacher, ${ }^{7}$ M. Mehmet,,${ }^{9,10}$ A. K. Mehta, ${ }^{102}$ Q. Meijer, ${ }^{111}$ A. Melatos,,${ }^{113}$
D. A. Melchor, ${ }^{38}$ G. Mendell,,${ }^{64}$ A. Menendez-Vazquez, ${ }^{214}$ C. S. Menon,,${ }^{112}$ R. A. Mercer, ${ }^{7}$ L. Mereni, ${ }^{154}$ K. Merfeld, ${ }^{57}$ E. L. Merilh, ${ }^{6}$ J. D. Merritt, ${ }^{57}$ M. Merzougui, ${ }^{92}$ S. Meshoov, ${ }^{1, *}$ C. Messenger, ${ }^{66}$ C. Messick, ${ }^{164}$ P. M. Meyers, ${ }^{113}$ F. Meylahn,,${ }^{9,10}$ A. Mhaske, ${ }^{11}$ A. Miani,,${ }^{88,89}$ H. Miao, ${ }^{14}$ I. Michaloliakos, ${ }^{69}$ C. Michel,,${ }^{154}$ Y. Michimura, ${ }^{25}$ H. Middleton, ${ }^{113}$ L. Milano, ${ }^{23}$ A. L. Miller, ${ }^{49}$ A. Miller, ${ }^{81}$ B. Miller, ${ }^{85,50}$ M. Millhouse, ${ }^{113}$ J. C. Mills, ${ }^{17}$ E. Milotti, ${ }^{185,32}$ O. Minazzoli, ${ }^{92,249}$ Y. Minenkov, ${ }^{117}$ N. Mio, ${ }^{250}$ Ll. M. Mir, ${ }^{214}$ M. Miravet-Tenés, ${ }^{120}$ C. Mishra,,${ }^{251}$ T. Mishra,,${ }^{69}$ T. Mistry, ${ }^{153}$ S. Mitra, ${ }^{11}$ V. P. Mitrofanov, ${ }^{87}$ G. Mitselmakher, ${ }^{69}$ R. Mittleman, ${ }^{67}$ O. Miyakawa, ${ }^{189}$ A. Miyamoto, ${ }^{201}$ Y. Miyazaki, ${ }^{25}$ K. Miyo, ${ }^{189}$ S. Miyoki, ${ }^{189}$ Geoffrey Mo, ${ }^{67}$ E. Moguel, ${ }^{169}$ K. Mogushi, ${ }^{86}$ S. R. P. Mohapatra, ${ }^{67}$ S. R. Mohite, ${ }^{7}$ I. Molina, ${ }^{38}$ M. Molina-Ruiz, ${ }^{191}$ M. Mondin, ${ }^{81}$ M. Montani, ${ }^{46,47}$ C. J. Moore, ${ }^{14}$ D. Moraru, ${ }^{64}$ F. Morawski, ${ }^{78}$ A. More, ${ }^{11}$ C. Moreno, ${ }^{33}$ G. Moreno, ${ }^{64}$ Y. Mori, ${ }^{200}$ S. Morisaki, ${ }^{7}$ Y. Moriwaki, ${ }^{188}$ B. Mours,,${ }^{159}$ C. M. Mow-Lowry, ${ }^{14,170}$ S. Mozzon, ${ }^{152}$ F. Muciaccia, ${ }^{95}, 48$ Arunava Mukherjee, ${ }^{252}$ D. Mukherjee, ${ }^{145}$ Soma Mukherjee, ${ }^{147}$ Subroto Mukherjee, ${ }^{77}$ Suvodip Mukherjee, ${ }^{85}$ N. Mukund,,${ }^{9,10}$ A. Mullavey, ${ }^{6}$ J. Munch, ${ }^{80}$ E. A. Muñiz, ${ }^{58}$ P. G. Murray, ${ }^{66}$ R. Musenich, ${ }^{82,110}$ S. Muusse, ${ }^{80}$ S. L. Nadji, ${ }^{9,10}$ K. Nagano, ${ }^{203}$ S. Nagano, ${ }^{253}$ A. Nagar,,${ }^{2,254}$ K. Nakamura, ${ }^{20}$ H. Nakano, ${ }^{255}$ M. Nakano, ${ }^{35}$ R. Nakashima, ${ }^{215}$ Y. Nakayama, ${ }^{200}$ V. Napolano, ${ }^{40}$ I. Nardecchia, ${ }^{116,117}$ T. Narikawa, ${ }^{35}$ L. Naticchioni, ${ }^{48}$ B. Nayak, ${ }^{81}$ R. K. Nayak, ${ }^{256}$ R. Negishi ${ }^{194}$ B. F. Nell, ${ }^{83}$ J. Neilson, ${ }^{79,94}$ G. Nelemans, ${ }^{257}$ T. J. N. Nelson, ${ }^{6}$ M. Nery, ${ }^{9,10}$ P. Neubauer, ${ }^{169}$ A. Neunzert, ${ }^{216}$ K. Y. NG, ${ }^{67}$ S. W. S. NG, ${ }^{80}$ C. Nguyen ${ }^{34}{ }^{34}$ P. Nguyen, ${ }^{57}$ T. Nguyen ${ }^{67}$ L. Nguyen Quynh, ${ }^{258}$ W.-T. Ni, ${ }^{209,173,130}$ S. A. Nichols, ${ }^{2}$ A. Nishizawa, ${ }^{26}$ S. Nissanke, ${ }^{85,50}$ E. Nitoglia, ${ }^{133}$ F. Nocera, ${ }^{40}$ M. Norman, ${ }^{17}$ C. North, ${ }^{17}$ S. Nozaki, ${ }^{188}$ L. K. Nuttall, ${ }^{152}$ J. Oberling,,${ }^{64}$ B. D. O’Brien, ${ }^{69}$ Y. Obuchi, ${ }^{21}$ J. O'Dell, ${ }^{138}$ E. Oelker,,${ }^{66}$ W. Ogaki, ${ }^{35}$ G. Oganesyan, ${ }^{29,98}$ J. J. Oh, ${ }^{222}$ K. Oh, ${ }^{196}$ S. H. Oh, ${ }^{222}$ M. Ohashi, ${ }^{189} \mathrm{~N}$. Ohishi, ${ }^{44} \mathrm{M}$. Оhкawa,,${ }^{172}$ F. Ohme, ${ }^{9,10}$ H. Оhta, ${ }^{26}$ M. A. Okada, ${ }^{16}$ Y. Okutani, ${ }^{197}$ K. Okutomi, ${ }^{189}$ C. Olivetto, ${ }^{40}$ K. Oohara,,${ }^{194}$ C. Ooi, ${ }^{25}$ R. Oram, ${ }^{6}$ B. O’Rellly, ${ }^{6}$ R. G. Ormiston, ${ }^{60}$ N. D. Ormsby, ${ }^{54}$ L. F. Ortega, ${ }^{69}$ R. O'Shaughnessy, ${ }^{122}$ E. O'Shea, ${ }^{176}$ S. Oshino, ${ }^{189}$ S. Ossokine, ${ }^{102}$ C. Osthelder, ${ }^{1}$ S. Otabe, ${ }^{215}$ D. J. Ottaway, ${ }^{80}$ H. Overmier, ${ }^{6}$ A. E. Pace,,${ }^{145}$ G. Pagano, ${ }^{71,18}$ M. A. Page, ${ }^{83}$ G. Pagliaroli,,${ }^{29,98}$ A. Pai ${ }^{9}{ }^{97}$ S. A. Pai, ${ }^{84}$ J. R. Palamos, ${ }^{57}$ O. Palashov, ${ }^{217}$ C. Palomba, ${ }^{48}$ H. Pan, ${ }^{123}$ K. Pan,,${ }^{130,226}$ P. K. Panda, ${ }^{204}$ H. Pang, ${ }^{128}$ P. T. H. Pang,,${ }^{50,111}$ C. Pankow,,15 F. Pannarale, ${ }^{95,48}$ B. C. Pant, ${ }^{84}$ F. H. Panther, ${ }^{83}$ F. Paoletti, ${ }^{18}$ A. Paoli, ${ }^{40}$ A. Paolone, ${ }^{48,259}$ A. Parisi, ${ }^{126}$ H. Park, ${ }^{7}$ J. Park, ${ }^{260}$ W. Parker, ${ }^{6,248}$ D. Pascucci, ${ }^{50}$ A. Pasqualetti, ${ }^{40}$ R. Passaquieti, ${ }^{71,18}$ D. Passuello, ${ }^{18}$ M. Patel, ${ }^{54}$ M. Pathak, ${ }^{80}$ B. Patricelli, ${ }^{40,18}$ A. S. Patron, ${ }^{2}$ S. Patrone, $, 95,48$ S. Paul,,${ }^{57}$ E. Payne, ${ }^{5}$ M. Pedraza, ${ }^{1}$ M. Pegoraro, ${ }^{75}$ A. Pele, ${ }^{6}$ F. E. Peña Arellano, ${ }^{189}$ S. Penn, ${ }^{261}$ A. Perego, ${ }^{88,89}$ A. Pereira, ${ }^{24}$ T. Pereira,,262 C. J. Perez, ${ }^{64}$ C. Périgois,,${ }^{28}$ C. C. Perkins, ${ }^{69}$ A. Perreca, ${ }^{88,89}$ S. Perriès, ${ }^{133}$ J. Petermann, ${ }^{121}$ D. Petterson, ${ }^{1}$ H. P. Pfeiffer, ${ }^{102}$ K. A. Pham, ${ }^{60}$ K. S. Phukon, ${ }^{50,239}$ O. J. Piccinni, ${ }^{48}$ M. Pichot, ${ }^{92}$ M. Piendibene, ${ }^{71,18}$ F. Piergiovanni, ${ }^{46,47}$ L. Pierini, ${ }^{95,48}$ V. Pierro, ${ }^{79,94}$ G. Pillant, ${ }^{40}$ M. Pillas, ${ }^{39}$ F. Pilo, ${ }^{18}$ L. Pinard, ${ }^{154}$ I. M. Pinto, ${ }^{79,94, ~} 263$ M. Pinto, ${ }^{40}$ B. J. Piotrzkowski, ${ }^{7}$ K. Piotrzkowski, ${ }^{49}$ M. Pirello, ${ }^{64}$ M. D. Pitkin, ${ }^{264}$ E. Placidi, ${ }^{95,48}$ L. Planas, ${ }^{141}$ W. Plastino,,${ }^{242,243}$ C. Pluchar,,${ }^{137}$ R. Pogaiani, ${ }^{71,18}$ E. Polini, ${ }^{28}$ D. Y. T. Pong, ${ }^{106}$ S. Ponrathnam, ${ }^{11}$ P. Popolizio, ${ }^{40}$ E. K. Porter, ${ }^{34}$ R. Poulton, ${ }^{40}$ J. Powell, ${ }^{139}$ M. Pracchia, ${ }^{28}$ T. Pradier, ${ }^{159}$ A. K. Prajapati, ${ }^{77}$ K. Prasai, ${ }^{70}$ R. Prasanna, ${ }^{204}$ G. Pratten, ${ }^{14}$ M. Principe, ${ }^{79}{ }^{7623,94}$ G. A. Prodi, ${ }^{265,89}$ L. Prokhorov, ${ }^{14}$ P. Prosposito, ${ }^{116,117}$ L. Prudenzi, ${ }^{102}$ A. Puecher, ${ }^{50,111}$ M. Punturo, ${ }^{72}$ F. Puosi,,${ }^{18,71}$ P. Puppo, ${ }^{48}$ M. Pürrer, ${ }^{102}$ H. Qi, ${ }^{17}$ V. Quetschke, ${ }^{147}$ R. Quitzow-James, ${ }^{86}$ F. J. Raab,,${ }^{64}$ G. Raaijmakers,,${ }^{85,50}$ H. Radkins, ${ }^{64}$ N. Radulesco, ${ }^{92}$ P. Raffai, ${ }^{150}$ S. X. Rail, ${ }^{232}$ S. Raja, ${ }^{84}$ C. Rajan, ${ }^{84}$ K. E. Ramirez, ${ }^{6}$ T. D. Ramirez, ${ }^{38}$ A. Ramos-Buades, ${ }^{102}$ J. Rana, ${ }^{145}$ P. Rapagnani,,${ }^{95,48}$ U. D. Rapol, ${ }^{266}$ A. Ray, ${ }^{7}$ V. Raymond, ${ }^{17}$ N. Raza, ${ }^{177}$ M. Razzano, ${ }^{71,18}$ J. Read, ${ }^{38}$ L. A. Rees, ${ }^{187}$ T. Regimbau, ${ }^{28}$ L. Rei, ${ }^{82}$ S. Reid, ${ }^{30}$ S. W. Reid, ${ }^{54}$ D. H. Reitze,,${ }^{1,69}$ P. Relton, ${ }^{17}$ A. Renzini, ${ }^{1}$ P. Rettegno, ${ }^{267,22}$ M. Rezac, ${ }^{38}$ F. Ricci, ${ }^{95,48}$
D. Richards, ${ }^{138}$ J. W. Richardson, ${ }^{1}$ L. Richardson, ${ }^{182}$ G. Riemenschneider, ${ }^{267,}{ }^{22}$ K. Riles,,${ }^{181}$ S. Rinaldi, ${ }^{18,71}$ K. Rink, ${ }^{177}$ M. Rizzo, ${ }^{15}$ N. A. Robertson, ${ }^{1,66}$ R. Robie, ${ }^{1}$ F. Robinet, ${ }^{39}$ A. Rocchi, ${ }^{17}$ S. Rodriguez, ${ }^{38}$ L. Rolland, ${ }^{28}$ J. G. Rollins, ${ }^{1}$ M. Romanelli, ${ }^{96}$ R. Romano,,${ }^{3,4}$ C. L. Romel,,${ }^{64}$ A. Romero-Rodríguez, ${ }^{214}$ I. M. Romero-Shaw, ${ }^{5}$ J. H. Romie, ${ }^{6}$ S. Ronchini,,${ }^{29,98}$ L. Rosa, ${ }^{4,23}$ C. A. Rose, ${ }^{7}$ D. Rosińska, ${ }^{100}$ M. P. Ross, ${ }^{241}$ S. Rowan, ${ }^{66}$ S. J. Rowlinson, ${ }^{14}$ S. Roy, ${ }^{111}$ Santosh Roy, ${ }^{11}$ Soumen Roy, ${ }^{268}$ D. Rozza, ${ }^{114,}{ }^{115}$ P. Ruggi, ${ }^{40}$ K. Ryan, ${ }^{64}$ S. Sachdev, ${ }^{145}$ T. Sadecki, ${ }^{64}$ J. Sadiq, ${ }^{105}$ N. Sago, ${ }^{269}$ S. Saito, ${ }^{21}$ Y. Saito, ${ }^{189}$ K. SakaI, ${ }^{270}$ Y. Sakai, ${ }^{194}$ M. Sakellariadou, ${ }^{51}$ Y. Sakuno, ${ }^{124}$ O. S. Salafia, ${ }^{63,62,61}$ L. Salconi, ${ }^{40}$ M. Saleem, ${ }^{60}$ F. Salemi, ${ }^{88,89}$ A. Samajdar, ${ }^{50,111}$ E. J. Sanchez, ${ }^{1}$ J. H. Sanchez, ${ }^{38}$ L. E. Sanchez, ${ }^{1}$ N. Sanchis-Gual, ${ }^{271}$ J. R. Sanders,,${ }^{272}$ A. Sanuy, ${ }^{27}$ T. R. Saravanan, ${ }^{11}$ N. Sarin, ${ }^{5}$ B. Sassolas, ${ }^{154}$ H. Satari, ${ }^{83}$ S. Sato, ${ }^{273}$ T. Sato, ${ }^{172}$ O. Sauter, ${ }^{69}$ R. L. Savage, ${ }^{64}$ T. Sawada, ${ }^{201}$ D. Sawant, ${ }^{97}$ H. L. Sawant, ${ }^{11}$ S. Sayah, ${ }^{154}$ D. Schaetzl, ${ }^{1}$ M. Scheel,,${ }^{129}$ J. Scheuer, ${ }^{15}$ M. Schiworski, ${ }^{80}$ P. Schmidt, ${ }^{14}$
S. Schmidt,,111 R. Schnabel,,${ }^{121}$ M. Schneewind, ${ }^{9,10}$ R. M. S. Schofield, ${ }^{57}$ A. SchÖnbeck, ${ }^{121}$ B. W. Schulte, ${ }^{9,10}$ B. F. Schutz, ${ }^{17,9,10}$ E. Schwartz, ${ }^{17}$ J. Scott, ${ }^{66}$ S. M. Scott, ${ }^{8}$ M. Seglar-Arroyo, ${ }^{28}$ T. Sekiguchi, ${ }^{26}$ Y. Sekiguchi, ${ }^{274}$
D. Sellers,,${ }^{6}$ A. S. Sengupta, ${ }^{268}$ D. Sentenac, ${ }^{40}$ E. G. Seo, ${ }^{106}$ V. Sequino, ${ }^{23,4}$ A. Sergeev, ${ }^{217}$ Y. Setyawati, ${ }^{111}$ T. Shaffer, ${ }^{64}$ M. S. Shahriar, ${ }^{15}$ B. Shams, ${ }^{168}$ L. Shao, ${ }^{198}$ A. Sharma, ${ }^{29,98}$ P. Sharma, ${ }^{84}$ P. Shawhan, ${ }^{101}$ N. S. Shcheblanov, ${ }^{236}$ S. Shibagaki, ${ }^{124}$ M. Shikauchi, ${ }^{26}$ R. Shimizu, ${ }^{21}$ T. Shimoda,,${ }^{25}$ K. Shimode, ${ }^{189}$ H. Shinkai, ${ }^{275}$
T. Shishido, ${ }^{45}$ A. Shoda, ${ }^{20}$ D. H. Shoemaker, ${ }^{67}$ D. M. Shoemaker, ${ }^{164}$ S. ShyamSundar, ${ }^{84}$ M. Sieniawska, ${ }^{100}$ D. SigG, ${ }^{64}$ L. P. Singer, ${ }^{109}$ D. Singh, ${ }^{145}$ N. Singh, ${ }^{100}$ A. Singha, ${ }^{151,50}$ A. M. Sintes, ${ }^{141}$ V. Sipala, ${ }^{144,115}$ V. Skliris, ${ }^{17}$ B. J. J. Slagmolen, ${ }^{8}$ T. J. Slaven-Blair, ${ }^{83}$ J. Smetana, ${ }^{14}$ J. R. Smith, ${ }^{38}$ R. J. E. Smith, ${ }^{5}$ J. Soldateschi, ${ }^{276,277,47}$ S. N. Somala, ${ }^{278}$ K. SomiYa, ${ }^{215}$ E. J. Son, ${ }^{222}$ K. Soni, ${ }^{11}$ S. Soni, ${ }^{2}$ V. Sordine, ${ }^{133}$ F. Sorrentino, ${ }^{82}$ N. Sorrentino, ${ }^{71,18}$ H. Sotani, ${ }^{279}$ R. Soulard, ${ }^{92}$ T. Souradeep, ${ }^{266,11}$ E. Sowell, ${ }^{144}$ V. Spagnuolo, ${ }^{151,50}$ A. P. Spencer, ${ }^{66}$ M. Spera, ${ }^{74,75}$
R. Srinivasan, ${ }^{92}$ A. K. Srivastava, ${ }^{77}$ V. Srivastava, ${ }^{58}$ K. Staats,,${ }^{15}$ C. Stachie, ${ }^{92}$ D. A. Steer, ${ }^{34}$
J. Steinlechner, ${ }^{151,50}$ S. Steinlechner, ${ }^{151,50}$ D. J. Stops, ${ }^{14}$ M. Stover, ${ }^{169}$ K. A. Strain, ${ }^{66}$ L. C. Strang, ${ }^{113}$ G. Stratta, ${ }^{280,47}$ A. Strunk, ${ }^{64}$ R. Sturani, ${ }^{262}$ A. L. Stuver, ${ }^{119}$ S. Sudhagar, ${ }^{11}$ V. Sudhir, ${ }^{67}$ R. Sugimoto, ${ }^{281,203}$ H. G. Suh, ${ }^{7}$ T. Z. Summerscales,,${ }^{282}$ H. Sun, ${ }^{83}$ L. Sun, ${ }^{8}$ S. Sunil, ${ }^{77}$ A. Sur, ${ }^{78}$ J. Suresh,,${ }^{26,35}$ P. J. Sutton, ${ }^{17}$ Takamasa Suzuki, ${ }^{172}$ Toshikazu Suzuki, ${ }^{35}$ B. L. Swinkels, ${ }^{50}$ M. J. Szczepańczyk, ${ }^{69}$ P. Szewczyk, ${ }^{100}$ M. Tacca, ${ }^{50}$ H. Tagoshi, ${ }^{35}$ S. C. Tait,,${ }^{66}$ H. Takahashi, ${ }^{283}$ R. Takahashi, ${ }^{20}$ A. Takamori, ${ }^{37}$ S. Takano, ${ }^{25}$ H. Takeda, ${ }^{25}$ M. Takeda, ${ }^{201}$ C. J. Talbot, ${ }^{30}$ C. Talbot, ${ }^{1}$ H. Tanaka, ${ }^{284}$ Kazuyuki Tanaka, ${ }^{201}$ Kenta Tanaka, ${ }^{284}$ Taiki Tanaka, ${ }^{35}$ Takahiro Tanaka, ${ }^{269}$ A. J. Tanasijczuk, ${ }^{49}$ S. Tanioka, ${ }^{20,45}$ D. B. Tanner, ${ }^{69}$ D. Tao, ${ }^{1}{ }^{1}$ L. Tao, ${ }^{69}$ E. N. Tapia San Martin, ${ }^{20}$ E. N. Tapia San Martín, ${ }^{50}$ C. Taranto, ${ }^{116}$ J. D. Tasson, ${ }^{190}$ S. Telada, ${ }^{285}$ R. Tenorio, ${ }^{141}$ J. E. Terhune,,119 L. Terkowski, ${ }^{121}$ M. P. Thirugnanasambandam, ${ }^{11}$ M. Thomas, ${ }^{6}$ P. Thomas, ${ }^{64}$ J. E. Thompson, ${ }^{17}$ S. R. Thondapu, ${ }^{84}$ K. A. Thorne, ${ }^{6}$ E. Thrane, ${ }^{5}$ Shubhanshu Tiwari, ${ }^{157}$ Srishti Tiwari, ${ }^{11}$ V. Tiwari, ${ }^{17}$ A. M. Toivonen, ${ }^{60}$ K. Toland, ${ }^{66}$ A. E. Tolley, ${ }^{152}$ T. Tomaru, ${ }^{20}$ Y. Tomigami, ${ }^{201}$ T. Tomura, ${ }^{189}$ M. Tonelli, ${ }^{71,18}$ A. Torres-Forné,,120 C. I. Torrie, ${ }^{1}$ I. Tosta e Melo,,${ }^{114,115}$ D. Töyrä, ${ }^{8}$ A. Trapananti, ${ }^{246,72}$ F. Travasso, ${ }^{72,} 246$ G. Traylor, ${ }^{6}$ M. Trevor, ${ }^{101}$ M. C. Tringali, ${ }^{40}$ A. Tripathee, ${ }^{181}$ L. Troiano, ${ }^{286,94}$ A. Trovato, ${ }^{34}$ L. Trozzo, $,{ }^{4}, 189$ R. J. Trudeau, ${ }^{1}$ D. S. Tsai, ${ }^{123}$ D. Tsai,,${ }^{123}$ K. W. Tsang, ${ }^{50,287,111}$ T. Tsang, ${ }^{288}$ J-S. Tsao,,${ }^{195}$ M. Tse, ${ }^{67}$ R. Tso, ${ }^{129}$ K. Tsubono, ${ }^{25}$ S. Tsuchida, ${ }^{201} \mathrm{~L}$. Tsukada, ${ }^{26}$ D. Tsuna, ${ }^{26} \mathrm{~T}$. Tsutsur, ${ }^{26} \mathrm{~T}$. Tsuzuki, ${ }^{21}$ K. Turbang, ${ }^{289}, 206$ M. Turconi,,92 D. Tuyenbayev, ${ }^{201}$ A. S. Ubhi, ${ }^{14}$ N. Uchikata, ${ }^{35}$ T. Uchiyama, ${ }^{189}$ R. P. Udall, ${ }^{1}{ }^{1}$ A. Ueda, ${ }^{184}$ T. Uehara, ${ }^{290,}{ }^{291}$ K. Ueno,,26 G. Ueshima, ${ }^{292}$ C. S. Unnikrishnan, ${ }^{178}$ F. Uraguchi, ${ }^{21}$ A. L. Urban, ${ }^{2}$ T. Ushiba, ${ }^{189}$ A. Utina,,${ }^{151,50}$ H. Vahlbruch, ${ }^{9,10}$ G. Vajente, ${ }^{1}$ A. Vajpeyi, ${ }^{5}$ G. Valdes, ${ }^{182}$ M. Valentini, ${ }^{88,89}$ V. Valsan, ${ }^{7}$ N. van Bakel, ${ }^{50}$ M. van Beuzekom, ${ }^{50}$ J. F. J. van den Brand, ${ }^{151,293,50}$ C. Van Den Broeck, ${ }^{111,50}$ D. C. Vander-Hyde, ${ }^{58}$ L. van der Schaff, ${ }^{50}$ J. V. van Heijningen, ${ }^{49}$ J. Vanosky, ${ }^{1}$ M. H. P. M. van Putten, ${ }^{294}$ N. van Remortel, ${ }^{206}$ M. Vardaro, ${ }^{239,50}$ A. F. Vargas, ${ }^{113}$ V. Varma,,${ }^{176}$ M. Vasúth, ${ }^{68}$ A. Vecchio, ${ }^{14}$ G. Vedovato, ${ }^{75}$
J. Veitch, ${ }^{66}$ P. J. Veitch, ${ }^{80}$ J. Venneberg, ${ }^{9,10}$ G. Venugopalan, ${ }^{1}$ D. Verkindt, ${ }^{28}$ P. Verma, ${ }^{229}$ Y. Verma, ${ }^{84}$ D. Veske, ${ }^{43}$ F. Vetrano, ${ }^{46}$ A. Viceré, ${ }^{46,47}$ S. Vidyant, ${ }^{58}$ A. D. Viets, ${ }^{245}$ A. Vijaykumar, ${ }^{19}$ V. Villa-Ortega, ${ }^{105}$ J.-Y. Vinet, ${ }^{92}$ A. Virtuoso, ${ }^{185,}{ }^{32}$ S. Vitale, ${ }^{67}$ T. Vo, ${ }^{58}$ H. Vocca, ${ }^{73,72}$ E. R. G. von Reis, ${ }^{64}$ J. S. A. von Wrangel,${ }^{9,10}$
C. Vorvick, ${ }^{64}$ S. P. Vyatchanin, ${ }^{87}$ L. E. Wade, ${ }^{169}$ M. Wade, ${ }^{169}$ K. J. Wagner, ${ }^{122}$ R. C. Walet,,${ }^{50}$ M. Walker, ${ }^{54}$ G. S. Wallace, ${ }^{30}$ L. Wallace, ${ }^{1}$ S. Walsh, ${ }^{7}$ J. Wang, ${ }^{173}$ J. Z. Wang,,${ }^{181}$ W. H. Wang, ${ }^{147}$ R. L. Ward, ${ }^{8}$ J. Warner, ${ }^{64}$ M. Was,,28 T. Washimi, ${ }^{20}$ N. Y. Washington, ${ }^{1}$ K. Watada, ${ }^{54}$ J. Watchi, ${ }^{142}$ B. Weaver, ${ }^{64}$ S. A. Webster, ${ }^{66}$
M. Weinert,,${ }^{9} 10$ A. J. Weinstein, ${ }^{1}$ R. Weiss, ${ }^{67}$ C. M. Weller, ${ }^{241}$ F. Wellmann, ${ }^{9,10}$ L. Wen, ${ }^{83}$ P. Wessels, ${ }^{9,10}$
K. Wette, ${ }^{8}$ J. T. Whelan, ${ }^{122}$ D. D. White, ${ }^{38}$ B. F. Whiting, ${ }^{69}$ C. Whittle, ${ }^{67}$ D. Wilken, ${ }^{9,10}$ D. Williams, ${ }^{66}$ M. J. Williams, ${ }^{66}$ A. R. Williamson, ${ }^{152}$ J. L. Willis, ${ }^{1}$ B. Willke, ${ }^{9,10}$ D. J. Wilson, ${ }^{137}$ W. Winkler, ${ }^{9,10}$ C. C. Wipf, ${ }^{1}$
T. Wlodarczyk, ${ }^{102}$ G. Woan, ${ }^{66}$ J. Woehler, ${ }^{9,10}$ J. K. Wofford, ${ }^{122}$ I. C. F. Wong, ${ }^{106}$ C. Wu, ${ }^{130}$ D. S. Wu, ${ }^{9,10}$ H. Wu, ${ }^{130}$ S. Wu, ${ }^{130}$ D. M. Wysocki, ${ }^{7}$ L. Xiao, ${ }^{1}$ W-R. Xu ${ }^{195}$ T. Yamada, ${ }^{284}$ H. Yamamoto, ${ }^{1}$ Kazuhiro Yamamoto, ${ }^{188}$ Kohei Yamamoto, ${ }^{284} \mathrm{~T}$. Yamamoto, ${ }^{189} \mathrm{~K}$. Yamashita, ${ }^{200} \mathrm{R}$. Yamazaki, ${ }^{197} \mathrm{~F}$. W. Yang, ${ }^{168}$ L. Yang, ${ }^{162}$ Y. Yang, ${ }^{295}$ Yang Yang, ${ }^{69}$ Z. Yang, ${ }^{60}$ M. J. Yap, ${ }^{8}$ D. W. Yeeles, ${ }^{17}$ A. B. Yelikar, ${ }^{122}$ M. Ying, ${ }^{123}$ K. Yokogawa, ${ }^{200}$
J. Yokoyama, ${ }^{26,25} \mathrm{~T}$. Yokozawa, ${ }^{189} \mathrm{~J}$. Yoo, ${ }^{176} \mathrm{~T}$. Yoshioka, ${ }^{200}$ Hang Yu,${ }^{129}$ Haocun Yu, ${ }^{67}$ H. Yuzurihara, ${ }^{35}$ A. Zadrożny, ${ }^{229}$ M. Zanolin, ${ }^{33}$ S. Zeidler, ${ }^{296}$ T. Zelenova, ${ }^{40}$ J.-P. Zendri, ${ }^{75}$ M. Zevin, ${ }^{158}$ M. Zhan, ${ }^{173}$ H. Zhang, ${ }^{195}$
J. Zhang, ${ }^{83}$ L. Zhang, ${ }^{1}$ T. Zhang, ${ }^{14}$ Y. Zhang, ${ }^{182}$ C. Zhao, ${ }^{83}$ G. Zhao, ${ }^{142}$ Y. Zhao, ${ }^{20}$ Yue Zhao, ${ }^{168}$ R. Zhou, ${ }^{191}$
Z. Zhou, ${ }^{15}$ X. J. Zhu, ${ }^{5}$ Z.-H. Zhu, ${ }^{112}$ A. B. Zimmerman, ${ }^{164}$ M. E. Zucker, ${ }^{1,67}$ J. Zweizig, ${ }^{1}$ M. Bhardwaj, ${ }^{297},{ }^{1998}$ P. J. Boyle, ${ }^{297,298}$ T. Cassanelli, ${ }^{299}, 300$ F. Dong, ${ }^{301}$ E. Fonseca, ${ }^{302,303}$ V. Kaspi, ${ }^{297}{ }^{299}$ C. Leung, $,{ }^{394}, 305$
K. W. Masul, ${ }^{304,305}$ B. W. Meyers, ${ }^{301}$ D. Michilli, ${ }^{304,305}$ C. NG, ${ }^{300}$ A. B. Pearlman, ${ }^{297,}$ 298, 306, 307, 308


```
            49 Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
                            { } ^ { 5 0 } \text { Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands}
            \mp@subsup{}{}{51}King's College London, University of London, London WC2R 2LS, United Kingdom
            52 Korea Institute of Science and Technology Information (KISTI), Yuseong-gu, Daejeon 34141, Korea
            { } ^ { 5 3 } \text { National Institute for Mathematical Sciences, Yuseong-gu, Daejeon 34047, Korea}
                    \mp@subsup{}{}{54}\mathrm{ Christopher Newport University, Newport News, VA 23606, USA}
                            55 International College, Osaka University, Toyonaka City, Osaka 560-0043, Japan
{ } ^ { 5 6 } \text { School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI),Tsukuba City, Ibaraki}
                                    305-0801, Japan
                            57 University of Oregon, Eugene, OR 97403, USA
                            58 Syracuse University, Syracuse, NY 13244, USA
                            59 Université de Liège, B-4000 Liège, Belgium
                            { } ^ { 6 0 } \text { University of Minnesota, Minneapolis, MN 55455, USA}
            { } ^ { 6 1 } \text { Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy}
                    62 INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
            *3 INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy
                    * LIGO Hanford Observatory, Richland, WA 99352, USA
{ } ^ { 6 5 } \text { Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, I-84081 Baronissi, Salerno,}
                                    Italy
                            66SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
            \mp@subsup{}{}{67}\mathrm{ LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA}
            { } ^ { 6 8 } \text { Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary}
                    { } ^ { 6 9 } \text { University of Florida, Gainesville, FL 32611, USA}
                            70}\mathrm{ Stanford University, Stanford, CA 94305, USA
                                    71 Università di Pisa,I-56127 Pisa, Italy
                            72 INFN, Sezione di Perugia, I-06123 Perugia, Italy
                            73 Università di Perugia, I-06123 Perugia,Italy
            74 Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
                    { } ^ { 7 5 } \text { INFN, Sezione di Padova,I-35131 Padova, Italy}
                    { } ^ { 7 6 } \text { Montana State University, Bozeman, MT 59717, USA}
                            77 Institute for Plasma Research, Bhat, Gandhinagar 382428, India
            { } ^ { 7 8 } \text { Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland}
                    { } ^ { 7 9 } \text { Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy}
                    80 OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia
            { } ^ { 8 1 } \text { California State University, Los Angeles, } 5 1 5 1 \text { State University Dr, Los Angeles, CA 90032, USA}
                    82 INFN, Sezione di Genova, I-16146 Genova, Italy
            83 OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
                    *4 RRCAT, Indore, Madhya Pradesh 452013, India
85GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, Science Park
                                    904, 1098 XH Amsterdam, Netherlands
                    { } ^ { 8 6 } \text { Missouri University of Science and Technology, Rolla, MO 65409, USA}
            { } ^ { 8 7 } \text { Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia}
                    88 Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
            89 INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
                    90 SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
                    91 Bar-Ilan University, Ramat Gan, 5290002, Israel
            { } ^ { 9 2 } \text { Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, F-06304 Nice, France}
            93 Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy
94 INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
                    95 Università di Roma "La Sapienza", I-00185 Roma, Italy
            96 Univ Rennes, CNRS, Institut FOTON - UMR6082, F-3500 Rennes, France
            97 Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
                98 INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
    \mp@subsup{}{}{99}\mathrm{ Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France}\\mp@code{F}
            100 Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
                    101 University of Maryland, College Park, MD 20742, USA
            102 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany
```

${ }^{103}$ L2IT, Laboratoire des 2 Infinis - Toulouse, Université de Toulouse, CNRS/IN2P3, UPS, F-31062 Toulouse Cedex 9, France
${ }^{104}$ School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
${ }^{105}$ IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain
${ }^{106}$ The Chinese University of Hong Kong, Shatin, NT, Hong Kong
${ }^{107}$ Stony Brook University, Stony Brook, NY 11794, USA
${ }^{108}$ Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
${ }^{109}$ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
${ }^{110}$ Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy
${ }^{111}$ Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
${ }^{112}$ Department of Astronomy, Beijing Normal University, Beijing 100875, China
${ }^{113}$ OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
${ }^{114}$ Università degli Studi di Sassari, I-07100 Sassari, Italy
${ }^{115}$ INFN, Laboratori Nazionali del Sud, I-95125 Catania, Italy
${ }^{116}$ Università di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{117}$ INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{118}$ University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
${ }^{119}$ Villanova University, 800 Lancaster Ave, Villanova, PA 19085, USA
${ }^{120}$ Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain
${ }^{121}$ Universität Hamburg, D-22761 Hamburg, Germany
${ }^{122}$ Rochester Institute of Technology, Rochester, NY 14623, USA
${ }^{123}$ National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
${ }^{124}$ Department of Applied Physics, Fukuoka University, Jonan, Fukuoka City, Fukuoka 814-0180, Japan
${ }^{125}$ OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
${ }^{126}$ Department of Physics, Tamkang University, Danshui Dist., New Taipei City 25137, Taiwan
${ }^{127}$ Department of Physics and Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan
${ }^{128}$ Department of Physics, Center for High Energy and High Field Physics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan
${ }^{129}$ CaRT, California Institute of Technology, Pasadena, CA 91125, USA
${ }^{130}$ Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
${ }^{131}$ Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy
${ }^{132}$ Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
${ }^{133}$ Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France
${ }^{134}$ Seoul National University, Seoul 08826, South Korea
${ }^{135}$ Pusan National University, Busan 46241, South Korea
${ }^{136}$ INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
${ }^{137}$ University of Arizona, Tucson, AZ 85721, USA
${ }^{138}$ Rutherford Appleton Laboratory, Didcot OX11 ODE, United Kingdom
${ }^{139}$ OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia
${ }^{140}$ Université libre de Bruxelles, Avenue Franklin Roosevelt 50-1050 Bruxelles, Belgium
${ }^{141}$ Universitat de les Illes Balears, IAC3-IEEC, E-07122 Palma de Mallorca, Spain ${ }^{142}$ Université Libre de Bruxelles, Brussels 1050, Belgium
${ }^{143}$ Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain ${ }^{144}$ Texas Tech University, Lubbock, TX 79409, USA
${ }^{145}$ The Pennsylvania State University, University Park, PA 16802, USA
${ }^{146}$ University of Rhode Island, Kingston, RI 02881, USA
${ }^{147}$ The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
${ }^{148}$ Bellevue College, Bellevue, WA 98007, USA
${ }^{149}$ Scuola Normale Superiore, Piazza dei Cavalieri, 7-56126 Pisa, Italy
${ }^{150}$ MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary
${ }^{151}$ Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands
${ }^{152}$ University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom
${ }^{153}$ The University of Sheffield, Sheffield S10 2TN, United Kingdom
${ }^{154}$ Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France
${ }^{155}$ Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
${ }^{156}$ INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
${ }^{157}$ Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

```
            212 Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan
                                    \mp@subsup{}{}{213}\mathrm{ Chung-Ang University, Seoul 06974, South Korea}
214 Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, and ICREA, E-08193 Barcelona, Spain
            { } ^ { 2 1 5 } \text { Graduate School of Science,Tokyo Institute of Technology, Meguro-ku,Tokyo 152-8551, Japan}
                    { } ^ { 2 1 6 } \text { University of Washington Bothell, Bothell, WA 98011, USA}
                            217 Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
                            \mp@subsup{}{}{218}\mathrm{ Ewha Womans University, Seoul 03760, South Korea}
                            219 Inje University Gimhae, South Gyeongsang 50834, South Korea
                            220 Department of Physics, Myongji University, Yongin 17058, Korea
                        221 Korea Astronomy and Space Science Institute, Daejeon 34055, South Korea
                    \mp@subsup{}{}{222}\mathrm{ National Institute for Mathematical Sciences, Daejeon 34047, South Korea}
                            223 Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
            224 Department of Physical Science, Hiroshima University, Higashihiroshima City, Hiroshima 903-0213, Japan
                    225School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA,UK
                            226 Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan
                            { } ^ { 2 2 7 } \text { Bard College, 30 Campus Rd, Annandale-On-Hudson, NY 12504, USA}
                            228 Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
                            229 National Center for Nuclear Research, 05-400 Świerk-Otwock, Poland
                            230 Instituto de Fisica Teorica, 28049 Madrid, Spain
            231 Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
                    232 Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada
            { } ^ { 2 3 3 } \text { Laboratoire Lagrange, Université Côte d'Azur, Observatoire Côte d'Azur, CNRS, F-06304 Nice, France}
                                    234 Department of Physics,Hanyang University, Seoul 04763, Korea
                            235 Sungkyunkwan University, Seoul 03063, South Korea
                            { } ^ { 2 3 6 } \text { NAVIER, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France}
                            { } ^ { 2 3 7 } \text { Department of Physics, National Cheng Kung University, Tainan City 701, Taiwan}
238 National Center for High-performance computing, National Applied Research Laboratories, Hsinchu Science Park, Hsinchu City
                                    30076, Taiwan
            239 Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
                240 NASA Marshall Space Flight Center, Huntsville, AL 35811, USA
                        241 University of Washington, Seattle,WA 98195, USA
            242 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, I-00146 Roma, Italy
                        { } ^ { 2 4 3 } \text { INFN, Sezione di Roma Tre, I-00146 Roma, Italy}
                        \mp@subsup{}{}{244}\mathrm{ ESPCI, CNRS, F-75005 Paris, France}
                            245 Concordia University Wisconsin, Mequon, WI 53097, USA
                246 Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
            { } ^ { 2 4 7 } \text { School of Physics Science and Engineering, Tongji University, Shanghai 200092, China}
                    248Southern University and A&MM College, Baton Rouge, LA 70813, USA
                            \mp@subsup{}{}{249}\mathrm{ Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco}
            250 Institute for Photon Science and Technology,The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
                    251 Indian Institute of Technology Madras, Chennai 600036, India
                            252 Saha Institute of Nuclear Physics, Bidhannagar, West Bengal 700064, India
253 The Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology (NICT), Koganei
                    City, Tokyo 184-8795, Japan
            254 Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
            { } ^ { 2 5 5 } \text { Faculty of Law, Ryukoku University, Fushimi-ku, Kyoto City, Kyoto 612-8577, Japan}
            256 Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741252, India
            { } ^ { 2 5 7 } \text { Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands}
            { } ^ { 2 5 8 } \text { Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA}
    259 Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, I-00185 Roma, Italy
            260 Korea Astronomy and Space Science Institute (KASI),Yuseong-gu, Daejeon 34055, Korea
                    { } ^ { 2 6 1 } \text { Hobart and William Smith Colleges, Geneva, NY 14456, USA}
    { } ^ { 2 6 2 } \text { International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil}
            { } ^ { 2 6 3 } \text { Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", I-00184 Roma, Italy}
                    { } ^ { 2 6 4 } \text { Lancaster University, Lancaster LA1 4YW, United Kingdom}
            265 Università di Trento, Dipartimento di Matematica, I-38123 Povo, Trento, Italy
            266 Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
```

```
\({ }^{267}\) Dipartimento di Fisica, Università degli Studi di Torino, I-10125 Torino, Italy
\({ }^{268}\) Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India
\({ }^{269}\) Department of Physics, Kyoto University, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan
\({ }^{270}\) Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College, Nagaoka City, Niigata 940-8532, Japan
\({ }^{271}\) Departamento de Matemática da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications, Campus de Santiago, 3810-183 Aveiro, Portugal
\({ }^{272}\) Marquette University, 11420 W. Clybourn St., Milwaukee, WI 53233, USA
\({ }^{273}\) Graduate School of Science and Engineering, Hosei University, Koganei City, Tokyo 184-8584, Japan
\({ }^{274}\) Faculty of Science, Toho University, Funabashi City, Chiba 274-8510, Japan
\({ }^{275}\) Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan
\({ }^{276}\) Università di Firenze, Sesto Fiorentino I-50019, Italy
\({ }^{277}\) INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
\({ }^{278}\) Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India
\({ }^{279}\) iTHEMS (Interdisciplinary Theoretical and Mathematical Sciences Program), The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
\({ }^{280}\) INAF, Osservatorio di Astrofisica e Scienza dello Spazio, I-40129 Bologna, Italy
\({ }^{281}\) Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), Sagamihara City, Kanagawa 252-5210, Japan
\({ }^{282}\) Andrews University, Berrien Springs, MI 49104, USA
\({ }^{283}\) Research Center for Space Science, Advanced Research Laboratories, Tokyo City University, Setagaya, Tokyo 158-0082, Japan
\({ }^{284}\) Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos ( \(R C C N\) ), The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan
\({ }^{285}\) National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba City, Ibaraki 305-8568, Japan
\({ }^{286}\) Dipartimento di Scienze Aziendali - Management and Innovation Systems (DISA-MIS), Università di Salerno, I-84084 Fisciano, Salerno, Italy
\({ }^{287}\) Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
\({ }^{288}\) Faculty of Science, Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
289 Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Ixelles, Belgium
\({ }^{290}\) Department of Communications Engineering, National Defense Academy of Japan, Yokosuka City, Kanagawa 239-8686, Japan
\({ }^{291}\) Department of Physics, University of Florida, Gainesville, FL 32611, USA
\({ }^{292}\) Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka City, Niigata 940-2188, Japan
293 Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
\({ }^{294}\) Department of Physics and Astronomy, Sejong University, Gwangjin-gu, Seoul 143-747, Korea
\({ }^{295}\) Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
\({ }^{296}\) Department of Physics, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
\({ }^{297}\) Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8, Canada
\({ }^{298}\) McGill Space Institute, McGill University, 3550 rue University, Montréal, QC H3A 2A7, Canada
\({ }^{299}\) David A. Dunlap Department of Astronomy \& Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
\({ }^{300}\) Dunlap Institute for Astronomy 6 Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
\({ }^{301}\) Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T \(1 Z 1\) Canada 302 Department of Physics and Astronomy, West Virginia University, PO Box 6315, Morgantown, WV 26506, USA
\({ }^{303}\) Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505, USA
\({ }^{304}\) MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
\({ }^{305}\) Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
\({ }^{306}\) Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA \({ }^{307}\) Mc Gill Space Institute Fellow \({ }^{308}\) FRQNT Postdoctoral Fellow
\({ }^{309}\) Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands \({ }^{310}\) Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N25 2YL, Canada
\({ }^{311}\) Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
\({ }^{312}\) Sidrat Research, PO Box 73527 RPO Wychwood, Toronto, ON M6C 4A7, Canada
\({ }^{313}\) National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA
```

${ }^{314}$ Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai, 400005, India
${ }^{315}$ National Centre for Radio Astrophysics, Post Bag 3, Ganeshkhind, Pune, 411007, India
(Dated: October 30, 2022)

Abstract

We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC - 1 Oct 2019 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coalescences with at least one neutron star component. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of the FRBs inferred from the dispersion measures in our sample, however, this does not conclusively exclude any progenitor models that include emission of a GW of the types searched for from any of these FRB events. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models. By combining the inferred maximum distance information for each FRB with the sensitivity of the GW searches, we set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order $10^{51}-10^{57} \mathrm{erg}$ for emission models with central GW frequencies in the range $70-3560 \mathrm{~Hz}$, which are above predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB.

1. INTRODUCTION

Fast radio bursts (FRBs) are bright millisecond duration radio pulses that have been observed out to cosmological distances, several with inferred redshifts greater than unity (Lorimer et al. 2007; Petroff et al. 2019; Cordes \& Chatterjee 2019). Although intensely studied for more than a decade, the emission mechanisms and progenitor populations of FRBs are still one of the outstanding questions in astronomy.
Some FRBs have been shown to repeat (Amiri et al. 2019a; CHIME/FRB Collaboration et al. 2019; Kumar et al. 2019), and the recent association of a FRB with the Galactic magnetar SGR $1935+2154$ proves that magnetars can produce FRBs (CHIME/FRB Collaboration et al. 2020; Bochenek et al. 2020). Alternative progenitors and mechanisms to produce non-repeating FRBs are still credible and have so far not been ruled out (Zhang 2020a). Data currently suggests that both repeating and non-repeating classes of FRBs have Dispersion Measures (DMs), a quantity equal to the integral of the free electron density along the line of sight, and sky locations consistent with being drawn from the same population. However, the two classes have been shown

[^0]to differ in their intrinsic temporal widths and spectral bandwidths (CHIME/FRB Collaboration et al. 2021). Whether genuine non-repeating sources have a different origin to their repeating cousins is an unresolved question.
The first discovery of an FRB was made over a decade ago by Parkes 64 m radio telescope (Lorimer et al. 2007). This burst, FRB 010724 or FRB 20010724A, known as the Lorimer burst, first indicated an extragalactic origin for FRBs through its observed DM. This burst had a DM of $375 \mathrm{pc} \mathrm{cm}^{-3}$, far in excess of the likely Galactic DM contribution along the line of sight (of order $45 \mathrm{pc} \mathrm{cm}^{-3}$ for this event), supporting an extragalactic origin. The precise localizations of FRB host galaxies have since unambiguously confirmed an extragalactic hypothesis (Chatterjee et al. 2017; Bannister et al. 2019; Li \& Zhang 2020; Heintz et al. 2020) and constraints on the progenitor population are starting to be understood (e.g. Bhandari et al. 2020). The inferred cosmological distances for many FRBs have shown that these transients have extreme luminosities by radio standards, of the order $10^{38}-10^{46} \mathrm{erg} \mathrm{s}^{-1}$ (Zhang 2018).
Recent studies suggest a volumetric rate of order $3.5_{-2.4}^{+5.7} \times 10^{4} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ above $10^{42} \mathrm{erg} \mathrm{s}^{-1}$ (Luo et al. 2020). Up to mid-2018, around 70 FRBs had been publicly announced (Petroff et al. 2016). The majority of
the detections during this period had been made by Parkes (27 FRBs at $\sim 1.5 \mathrm{GHz}$; Champion et al. 2016; Thornton et al. 2013) and ASKAP (28 FRBs at central frequencies of $\sim 1.3 \mathrm{GHz}$; Bannister et al. 2017; Shannon et al. 2018). Other detections were contributed by telescopes including UTMOST (Caleb et al. 2017) and the Green Bank Telescope (Masui et al. 2015), each operating around 800 MHz , and Arecibo (Spitler et al. 2014), operating around $\sim 1.5 \mathrm{GHz}$.

The FRB detection rate has greatly increased since the Canadian Hydrogen Intensity Mapping Experiment (CHIME) instrument (Newburgh et al. 2014; Bandura et al. 2014; CHIME/FRB Collaboration 2020, ;see https: //chime-experiment.ca/) began its commissioning phase in late 2018, and its first FRB observation run shortly after. The CHIME radio telescope observes in the frequency range $400-800 \mathrm{MHz}$ and consists of four $20 \mathrm{~m} \times 100 \mathrm{~m}$ cylindrical parabolical reflectors. Its large collecting area and wide field-of-view $\left(\approx 200 \mathrm{deg}^{2}\right)$ make it a valuable survey instrument for radio transients. FRB detection for this instrument has been led by the CHIME/FRB project (CHIME/FRB Collaboration et al. 2018) which published its first sample of 13 FRBs during its early commissioning phase, despite operating at a lower sensitivity and field-of-view than design specifications (Amiri et al. 2019b).

The CHIME/FRB project recently published a cata\log of 535 FRBs detected during their first year of operation; this includes 62 bursts from 18 previously identified repeating sources (CHIME/FRB Collaboration et al. 2021). This is the first large collection, $\mathcal{O}(100 \mathrm{~s})$, of FRBs from a homogeneous survey and represents a significant milestone in this area of study. The CHIME/FRB data is supportive of different propagation or emission mechanisms between repeaters and non-repeaters, however, it is still not clear whether all FRBs do repeat (Ravi 2019) and, significantly, the FRB emission mechanism remains unknown. There presently exist many competing FRB emission theories (Platts et al. 2019), some of which predict the accompaniment of a time-varying mass quadrupole moment, and thus, the emission of gravitational waves (GWs).
A number of studies have looked at the possibility of GW emission associated with FRBs indirectly, using radio observations to search for coherent FRB-like emissions associated with short, hard gamma-ray bursts (GRBs) (Anderson et al. 2018; Rowlinson \& Anderson 2019; Gourdji et al. 2020; Rowlinson et al. 2020; Bouwhuis et al. 2020).
The identification of an FRB within the sensitive reach of GW interferometric detectors could provide conclusive proof of an association or constrain the pa-
rameters of the emission mechanisms for a given FRB. The increased population of detected FRBs from the CHIME/FRB Project therefore offers a unique chance of achieving this endeavor.

A first search for GW counterparts to transient radio sources was conducted by Abbott et al. (2016). This used a minimally modelled coherent search (X-Pipeline) $\pm 2 \mathrm{~min}$ around the detection time of 6 Parkes FRBs using GW data from GEO600 (Grote 2010) and initial Virgo (Accadia et al. 2012). No GW coincidences were found, but this study provided a useful framework for future searches using improved GW sensitivities.

In this paper we present the second targeted GW follow-up of FRBs using bursts detected by CHIME/FRB during the first part of the third observing run of Advanced LIGO and Advanced Virgo (O3a) (Aasi et al. 2015; Acernese et al. 2015), which took place between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. This search uses both a generic GW transient search and a modelled search targeting coalescing binary systems.

The organization of this paper is as follows: in Section 2 we describe the motivation of this study by discussing possible GW counterparts to FRBs. We introduce the CHIME/FRB data sample in Section 3 and in Section 4 discuss the GW search methods employed; this includes an overview of both of the pipelines used in our analysis. Section 5 provides the results of the GW analysis of the FRB sample. In Section 6 we report results of a gravitational wave analysis of the repeater, FRB 20200120E, which is the closest known extragalactic FRB. Finally, in section 7 we summarize the astrophysical implications of our results and discuss future GW searches for FRB counterparts at greater GW sensitivities.

2. PROPOSED GRAVITATIONAL WAVE COUNTERPARTS TO FRBS

This section will review some of the more popular models of non-repeating and repeating FRBs that could provide plausible GW counterparts and could therefore be constrained or confirmed through GW searches. (An online theory catalog tracks new FRB models; see https://frbtheorycat.org).

As the millisecond durations of FRBs indicate compact emission regions, many models of non-repeating FRBs have suggested cataclysmic events, including coalescing compact objects. As will be discussed below, the fraction of the energy budget emitted by proposed FRB emission models is comparatively small compared to $\mathcal{O}\left(10^{52}\right)$ erg emitted in GWs (e.g. Abbott et al. 2017a) but high by radio standards.

A number of studies have investigated the possibility of FRB-like emissions from binary neutron star (BNS) coalescence around the time of merger (see review in Platts et al. 2019). During this phase the magnetic fields of the NSs are synchronized to binary rotation and a coherent radiation could be generated due to magnetic braking. The mechanism requires magnetic fields of order $10^{12}-10^{13}$ Gauss and could lead to energy-loss rates of order $10^{45} \mathrm{erg} \mathrm{s}^{-1}$. The predicted FRB pulse widths are consistent with the timescale of the orbital period of the BNS just prior to coalescence (Totani 2013).
Wang et al. (2016) considered that an FRB could be produced during the final stages of a BNS inspiral through magnetic reconnection due to the interaction of a toroidal magnetic field, produced as the NS magnetospheres approach each other. The predicted energyloss rates are order $10^{42} \mathrm{erg} \mathrm{s}^{-1}$ assuming magnetic fields of the order 10^{12} Gauss. One should note, dynamic ejecta launched shortly after the final merger would produce significant opacity over a large solid angle, thus screening an FRB-type signal via absorption (Yamasaki et al. 2018). Zhang (2020b) has also entertained the idea that similar interactions between the two NS magnetospheres could produce repeating FRB-like coherent radio emissions decades or centuries before the final plunge.

Other mechanisms to produce prompt coherent radio emission on ms timescales include excitation of the circumbinary plasma by GWs (Moortgat \& Kuijpers 2005), from dynamically-generated magnetic fields post-merger (Pshirkov \& Postnov 2010) or from the collision of a GRB forward shock with the surrounding medium (Usov \& Katz 2000; Sagiv \& Waxman 2002).
Mergers of significant fractions of BNSs are likely to give rise to millisecond magnetars (Gao et al. 2016; Margalit et al. 2019), although this is highly dependent on the unknown nuclear equation of state (see Sarin \& Lasky 2021, for a review). If the remnant NS mass is greater than the maximum non-rotating mass, it can survive for hundreds to thousands of seconds before collapsing to form a BH (Ravi \& Lasky 2014). As the magnetic field lines snap as they cross the black hole (BH) horizon, an outwardly directed magnetic shock would dissipate as a short, intense radio burst (Falcke \& Rezzolla 2014; Zhang 2014). The energy in the magnetic shock can be estimated as $\mathcal{O}\left(10^{47}\right)$ erg which is more than sufficient to support an FRB emission. This model has been motivated by the observation of relatively long lived X-ray plateaus following short gammaray bursts (sGRBs) that exhibit an abrupt decay phase, commonly interpreted as the collapse of the nascent NS
to a BH (Troja et al. 2007; Lyons et al. 2010; Rowlinson et al. 2010, 2013). Such collapses are expected to occur $\lesssim 5 \times 10^{4}$ s after the merger (Ravi \& Lasky 2014).
The detection of the intense millisecond duration radio associated with the Galactic magnetar SGR $1935+2154$ (CHIME/FRB Collaboration et al. 2020) has provided significant evidence to an FRB-magnetar connection (Popov \& Postnov 2013). It is known that the energy stored in rotational kinetic energy and the magnetic field of a millisecond pulsar is ample to power a repeating FRB (Metzger et al. 2017). In terms of the energy Margalit et al. (2020) used the energy loss rates of repeater FRB 20121102A to estimate an energy budget for repeaters at least $10^{47}-10^{49}$ erg. This lower limit is based on the so far observed pulses and without consideration of beaming, so could increase with further monitoring of this source (Petroff et al. 2022).

Resonant oscillation modes in the core and crust of magnetars have been suggested to cause quasi-periodic oscillations observed in the X-ray tails of giant flares. If the process by which FRBs are created also excites non-radial modes in the magnetars, then GWs could simultaneously be produced (e.g. Levin \& van Hoven 2011; Quitzow-James et al. 2017).

The stellar oscillation mode that couples strongest to GW emission is the fundamental f-mode. The frequency of this mode depends on the equation of state, however analyses of the tidal deformability of GW170817 are consistent with NS f-mode frequencies typically being around 2 kHz (Abbott et al. 2017b; Abbott et al. 2017; Wen et al. 2019; Abbott et al. 2018). This is above the most sensitive frequency of the Advanced LIGO/Virgo observatories.

Early theoretical studies suggested $\sim 10^{48}-$ $10^{49} \mathrm{erg}$ in $\mathbf{G W}$ energy emitted at around $1-2$ kHz (Ioka 2001; Corsi \& Owen 2011); large enough for f-mode oscillations from Galactic magnetar flares to be observable by Advanced LIGO/Virgo. Predictions by Levin \& van Hoven (2011); Zink et al. (2012) span a much lower range $\sim 10^{28}-10^{38}$ erg suggesting lower effective energy conversion to GWs.

Other modes such as gravity modes (known as gmodes - here the restoring force is buoyancy) and r modes (where the restoring force is the Coriolis force) emit at frequencies closer to the most sensitive range for Advanced LIGO/Virgo, however these modes couple more weakly to gravitational modes, and are therefore not likely to be detectable in association with an FRB.
3. THE CHIME/FRB SAMPLE

Figure 1. An example of a CHIME localization confidence interval plot for the closest non-repeating burst in our sample, FRB 190425A. The plot shows 4 localization islands and is centered at the beam with the highest SNR.

The CHIME/FRB data sample provided for this analysis consists of 338 bursts observed within O3a out of 806 total bursts. Out of this sample, 168 bursts have been published in the first CHIME/FRB catalog (CHIME/FRB Collaboration et al. 2021). Within the sample of 338 bursts, only events overlapping with uptime of at least one of the three GW observatories were considered for analysis. Within this sub-sample, the selection of bursts that were analyzed was based on the inferred distance to each burst. This selection will be described at the end of this section, after the calculation of the inferred distance is described.

The data for each FRB includes localization information, a topocentric arrival time and a measure of the total DM. For each burst, a Transient Name Server (TNS; see https://www.wis-tns.org) designation was also provided. The TNS naming convention takes the form 'FRB YYYYMMDDLLL' with YYYY, MM and DD the year, month and day information in UTC and LLL a string from ' A ' to ' Z ', then from 'aaa' to ' $z z z$ ', indicating uploading order on any given day.

The arrival time at the CHIME instrument's location (topocentric) at 400 MHz was converted to a dedispersed arrival time using the DM value associated with each event. This time was used as the central event time around which each GW search was conducted.
The localization information of each FRB is in the form of up to 5 disjoint error regions of varied morphology centered around the region with the highest SNR; each separate localization "island" has a central value and a 95% confidence uncertainty region. An example is shown in Figure 1.

The localization regions are reported in the sample as a list of 5 right ascension (RA) values, 595% confidence uncertainty region sizes for the RA values, 5 declination (Dec) values, and 595% confidence uncertainty region sizes for the Dec values. The different approaches to these
the Bayesian Markov-Chain Monte Carlo (MCMC) sampling framework described in (Bhardwaj et al. 2021a) with a posterior distribution defined by:

$$
\begin{equation*}
\mathcal{P}\left(\hat{\theta} \mid \mathrm{DM}_{\mathrm{T}, \mathrm{O}}\right)=\frac{\mathcal{L}\left(\mathrm{DM}_{\mathrm{T}, \mathrm{O}} \mid \hat{\theta}\right) \pi(\hat{\theta})}{\mathcal{Z}} \tag{2}
\end{equation*}
$$

where $\mathcal{L}\left(\mathrm{DM}_{\mathrm{T}, \mathrm{O}} \mid \hat{\theta}\right)$ is the likelihood distribution of the observed quantity $\mathrm{DM}_{\mathrm{T}, \mathrm{O}}$ given the parameters $\hat{\theta}, \pi(\hat{\theta})$ are the prior distributions on $\hat{\theta}$ and \mathcal{Z} is the Bayesian evidence; this latter factor enters Eq. (2) as a normalization factor independent of the model parameters and can be ignored if one is only interested in the posterior distribution rather than model selection. We assume a Gaussian likelihood function provided as:
$\mathcal{L}\left(\mathrm{DM}_{\mathrm{T}, \mathrm{O}} \mid \hat{\theta}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(\mathrm{DM}_{\mathrm{T}, \mathrm{O}}-\mathrm{DM}_{\mathrm{T}}(\hat{\theta})\right)^{2}}{2 \sigma^{2}}\right]$,
localization data adopted by the generic transient and modelled search pipelines will be described in Section 4.

To determine a measure of the luminosity distance of each FRB we employ the Macquart relation (Macquart et al. 2020). This relation maps the redshift to the quantity $\mathrm{DM}_{\mathrm{IGM}}$, which is the DM contribution from extragalactic gas along the line of sight; this can be obtained after all other contributions are subtracted. Taking into account all contributions to the total DM, the quantity DM_{T}, a measure of redshift can therefore be determined by solving:

$$
\begin{align*}
& \mathrm{DM}_{\mathrm{T}}(z)=\mathrm{DM}_{\mathrm{MW}}+\mathrm{DM}_{\text {halo }}+\mathrm{DM}_{\mathrm{IGM}}(z) \\
& \quad+\mathrm{DM}_{\text {host }}(z) /(1+z) \tag{1}
\end{align*}
$$

where $\mathrm{DM}_{\mathrm{MW}}$ is the Milky Way contribution to the DM along the line of sight, $\mathrm{DM}_{\text {halo }}$ is the contribution from the Milky Way halo and $\mathrm{DM}_{\text {host }}$ the contribution from the host galaxy, which is corrected by the cosmic expansion factor. The estimates of z are then converted to a luminosity distance assuming a 'flat- Λ ' cosmology with the cosmological parameters $\Omega_{\mathrm{m}}=0.31, \Omega_{\Lambda}=0.69$ and $H_{0}=67.8 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ (Planck Collaboration et al. 2016).

To determine redshift values for each FRB we employ
with σ the uncertainty on $\mathrm{DM}_{\mathrm{T}, \mathrm{O}}$ for each burst and DM_{T} given by Eq. (1) (Rafiei-Ravandi et al. 2021).

For the Milky Way contribution $\mathrm{DM}_{\mathrm{MW}}$, there is no consensus between the two popular models of Cordes \& Lazio (2002) and Yao et al. (2017). Therefore, we follow Bhardwaj et al. (2021a) and assume a Gaussian prior based around the minimum of $\mathrm{DM}_{\mathrm{MW}}$ from these two models along the line of sight; a standard deviation of 20% of this value is also used.

The contribution $\mathrm{DM}_{\text {halo }}$ has been estimated in a number of studies but is quite uncertain. For example, Yamasaki \& Totani (2020) found values of $\mathrm{DM}_{\text {halo }} \sim$ $30-245 \mathrm{pc} \mathrm{cm}^{-3}$ using a two component model. Studies by Dolag et al. (2015) found values between $\mathrm{DM}_{\text {halo }} \sim 30-50 \mathrm{pc} \mathrm{cm}^{-3}$ based on cosmological simulation and Prochaska \& Zheng (2019) estimated values between $30-80 \mathrm{pc} \mathrm{cm}^{-3}$. To take account of the large uncertainty in this quantity we follow Bhardwaj et al. (2021a) and assume a Gaussian prior such that at 3σ, $\mathrm{DM}_{\text {halo }}$ has a value 0 or $80 \mathrm{pccm}^{-3}$.

The prior on $\mathrm{DM}_{\mathrm{IGM}}$ assumes the parameterization $\Delta=\mathrm{DM}_{\mathrm{IGM}} /\left\langle\mathrm{DM}_{\mathrm{IGM}}\right\rangle$ with the denominator obtained through the Macquart relation. This takes the form provided in Macquart et al. (2020):

$$
\begin{equation*}
P(\Delta)=A \Delta^{-\beta} \exp \left[\frac{-\left(\Delta^{-\alpha}-C^{2}\right)}{2 \alpha^{2} \sigma_{\mathrm{DM}}^{2}}\right], \tag{4}
\end{equation*}
$$

with $\sigma_{\mathrm{DM}}=0.2 z^{-0.5}$ and $[\alpha, \beta]=3$; the value of C is determined by requiring that $\langle\Delta\rangle=1$. The form of this model is motivated by the requirement that the DM distribution approaches a Gaussian at small σ_{DM} in accordance with the Gaussianity of large scale structure. It also incorporates a skew at large σ_{DM} to reflect the possibility of over-densities along the line of sight.
Finally, for a prior on $\mathrm{DM}_{\text {host }}$, we adopt a lognormal distribution with median $e^{\mu}=68.2$ and logarithmic width parameter $\sigma_{\text {host }}=0.88$ as in Macquart et al. (2020).

The quantities outlined above have a large range of uncertainty and there could be additional contributions e.g., circumburst material. As a result, redshift values calculated from DMs are generally taken as upper limits. We perform MCMC sampling using the emcee package (Foreman-Mackey et al. 2013) based on an affineinvariant sampling algorithm (Goodman \& Weare 2010) using 256 walkers of 20,000 samples. Inferred values of z, and thereby luminosity distance, and their 90% credible intervals are thus determined for each FRB, based on the observed values of $\mathrm{DM}_{\mathrm{T}}, \mathrm{RA}$ and Dec, the estimated $\mathrm{DM}_{\mathrm{MW}}$ along the line of sight and the priors on other DM contributions described above.
Given the large uncertainties in the distances of FRBs, we based our analysis and results on the 90% credible intervals inferred for the CHIME/FRB sample of bursts. However, for illustration, we show in Fig. 2 the distribution of the median distances of the total sample of 338 FRBs that occurred during O3a. The plot shows that most events seem to occur within 1700 Mpc $(z \sim 0.3)$ and $6000 \mathrm{Mpc}(z \sim 0.9)$. The closest events in the distribution include a significant number of repeating FRBs. Due to the relatively limited range of
the GW detectors, in selecting which bursts to analyze, we first downselected the sample to all bursts from the closest 10% of CHIME/FRB non-repeating bursts that have GW detector network data available for analysis (if the recent CHIME/FRB catalog of 535 bursts is representative of the FRB population, at least around 11% of FRBs repeat). Within this selection, a coherent analysis using modelled waveforms was then conducted on a smaller subset of the closest 22 non-repeating events for which data was available from at least one interferometric GW detector, and a generic transient coherent analysis was conducted on a subset of FRBs for which data was available from at least two interferometric GW detectors. The further downselection to the final set of analyzes reported was based on two considerations. For some events, the systematic noise in the detector was too significant near the time of the burst for one or both of our two searches, and these events were then excluded. Finally, as each search requires significant personpower and computational resources, we performed searches on the remaining subset of events in order of increasing distance, until we reached a point of diminishing returns caused by the reduced overlap between the effective detection range of the GW detection network and the inferred distance to each FRB event. These considerations yielded a sample of 34 non-repeating FRBs that were analyzed by one or both types of analysis. Using the same considerations for selection, we analyzed a total of 11 repeated bursts from the closest 3 repeating sources: FRB 20180916B (7 repeat events during O3A), FRB 20180814A (2 repeat events) and FRB20190303A (2 events). The lower and upper 90% limits of the credible intervals on the luminosity distances to each of the non-repeating FRBs analyzed are included in the tables in Section 5.

4. SEARCH METHODS

Here we will provide a description of the two targeted search methods used in this paper. These are the same methods applied to search for GW events coincident with GRBs that occurred during the first (Abbott et al. 2017), second (Abbott et al. 2019a) and third (Abbott et al. 2021) Advanced LIGO and Advanced Virgo observing runs. In Section 4.1 we describe the modelled search method that aims to uncover sub-threshold GW signals emitted by BNS and neutron star-black hole (NSBH) binaries (PyGRB; Harry \& Fairhurst 2011; Williamson et al. 2014), highlighting choices in analysis configuration that are unique to the followup of FRB events. In Section 4.2 we discuss the search for generic GW transients (X-Pipeline; Sutton et al. 2010; Was et al. 2012).

Figure 2. The distribution of inferred median distances for the CHIME/FRB data sample based on the MCMC analysis of Section 3; there is a large uncertainty in these distances, thus this distribution should be taken as only an approximate representation. The distribution peaks between 1700 Mpc $(z \sim 0.3)$ and $6000 \mathrm{Mpc}(z \sim 0.9)$. The closest nonrepeating event analyzed in our sample was FRB 20190425A for which we inferred a median distance of 133 Mpc and a range [13-386] Mpc at 90% confidence; the most distant was FRB 20190601C with a median inferred distance of 914 Mpc within a range [199-1737] Mpc.

4.1. PyGRB- Modelled search for binary mergers

The modelled search for GWs associated with FRB events makes use of the PyGRB data analysis pipeline (Harry \& Fairhurst 2011; Williamson et al. 2014), and the search is configured to be similar to the search for GW signals coincident with GRBs in O3a (Abbott et al. 2021). This is a coherent matched-filtering pipeline that compares the GW detector network data with a bank of pre-generated waveforms, including the inspiral of BNS and NSBH binaries. PyGRB uses the PyCBC (Nitz et al. 2020) open-source framework for distribution of the analysis of the GW data across large computing clusters, and also relies on several elements of the LALSuite software library (LIGO Scientific Collaboration 2018).

The PyGRB analysis searches the combined detector data in the range $30-1000 \mathrm{~Hz}$. A set of coherent data streams is formed by combining the data from the detectors, using a sample of sky-positions in the region reported for the FRB event that is being studied. These data streams are then compared using matched filtering to the same predefined bank of waveform templates (Owen \& Sathyaprakash 1999) used in the search for GWs associated with GRBs events in O3a (Abbott et al. 2021). The bank is created with a hybrid of geometric and stochastic template placement methods across
target search space (Harry et al. 2008; Brown et al. 2012; Harry et al. 2014; Capano et al. 2016; Dal Canton \& Harry 2017), using a phenomenological inspiral-merger-ringdown waveform model for non-precessing point-particle binaries (IMRPhenomD; Husa et al. 2016; Khan et al. 2016). This bank of templates is designed to cover binary masses in the range $[1.0,2.8] \mathrm{M}_{\odot}$ for NSs , and $[1.0,25.0] \mathrm{M}_{\odot}$ for BHs. The bank also allows for aligned-spin, zero-eccentricity BNS and NSBH, with dimensionless spins in the range $[0,0.05]$ for NSs and [$0,0.998$] for BHs.

Coherent matched filtering can be susceptible to loud transient noise in the detector data and can produce a high SNR (Nitz et al. 2017). To combat this, the analysis performs additional tests on each point of high SNR data, which we also refer to as triggers. These tests can either remove the trigger or re-weight the SNR using a χ^{2} test. This latter test determines how well the data agrees with the template over the whole template duration. Such cuts and re-weighting significantly improve the ability of the search to distinguish a GW from many types of transient noise, thus improving the significance of real GW triggers. The final re-weighted SNR of each candidate event is used as the measure of its relative significance, or ranking statistic, within the search.

The PyGRB analysis searches for GW inspiral events that merge within 12 s of the de-dispersed event time of each FRB, with an asymmetric on-source window starting 10 s before the FRB event and ending 2 s after the event. The search window is chosen to strike a balance between maximizing the possible progenitor models through a wider window or maximizing the sensitivity of the search by using a narrower window. In this search we seek a GW signal with a merger time close to the time of the FRB, assuming the FRB results from the interaction of the two binary components.

The sensitivity of the search is governed by the comparison between the most significant event in the onsource window and the most significant event in equivalent trial searches of 12 s windows in the surrounding data, known as the off-source trials. These off-source trials form the background data for the search, and if a sufficient number of background trials are conducted, this allows the search to determine the significance of any candidate events in the on-source window to the level needed to make a confident detection statement by computing a false-alarm probability.
If multiple detectors are available, then additional effective background data can be produced by combining the data from the detectors with an intentional misalignment in time of at least the light-travel time across the network to ensure any detected events cannot possi-
bly be true coherent GW candidates (Williamson et al. ${ }_{1126}$ 2014). This can be repeated for multiple possible time ${ }^{1127}$ shifts, and in this search, these time shifts are set to match the on-source window length of 12 s . This produces fewer time shifts than a 6 s on-source window, as used in previous searches for GW associated with GRB events such as Abbott et al. (2021). This again impacts the effective significance of any detected events, because the amount of background data used by the search is limited by the amount of coherently analyzable data for all detectors in the network that surrounds the target time. Thus, a search is only conducted if a minimum of 30 min of data are available.

In the results section, we report the effective range of each search conducted as a 90% exclusion distance, D_{90}. This is calculated by first creating a set of simulated GW signals to inject into the off-source data, then attempting to find these injected signals with the standard search pipeline. The signals are injected with amplitudes appropriate for a distribution of distances between their simulated origin and the detectors, and the D_{90} distance is defined as the distance within which 90% of the injected simulated signals are recovered with a ranking statistic greater than the loudest on-source event.
Mirroring the approach taken in the O3a search for GW events associated with GRB detections (Abbott et al. 2021), the injected signals include BNS systems with dimensionless spins in the range -0.4 to 0.4 , taken from observed pulsar spins (Hessels et al. 2006), and are distributed uniformly in spin and with random orientations. Injections also include aligned spin NSBH binaries, and NSBH binaries with generically oriented spins up to 0.98 , motivated by X-ray binary observations (e.g., Özel et al. 2010; Kreidberg et al. 2012; Miller \& Miller 2014). The simulated signals are intentionally generated using different GW signal models than those used in the matched-filtering template bank, to approximate the target search space difference between the approximate templates used and the true GW signals. In particular, the injected waveforms are identical to those used in the equivalent O3a GRB event follow up analysis (Abbott et al. 2021). Precessing BNS signals are simulated using the TaylorT2 time-domain, post-Newtonian inspiral approximant (SpinTaylorT2; Sathyaprakash \& Dhurandhar 1991; Blanchet et al. 1996; Bohé et al. 2013; Arun et al. 2009; Mikoczi et al. 2005; Bohé et al. 2015; Mishra et al. 2016), while NSBH injected waveforms are generated assuming a point-particle effective-one-body model tuned to numerical simulations which can allow for precession effects from misaligned spins (SEOBNRv3; Pan et al. 2014; Taracchini et al. 2014; Babak et al.
2017). Again, identical to the injections used in Abbott et al. (2021), NS masses for the injections are taken between $1 \mathrm{M}_{\odot}$ and $3 \mathrm{M}_{\odot}$ from a normal distribution centered at $1.4 \mathrm{M}_{\odot}$ with a standard deviation of $0.2 \mathrm{M}_{\odot}$ Kiziltan et al. (2013) and $0.4 \mathrm{M}_{\odot}$ for BNS and NSBH systems, respectively. BH masses are taken to be between $3 \mathrm{M}_{\odot}$ and $25 \mathrm{M}_{\odot}$ from a normal distribution centered at $10 \mathrm{M}_{\odot}$ with a standard deviation of $6 \mathrm{M}_{\odot}$.
Although this PyGRB follow up of FRB events mirrors the search conducted for GWs associated with GRB events in O3a (Abbott et al. 2021) where appropriate, there were several differences in the choices of analysis parameters for the FRB analysis. The first major difference has been noted above, wherein a 12 s on-source window is used, which is double that of the GRB analysis. This does reduce the significance of any detected signals, but has the benefit of allowing for more progenitor models where the EM emission occurs further in time from the peak of the GW emission.
Another significant change was the method of determining the area of sky over which to search for the GW signals. The FRB data sample contains multiple localizations for each event, each with their own RA and Dec uncertainties. This effectively creates multiple patches on the sky where the source could potentially reside. The effective GW network localization capability results in 90% credible regions for detections on the order of $\approx 10-10000 \mathrm{deg}^{2}$, with an average of order $100 \mathrm{deg}^{2}$. In contrast, the multiple O3a FRB sample localizations spanned only order $1 \mathrm{deg}^{2}$ in total (Abbott et al. 2020). The sensitivity of the search also did not vary significantly over the sky localizations, and so the final set of sky positions considered by the analysis was one circular patch on the sky with a size large enough to ensure coverage over all possible provided FRB localizations. This circular region is centered on the median of the provided RA and DEC values, with a radius scaled to match either the largest position error provided or the largest RA or DEC separation between the 5 localization points, using whichever is greater. Within this patch, the sky is sampled by creating a circular grid of sky positions such that the time-delay between grid points is kept below 0.5 s (Williamson et al. 2014). This ensures coverage of the possible sky location of the source. For each sky position, the timestream data from each GW detector is combined with the appropriately different time offsets required to form a coherent streams of data for that point on the grid. These multiple coherent time streams are finally each considered in the search.

4.2. X-Pipeline- Unmodelled search for generic transients

The search for generic transients is performed with the coherent analysis algorithm X-Pipeline (Sutton et al. 2010; Was et al. 2012). This targeted search uses the sky localization and time window for each CHIME/FRB trigger to identify consistent excess power that is coherent across the network of GW detectors. We use different search parameters in our searches for repeating and non-repeating FRB sources.
There are a number of differences between our generic transient search on non-repeated sources and those previously conducted on GRBs (Abbott et al. 2017, 2019a, 2021). As in GRB searches, the on-source time window is chosen to start 600 s before the trigger, but is extended from 60 s seconds post trigger to 120 s to allow for the possibility of GW emissions delayed relative to the FRB emission. This on-source window is also longer than the $\pm 120 \mathrm{~s}$ window employed in the previous FRB search (Abbott et al. 2016). The extended window allows for a greater number of non-Compact Binary Coalescence (CBC) sources than those considered in GRB searches and possible GW emissions from magnetars, given the recent FRB-magnetar association (CHIME/FRB Collaboration et al. 2020).
The broadband search for FRBs with X-Pipeline covers the range 32 Hz up to 2 kHz , the upper range being higher than the GRB search $(20-500 \mathrm{~Hz})$ in order to include GW emissions from oscillation modes of NSs that are likely to occur above 1 kHz , specifically f-modes (Wen et al. 2019; Ho et al. 2020). We note that above 300 Hz a $\propto f^{2}$ frequency dependence in energy (see later Eq. (5)) combined with the $\propto f^{1}$ of the noise power spectral density of the detector increases the GW energy required to enable a confident detection as $\propto f^{3}$. Although including high frequency data increases the computational cost, including this data allows us to set limits on a wider variety of signal models.

X-Pipeline processes the on-source data around each FRB trigger by combining the GW data coherently after the data is whitened by dividing by each detector's amplitude spectrum (Abbott et al. 2020). The coherent combination is formed by taking into account the antenna response and noise level of each detector to generate a series of time-frequency maps. The maps show the temporal evolution of the spectral properties of the signal and allow searches for clusters of pixels with excess energy significantly greater than one would expect from background noise. These clusters are referred to as events.

Events are given a ranking statistic based on energy and are subjected to coherent consistency tests based on the signal correlations between data in different detectors. This allows X-Pipeline to veto events that have properties similar to the noise background.

The surviving event with the largest ranking statistic is taken to be the best candidate for a GW detection. Its significance is quantified as the probability for the background alone to produce such an event. This is done by comparing the SNR of the trigger within the 720 s on-source to the distribution of the SNRs of the loudest triggers in the off-source trials. The off-source data are set to consist of at least 1.5 hours of coincident data from at least two detectors around the trigger time. This window is small enough to select data where the detectors should be in a similar state of operation as during the on-source interval, and large enough so that through artificial time-shifting, probabilities can be estimated at the sub-percent level.

We quantify the sensitivity of the generic transient search by injecting simulated signals into off-source data and recovering them. We account for calibration errors by jittering the amplitude and arrival time of the injections according to a Gaussian distribution representative of the typical calibration uncertainties expected in O3a. We compute the percentage of injections that have a significance higher than the best event candidate and determine the amplitude at which this percentage is above 90%; this value sets the upper limit.

As discussed in Section 3, localization information for each FRB is in the form of up to 5 non-contiguous or overlapping error regions of varied morphology. Occasionally these islands can be dominated by the uncertainty of a single island. The sky position errors can span a few degrees or more in RA. This could result in a temporal shift causing a GW signal to be rejected by a coherent consistency test (Was et al. 2012). For each island we set up a circular grid around the central location of the island, with overlapping grid points discarded. A coherent data stream is formed from the GW detector data with an appropriate time offset for each point on the grid. These data streams are then analyzed. Grid positions are large enough to cover the error radius and dense enough to ensure a maximum timing delay error, set as $1.25 \times 10^{-4} \mathrm{~s}$, is within 25% of the signal period at our frequency upper limit of 2000 Hz . This is 4 times finer than GRB searches that typically analyze data up to a frequency cutoff of 500 Hz . Using this grid approach, the antenna responses change only slightly over sky position; of order a few percent over a few degrees (Aasi et al. 2014). The responses are known to change
rapidly near a null of the response; in such a case they are already negligible.
A particular difference between this search and other searches focused on GRBs is the increased number of simulated waveform types used in this study. Given the uncertainty in plausible GW emissions, we consider a larger range of generic burst scenarios, using an extended set of those used in both GRB and magnetar searches (Abbott et al. 2021, 2019b). Also, as we have no knowledge on whether or not FRBs are beamed along the rotation axis of the progenitor, all of our signal models correspond to elliptical and random polarization.

The waveforms chosen to cover the search parameter space are from 3 families that have different morphological characteristics: binary signals, generic burstlike signals and accretion disk instability (ADI) models. X-Pipeline is equally adept at detecting signals whose frequency decreases with time (ADI) and signals whose frequency increases with time (CBC models; Abadie et al. (2012); Abbott et al. (2017)). This paper reports the results for CBCs when obtained using the dedicated modelled search (described in Section 4.1), so we will limit our discussions here to only the latter two waveform families.

The generic burst-type waveforms are described in Table 1, where we list the most important parameters (see also Abbott et al. 2019c). In all cases, to determine exclusion distances for this model family, we assume an optimistic emission of energy in GWs of $E_{\mathrm{GW}}=10^{-2} \mathrm{M}_{\odot} \mathrm{c}^{2}$ (Abbott et al. 2021). Waveforms in this family aim to capture the general characteristics of a burst of GW energy:

Sine-Gaussian: These signals have been used previously to represent the GWs from stellar collapses. The models are defined in Eq. (1) of Abbott et al. (2017) with a Q factor of 9 and varying central frequency as shown in Table 1. They can also model f-modes in the core of a canonical NS. We therefore also include them in the search over repeating sources, and include SG waveforms at additional frequencies listed in Table 1. In order to better constrain some models, we also include circularly polarized SG chirplets at the frequencies nearest the f-mode range (1600 Hz and 1995 Hz) in the search over repeated sources.

Ringdowns (DS2P): These signals capture the form ${ }^{1334}$ of damped sinusoids (DS2P) at a frequency of ${ }^{1335}$ 1500 Hz and decay constants of 100 ms and $200 \mathrm{~ms} .^{1336}$

White Noise Bursts (WNB): These signals mimic ${ }^{1338}$ broad bursts of uncorrelated white noise, time-

Table 1. The main parameters of the waveform injections used for the generic transient search. Models and their parameters have been chosen to cover as large a parameter space as possible. For all models the central frequencies are shown. We note that WNB models are defined by an additional frequency bandwidth, this parameter is shown in parenthesis. For the SG and WNB waveforms the duration parameter scales the width of the Gaussian envelope; for the DS2P models this parameter defines the decay time constant. An asterisk (*) denotes waveforms used in the repeaters search only; ${ }^{c}$ denotes waveforms with a circular polarization.

Label	Frequency $[\mathrm{Hz}]$	Duration Parameter $[\mathrm{ms}]$
	Sine-Gaussian Chirplets	
SG-A	70	14
SG-B	90	11
SG-C	145	6.9
SG-D	290	3.4
SG-E	650	1.5
SG-F	1100	0.9
SG-G	1600	0.6
SG-H	1995	0.5
SG-I*	2600	0.38
SG-J*	3100	0.32
SG-K	3560	0.28
SG-L*c	1600	0.6
SG-M		
ce		
1995		0.5
DS2P-A	1500	100
DS2P-B	1500	200
White noise bursts		
WNB-A	$150(100-200)$	11
WNB-B	$150(100-200)$	100
WNB-C	$550(100-1000)$	11
WNB-D	$550(100-1000)$	100

stabilities in a magnetically suspended torus around a ${ }^{1391}$ rapidly spinning BH . The model specifics and parameters used to generate the five types of ADI signals, designated ADI-A to ADI-E, are the same used in the previous searches (see Table 1 of Abbott et al. 2017).

The version of X-Pipeline used in this analysis has a new feature named autogating. This feature increases the sensitivity of the longer-duration ($\gtrsim 10 \mathrm{~s}$) signals, previously limited by loud background noise transients (Abbott et al. 2021). This technique gates the whitened data from a single detector if the average energy over a 1-second window exceeds a user-specified threshold. To minimize the possibility of a loud GW transient be gated, this procedure is canceled if the average energy at the same time in any other detector exceeds the threshold.

4.2.1. X-pipeline Search on Repeating FRBs

A subset of 11 of the FRBs that we analyze have been identified to repeat. Repeating FRBs are possibly caused by a process distinct from those that produce singular FRBs; most notably they are unlikely to be associated with CBC events. We therefore only run the X-Pipeline generic transient search on these events, and we choose the parameters to provide maximal sensitivity to the GW transients that would most probably be produced by flaring magnetars.
This search is similar to that for GW events associated with magnetars during the third observing run of Advanced LIGO and Advanced Virgo (O3) (Abbott et al. in preparation). The frequency band of the search ranges from 50 Hz to 4000 Hz , which encapsulates the NS fmode frequency band, but excludes the lowest frequencies where nonstationary noise could potentially 'pollute' the search statistics. The search spans 8 s of time centered within one second of the arrival time of the FRB to ensure optimal sensitivity at the event time. Injected waveforms are chosen to reasonably model the f-modes of a canonical NS as described in Kokkotas et al. (2001). This includes a series of SG chirplets with a Q factor of 9 and varying center frequencies as shown in Table 1. We also neglect to use the autogating algorithm for noise transients as described above, as its tendency is also to gate fast injections such as SG. We also inject white noise bursts to estimate sensitivity at broadband frequency ranges.

4.3. RAVEN Coincident Analysis

To perform a wider sweep of the O3a data, we also looked for coincidences between these CHIME/FRB events and existing GW candidates using the tools of the Rapid, on-source VOEvent Coincidence Monitor (RAVEN; Urban 2016; Cho 2019) to query the

Gravitational-Wave Candidate Event Database GraceDB (Pace et al. 2012). This query to GraceDB tests whether any GW candidates were found by any of the modelled or generic transient low-latency GW search pipelines within a time window around the FRB events. The queries used the same on-source search windows as our modelled and generic transient searches, with $[-10 \mathrm{~s},+2 \mathrm{~s}]$ and $[-600 \mathrm{~s},+120 \mathrm{~s}]$ windows around the FRB triggers, respectively. We then computed the joint false-alarm rate of any coincident GW candidate within these windows using the overall rate of FRB events in the CHIME/FRB sample calculated across the full span of the O3a observing run and the false-alarm rate of the GW candidate. The joint false-alarm-rates were compared against thresholds of around 6/year and 1 year for modelled and generic transient searches respectively. This analysis, although not as sensitive as a targeted search, is a strategy that allows us to perform a broad search across O3a data for possible coincidences missed by our analysis.

5. RESULTS OF ANALYSIS

5.1. Analysis Subsample

We performed two different searches: for nonrepeating FRBs, a PyGRB modelled search was completed on a total of 22 FRB events and an X-Pipeline search for generic transient signals was completed on a total of 29 non-repeaters and 11 repeating FRBs.

5.2. The false-alarm probability (p-value) distribution

The searches conducted for GW counterparts returned no likely GW signals in association with any of the analyzed repeating or non-repeating FRB events.

The most significant events found by the PyGRB search and the X -Pipeline search had p-values of 3.74×10^{-2} and 1.90×10^{-2}, respectively. For the X -Pipeline analysis of the repeating FRBs, the lowest p-value was 1.3×10^{-1}, corresponding to the repeat FRB 20190702B of burst FRB 20190303A, for which we analyzed 2 burst events.

The cumulative p-value distributions from both search methods are shown in Fig. 3 and Fig. 4. In both figures, the dashed lines indicate the expected background distribution under the no-signal hypothesis, and the dotted lines indicate the 90% confidence band around the no-signal hypothesis.

5.3. Exclusion Distance Results

Fig. 5 shows the cumulative 90% exclusion distances for the 22 FRBs followed up with the modelled search. The lowest exclusion distances, of order 40 Mpc , were

Figure 3. The cumulative distribution of p-values for the loudest on-source events for the modelled search in O3a around CHIME/FRB data. The dashed line indicates an expected uniform distribution of p-values under a no-signal hypothesis, with the corresponding 90% confidence band shown by the dotted lines.

Figure 4. The cumulative distribution of p-values for the loudest events from the generic transient search for transient GWs associated with 29 non-repeating CHIME/FRB bursts. The dashed line represents the expected distribution under the no-signal hypothesis, with the 90% bands shown as dotted lines.

Figure 5. Cumulative histograms of the 90% confidence exclusion distances, D_{90}, for the 22 CHIME/FRB bursts followed up by the modelled search. The blue line shows generically spinning BNS models, the orange line shows generically spinning NSBH models, and the thick green line shows aligned spin NSBH models. We define D_{90} as the distance within which 90% of the simulated GW signals injected into the off-source data were recovered with a significance greater than the most significant on-source trigger.
obtained for FRBs that occurred during times in which only Virgo data was available.
For each of the three simulated signal classes considered in the modelled search, we quote the median of the D_{90} results in the top row of Table 2; we see values of the order of 190 Mpc for BNS and around 260 Mpc (350 Mpc) for NSBH with generic (aligned) spins.

Fig. 6 provides the cumulative 90% exclusion distances for 29 non-repeating FRBs considered in the generic transient search. This plot shows three representative burst models; ADI-A, SG-C and a WNB-C; the latter two have central frequencies of 145 Hz and 550 Hz respectively. Based on a standard $E_{\mathrm{GW}} \sim 10^{-2} \mathrm{M}_{\odot} \mathrm{c}^{2}$ of emitted GW energy, there is a noticeable offset between the SG and the other two GW burst models. For the ADI-A waveform model, this is due to the energy of the former being distributed over a longer signal duration, of order $\sim 40 \mathrm{~s}$; for the WNB-C model, this effect is due to a significant portion of its energy content being at higher frequency where detector performance is more comparatively limited.

The lower rows of Table 2 show the median of the D_{90} estimates for all other waveforms considered by the

Figure 6. Cumulative histograms of the 90% confidence exclusion distances, D_{90}, for SG model C (orange line), accretion disk instability (ADI) signal model A (blue line) and white noise burst (WNB) model C (green, thick line). The quantity has the same definition as described in Fig. 5.

Table 2. Median values for the 90% confidence level exclusion distances, D_{90}. Modelled search results are shown for three classes of BNS progenitor model, and generic transient search results are shown for models described in Table 1.

Modelled search	BNS	NSBH Generic	Spins	NSBH		
D_{90} [Mpc]	191.9	256.6		345.1		
Unmodelled	SG	SG	SG	SG		
search	A	B	C	D		
D_{90} [Mpc]	77.9	63.3	43.7	$7 \quad 24.9$		
Unmodelled	SG	SG	SG	SG		
search	E	F	G	H		
D_{90} [Mpc]	6.8	2.3	1.2	0.5		
Unmodelled search	$\begin{gathered} \mathrm{DS} 2 \mathrm{P} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { PS2P } \\ \mathrm{B} \end{gathered}$	$\begin{gathered} \text { WNB } \\ \text { A } \end{gathered}$	W WNB	$\begin{gathered} \text { WNB } \\ \text { C } \end{gathered}$	$\begin{gathered} \text { WNB } \\ \text { D } \end{gathered}$
D_{90} [Mpc]	0.7	0.7	66.4	71.7	15.2	9.2
Unmodelled	ADI	ADI	ADI	ADI	ADI	
search	A	B	C	D	E	
$D_{90}[\mathrm{Mpc}]$	17.6	64.9	23.1	8.4	25.7	

generic transient search. We see that SG models spanning central frequencies 70 Hz to 2000 Hz have corresponding median values of D_{90} in the range 78 Mpc to 0.5 Mpc ; the latter models' performance diminished at higher frequency through detector response. This is also clearly evident for the DS2P ringdown models, which are more likely to encounter a transient burst of noise than SG models due to their longer durations. Similarly, the median D_{90} values for the higher frequency WNB models are lower in comparison with the lower frequency models (WNB-A and WNB-B). These median D_{90} values of the 150 Hz and 550 Hz models differ by around a factor of at least 4. Overall, the median D_{90} varies within a range approaching 2 orders of magnitude, reflecting the wide range of models used in the analysis.

In comparison with D_{90} values obtained in the O3a GRB paper (Abbott et al. 2021) the values in Table 2 are almost systematically a factor of 2 smaller for the SG and ADI models used in that study. We find that this is a result of the sky locations surveyed by CHIME corresponding with a region of weak sensitivity for the Virgo interferometric detector, due to their relative locations on the surface of the Earth. The average antenna responses for the LIGO Hanford (H1) and LIGO Livingston (L1) detectors are of order 0.72 and 0.65 respectively; the same metric for the V1 instrument is 0.28 . This has a severe effect when V1 is one of only two detectors in a network, a situation that has occurred 55% of the time for the generic transient analysis of nonrepeating FRBs. Looking ahead, this type of sensitivity bias will be a feature of future searches for CHIME/FRB triggers, as well as surveys by other facilities, depending on their location on the Earth.

In Table 3 we present the exclusion distances achieved for each of the FRBs analyzed in our joint analysis. For the modelled search we quote values from each of the 3 classes of compact binary progenitor models considered. For the generic transient search we present values of D_{90} for a representative sample of SG, ADI, DS2P and WNB models. We also provide information relating to the times and positions of these events as well as values of the DM, and the inferred 90% credible intervals on the luminosity distance. Table 3 allows comparison of the inferred luminosity distances of each FRB with the D_{90} value for different searches.
Table 3. Details of the FRB sample and the 90% exclusion distances for each of the events considered in this analysis. The TNS name is provided in the first listed in the DM column and the 90% credible intervals on the luminosity distance of each burst are provided in columns D_{L}-Low and D_{L}-High. Where the generic transient search (Section 4.2) and the modelled search (Section 4.1) used a different IFO network, the network used by the generic transient search is shown in parentheses. The last 8 columns show the 90% confidence exclusion distances for each FRB $\left(D_{90}\right)$ for the following emission scenarios: BNS, generic and aligned spin NSBH from the modelled search, and from the generic transient search, SG-C, SG-F, ADI-A, DS2P-A and WNB-C; for the latter 5 types of GW bursts we assume a total radiated energy $E_{\mathrm{GW}}=10^{-2} \mathrm{M}_{\odot} \mathrm{c}^{2}$.

FRB Name	UTC Time	R.A.	Dec.	Network	$\begin{gathered} \mathrm{DM} \\ {\left[\mathrm{pc} \mathrm{~cm}^{-3}\right]} \end{gathered}$	$\begin{gathered} D_{L} \text {-Low } \\ {[\mathrm{Mpc}]} \\ \hline \end{gathered}$	$\begin{gathered} D_{L} \text {-High } \\ {[\mathrm{Mpc}]} \\ \hline \end{gathered}$	BNS	$\begin{gathered} \text { Generic } \\ \text { NSBH } \end{gathered}$	Aligned NSBH	$\begin{gathered} \text { SG } \\ \text { C } \end{gathered}$	$\begin{gathered} \mathrm{SG} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} \mathrm{ADI} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{DS} 2 \mathrm{P} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { WNB } \\ \text { C } \end{gathered}$
FRB 20190410A	12:19:41	$17^{\mathrm{h}} 33^{\mathrm{m}} 43^{\text {s }}$	$-2^{\circ} 10^{\prime}$	L1V1	270	60	960	160	190	300	36	1.1	15	0.57	6.4
FRB 20190418A	22:34:17	$4^{\mathrm{h}} 21^{\mathrm{m}} 07^{\text {s }}$	$15^{\circ} 27^{\prime}$	V1	180	27	610	40	50	72	-	-	-	-	-
FRB 20190419B	22:38:24	$17^{\mathrm{h}} 02^{\mathrm{m}} 02^{\text {s }}$	$86^{\circ} 44^{\prime}$	L1V1	170	25	580	130	170	250	34	1.1	10	0.5	6.2
FRB 20190423B	13:51:43	$19^{\mathrm{h}} 54^{\mathrm{m}} 44^{\text {s }}$	$26^{\circ} 19^{\prime}$	H1V1	590	58	1700	190	250	320	13	0.33	5.6	0.16	3.1
FRB 20190425A	10:47:49	$17^{\mathrm{h}} 02^{\mathrm{m}} 47^{\text {s }}$	$21^{\circ} 30^{\prime}$	H1L1V1	130	13	390	240	390	440	66	3.2	27	0.13	21
FRB 20190517B	20:33:37	$4^{\mathrm{h}} 16^{\mathrm{m}} 49^{\text {s }}$	$73^{\circ} 10^{\prime}$	V1	190	20	540	130	230	300	-	-	-	-	-
FRB 20190517C	22:06:34	$5^{\mathrm{h}} 50^{\mathrm{m}} 57^{\text {s }}$	$26^{\circ} 34^{\prime}$	L1V1	340	44	1000	-	-	-	40	1.3	10	0.72	7.4
FRB 20190518D	09:04:35	$12^{\mathrm{h}} 06^{\mathrm{m}} 50^{\text {s }}$	$89^{\circ} 25^{\prime}$	H1L1	200	62	850	140	190	220	54	3.2	21	1	16
FRB 20190531B	08:47:40	$17^{\mathrm{h}} 31^{\mathrm{m}} 26^{\text {s }}$	$49^{\circ} 18^{\prime}$	L1V1	170	37	680	210	310	370	56	3.5	23	2.1	20
FRB 20190601C	21:13:28	$5^{\mathrm{h}} 55^{\mathrm{m}} 06^{\text {s }}$	$28^{\circ} 28^{\prime}$	H1L1V1	420	200	1700	-	-	-	66	3.2	21	1.1	21
FRB 20190604G	23:12:19	$8^{\mathrm{h}} 03^{\mathrm{m}} 13^{\text {s }}$	$59^{\circ} 32^{\prime}$	L1V1	230	97	1100	-	-	-	14	0.47	8.8	0.3	1.6
FRB 20190605C	02:20:41	$11^{\mathrm{h}} 14^{\mathrm{m}} 04^{\text {s }}$	$-5^{\circ} 18^{\prime}$	L1V1	190	68	890	190	260	370	29	0.94	15	0.59	5.4
FRB 20190606B	22:19:30	$7^{\mathrm{h}} 14^{\mathrm{m}} 42^{\text {s }}$	$86^{\circ} 58^{\prime}$	H1L1V1	280	170	1500	-	-	-	44	2.3	18	0.95	15
FRB 20190611A	18:52:42	$4^{\mathrm{h}} 05^{\mathrm{m}} 12^{\text {s }}$	$73^{\circ} 37^{\prime}$	V1	200	19	550	43	57	72	-	-	-	-	-
FRB 20190612B	05:30:37	$14^{\mathrm{h}} 48^{\mathrm{m}} 53^{\text {s }}$	$4^{\circ} 21^{\prime}$	H1L1	190	65	920	220	300	410	70	3.3	26	1.1	21
FRB 20190613B	18:56:15	$4^{\mathrm{h}} 23^{\mathrm{m}} 08^{\text {s }}$	$42^{\circ} 37^{\prime}$	H1L1V1	290	28	780	270	320	470	78	4.3	28	1.5	23
FRB 20190616A	05:56:30	$15^{\mathrm{h}} 34^{\mathrm{m}} 04^{\text {s }}$	$34^{\circ} 21^{\prime}$	H1V1	210	110	1100	-	-	-	17	0.64	9	0.31	4.3
FRB 20190617A	02:12:33	$11^{\mathrm{h}} 49^{\mathrm{m}} 13^{\text {s }}$	$83^{\circ} 50^{\prime}$	H1L1V1	200	62	870	210	310	420	54	2.9	23	1.4	19
FRB 20190618A	11:42:06	$21^{\mathrm{h}} 24^{\mathrm{m}} 28^{\text {s }}$	$25^{\circ} 25^{\prime}$	H1L1	230	78	960	270	360	480	80	4.3	25	1.6	26
FRB 20190621A	02:21:17	$12^{\mathrm{h}} 06^{\mathrm{m}} 36^{\text {s }}$	$74^{\circ} 43^{\prime}$	L1V1	200	78	980	150	220	300	15	0.41	2.2	0.31	2.9
FRB 20190624B	22:11:00	$20^{\mathrm{h}} 01^{\mathrm{m}} 07^{\text {s }}$	$73^{\circ} 34^{\prime}$	H1V1	210	47	820	-	-	-	30	1.3	7.5	0.45	9.2
FRB 20190710A	22:09:19	$9^{\mathrm{h}} 26^{\mathrm{m}} 32^{\text {s }}$	$63^{\circ} 06^{\prime}$	H1L1	200	89	1000	-	-	-	78	4.3	31	1.9	23
FRB 20190713A	02:19:56	$1^{\mathrm{h}} 35^{\mathrm{m}} 49^{\text {s }}$	$72^{\circ} 53^{\prime}$	H1V1	340	140	1400	-	-	-	29	0.9	11	0.39	7
FRB 20190718A	01:11:16	$13^{\mathrm{h}} 04^{\mathrm{m}} 18^{\text {s }}$	$74^{\circ} 14^{\prime}$	H1L1	200	72	970	220	300	410	58	3.5	25	1.6	21
FRB 20190722A	18:30:18	$6^{\mathrm{h}} 35^{\mathrm{m}} 11^{\text {s }}$	$64^{\circ} 17^{\prime}$	L1V1	250	98	1100	-	-	-	18	0.65	11	0.39	2.1

								$D_{90}[\mathrm{Mpc}]$							
FRB Name	UTC Time	R.A.	Dec.	Network	$\begin{gathered} \mathrm{DM} \\ {\left[\mathrm{pc} \mathrm{~cm}^{-3}\right]} \end{gathered}$	$\begin{gathered} D_{L} \text {-Low } \\ {[\mathrm{Mpc}]} \\ \hline \end{gathered}$	$\begin{gathered} D_{L} \text {-High } \\ {[\mathrm{Mpc}]} \end{gathered}$	BNS	$\begin{aligned} & \text { Generic } \\ & \text { NSBH } \end{aligned}$	Aligned BHNS	$\underset{\mathrm{SG}}{\mathrm{SG}}$	$\begin{gathered} \mathrm{SG} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} \mathrm{ADI} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { DS2P } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \text { WNB } \\ \text { C } \end{gathered}$
FRB 20190812A	04:35:08	$17^{\mathrm{h}} 53^{\mathrm{m}} 14^{\mathrm{s}}$	$50^{\circ} 48^{\prime}$	H1L1V1	250	190	1400	-	-	-	79	4.1	24	1.5	24
FRB 20190903A	12:25:19	$3^{\text {h }} 12^{\mathrm{m}} 01^{\text {s }}$	$21^{\circ} 25^{\prime}$	L1V1	210	67	930	180	260	360	13	0.33	7.3	0.27	3.1
FRB 20190912A	00:50:21	$16^{\mathrm{h}} 13^{\mathrm{m}} 58^{\text {s }}$	$22^{\circ} 13^{\prime}$	L1V1	210	98	1100	-	-	-	15	0.46	9.4	0.29	3.5
FRB 20190912B	08:51:31	$0^{\mathrm{h}} 15^{\mathrm{m}} 57^{\mathrm{s}}$	$6^{\circ} 12^{\prime}$	H1L1	130	23	490	240	300	440	74	3.6	27	1.1	21
FRB 20190912C	09:46:46	$1^{\mathrm{h}} 13^{\mathrm{m}} 16^{\text {s }}$	$67^{\circ} 08^{\prime}$	H1	340	42	1000	190	240	320	-	-	-	-	-
FRB 20190913A	15:11:12	$6^{\mathrm{h}} 40^{\mathrm{m}} 02^{\text {s }}$	$39^{\circ} 39^{\prime}$	L1	230	32	710	200	250	330	-	-	-	-	-
FRB 20190922A	00:11:04	$16^{\mathrm{h}} 14^{\mathrm{m}} 10^{\text {s }}$	$68^{\circ} 48^{\prime}$	H1V1	200	66	960	140	220	290	16	0.53	3.1	0.19	3.4
FRB 20190928A	21:32:10	$14^{\mathrm{h}} 00^{\mathrm{m}} 25^{\text {s }}$	$80^{\circ} 06^{\prime}$	H1L1V1	140	20	510	220	270	370	57	3	22	1.1	19
FRB 20190929B	13:32:01	$6^{\text {h }} 02^{\mathrm{m}} 53^{\text {s }}$	$11^{\circ} 51^{\prime}$	H1L1V1	380	150	1500	-	-	-	77	3.9	26	1.7	22

Fig. 7 compares the D_{90} values for the BNS and NSBH (with generic spin) emission models with the 90% credible intervals on D_{L} inferred by the MCMC analysis. The plot shows the FRB sample in order of increasing distance. No event can be fully excluded from any of the models we have considered for this search, because there is still a sufficient region of space from which the FRB events could have originated that is outside the detection range of the searches performed.

5.4. RAVEN Analysis Results

As described in Section 4.3, two RAVEN coincidence searches were completed with differing time windows, $[-600 \mathrm{~s},+120 \mathrm{~s}]$ for the generic transient search and $[-10 \mathrm{~s},+2 \mathrm{~s}]$ for the modelled search. The generic transient search found 8 coincidences and the modelled search found 1 coincidence. However, none of these were of sufficient significance, as determined by the computed joint false-alarm rate from the two samples, to be distinguished from random coincidences. All of the FRBs in these coincidences had distances that were well beyond the values of D_{90} obtained, with the exception being FRB 20190518E, a repeat of burst FRB 20190518A, with 9 episodes occurring during O3a. Of these 9 repeating episodes, 7 were also analyzed using our generic transient search method, as described earlier. Again, none of the repeating episodes returned a significant falsealarm probability, with the minimum p-value across the search of repeating FRB events equal to 1.3×10^{-1}.

5.5. Upper Limits on GW Energy

A measure of the inferred distance to a FRB source also allows one to place constraints on the energy carried in a burst of GWs. The GW energy, E_{GW}, emitted by an elliptically polarized GW burst signal can be related to the root-sum-square signal amplitude h_{rss} and the central frequency of the source, f_{0}, through (Sutton 2013):

$$
\begin{equation*}
E_{\mathrm{GW}}=\frac{2}{5} \frac{\pi^{2} c^{3}}{G} D_{\mathrm{L}}^{2} f_{0}^{2} h_{\mathrm{rss}}^{2} \tag{5}
\end{equation*}
$$

where D_{L} is the luminosity distance to the source. As the DMs of FRBs provide a measure of the maximum distance, one can use Eq. (5) to place 90% upper limits on the GW energy emitted by each FRB source, $E_{\mathrm{GW}}^{90 \%}$. This estimate, calculated using $h_{\mathrm{rss}}^{90 \%}$, the 90% detection upper limit on the root-sum-squared GW amplitude, is highly dependent on the detector sensitivity and antenna factors at the time of the FRB as well as the central frequency of the simulated waveform injections.

Table A1 and Table A2 provide the upper limits on $E_{\mathrm{GW}}^{90 \%}$ for SG models and DS2P or WNB GW burst mod-
els respectively. These limits assume that the FRB distances are at the lower limits of their inferred distance ranges. Given a large range of models, and since this quantity scales as $h_{\mathrm{rss}}^{2} f_{0}^{2}$, one would expect the lower frequency models to provide the most constraining limits. For SG models, the most constraining estimate was 2.5×10^{50} erg for the 70 Hz SG-A model and for the highest frequency model considered, SG-H at 1995 Hz , the upper limit was $7.9 \times 10^{54} \mathrm{erg}$. These values were obtained for the closest inferred burst in the sample, FRB 20190425A. The same burst yielded upper limit values in the range $4.8-470 \times 10^{50} \mathrm{erg}$ for the WNB model. The DS2P model gave the best constraints, $5.8-6.4 \times 10^{54} \mathrm{erg}$, for FRB 20190531B.

For completeness, in Table A3 and Table A4, we also provide less constraining limits on $E_{\mathrm{GW}}^{90 \%}$ based on the upper credible intervals on the distance of each FRB.

Table 4 lists the repeating bursts that were analyzed in the generic transient search. The most sensitive counterpart to a repeating FRB was for CHIME/FRB event FRB20190825A. The SG injection centered at 1600 Hz (which most closely models an f-mode) was recovered 90% of the time at $h_{\text {rss }}=2.62 \times 10^{-22}$. The distance to this event is 148.1 Mpc to 149.9 Mpc . This corresponds to an energy upper limit range of $5.83 \times 10^{55} \mathrm{erg}$ to 5.98×10^{55} erg.

These estimates are well above predictions of the GW emissions through the NS's fundamental f-mode discussed in section 2.

6. THE M81 REPEATER FRB 20200120E

A repeater, FRB 20200120 E , which was discovered by CHIME/FRB on 20 Jan 2020, overlaps with the second part of the third observing run of Advanced LIGO and Advanced Virgo (O3b) which took place between 1 October 2019 15:00 UTC and 27 March 2020 15:00 UTC. This burst is at 3.6 Mpc , the closest extragalactic FRB so far discovered (Bhardwaj et al. 2021b). This event was shown to be conclusively associated with a globular cluster in the M81 galactic system (Kirsten et al. 2021) which supports the possibility that it was formed from an evolved stellar population such as a compact binary system. Due to the proximity and significance of this burst, we discuss it in this paper, despite it being discovered after O3a.

The burst FRB 20200120E was shown to repeat at least 4 times. Two of the repeats occurred after O3b; another episode, despite being consistent with the localization of the other associated bursts, had no intensity data saved. Therefore, we discuss here only the initial burst FRB 20200120E, for which GW data exists.

Table 4. Details of the 3 repeating FRBs analyzed in the generic transient search and their various repeating episodes. The TNS name is provided in the first column. The Network column lists the GW detector network used: H1 = LIGO Hanford, L1 $=$ LIGO Livingston, V1 = Virgo. The total DM for each FRB is listed in the DM column and the 90% credible intervals on the luminosity distance are provided in columns D_{L}-low and D_{L}-High. 11 total events were analyzed for the three different FRB repeaters considered. For FRB 20190518A and its associated repeats, we list only the distance of Marcote et al. (2020) obtained by galaxy localization.

FRB Name	UTC Time $[\mathrm{s}]$	R.A.	Dec.	Network	DM $\left[\mathrm{pc} \mathrm{cm}^{-3}\right]$	D_{L}-Low $[\mathrm{Mpc}]$	D_{L}-high $[\mathrm{Mpc}]$
FRB20190817A	$14: 39: 52$	$4^{\mathrm{h}} 21^{\mathrm{m}} 08^{\mathrm{s}}$	$73^{\circ} 47^{\prime}$	H1L1V1	190	19	540
FRB20190929C	$11: 58: 29$	$4^{\mathrm{h}} 22^{\mathrm{m}} 25^{\mathrm{s}}$	$73^{\circ} 40^{\prime}$	H1L1V1	190	21	550
FRB20190518A	$18: 13: 33$	$1^{\mathrm{h}} 58^{\mathrm{m}} 14^{\mathrm{s}}$	$65^{\circ} 46^{\prime}$	L1V1	350.5	148.1	149.9
FRB20190518E	$18: 20: 57$	$1^{\mathrm{h}} 57^{\mathrm{m}} 50^{\mathrm{s}}$	$65^{\circ} 43^{\prime}$	L1V1	350.0	148.1	149.9
FRB20190519A	$17: 50: 16$	$1^{\mathrm{h}} 43^{\mathrm{m}} 44^{\mathrm{s}}$	$65^{\circ} 48^{\prime}$	H1V1	350.0	148.1	149.9
FRB20190519C	$18: 10: 41$	$1^{\mathrm{h}} 58^{\mathrm{m}} 00^{\mathrm{s}}$	$65^{\circ} 47^{\prime}$	H1V1	348.8	148.1	149.9
FRB20190809A	$12: 50: 40$	$1^{\mathrm{h}} 58^{\mathrm{m}} 16^{\mathrm{s}}$	$65^{\circ} 43^{\prime}$	H1L1	356.2	148.1	149.9
FRB20190825A	$11: 48: 18$	$1^{\mathrm{h}} 58^{\mathrm{m}} 07^{\mathrm{s}}$	$65^{\circ} 42^{\prime}$	H1L1	349.6	148.1	149.9
FRB20190825B	$11: 51: 54$	$1^{\mathrm{h}} 58^{\mathrm{m}} 04^{\mathrm{s}}$	$65^{\circ} 23^{\prime}$	H1L1	349.9	148.1	149.9
FRB20190421A	$08: 00: 04$	$13^{\mathrm{h}} 51^{\mathrm{m}} 57^{\mathrm{s}}$	$48^{\circ} 10^{\prime}$	H1L1V1	230	130	1300
FRB20190702B	$03: 14: 36$	$13^{\mathrm{h}} 52^{\mathrm{m}} 25^{\mathrm{s}}$	$48^{\circ} 15^{\prime}$	L1V1	220	130	1300

At the time of FRB 20200120E, only H1 data was 1635 available, thus a generic transient search was not con- 1636 ducted. Likewise, since this is a repeating event, it ${ }_{1637}$ does not pass our criteria for conducting a modelled ${ }_{1638}$ search. Due to these restrictions, only a RAVEN coin- 1639 cidence search was conducted within a $[-6000,+6000]$ S $\quad 1640$ time window. No coincidences were found with suffi- ${ }_{1641}$ cient significance as determined by the coincident false- 1642 alarm rate. Given the relative close proximity of this ${ }_{16}$ burst, further repeat emissions will be of interest for GW follow-up during the fourth observing run of Advanced LIGO, Advanced Virgo and Kagra (O4) (Abbott et al. ${ }_{1646}$ 2020) when constraints on the energy emitted in ${ }_{1647}$ GWs will be of order 10^{50} at around 500 Hz . ${ }_{1648}$
7. CONCLUSIONS

We performed a targeted search for GWs associated with FRBs detected by the CHIME/FRB project during O3a. As the sources of non-repeating FRBs are currently not known, we ran both a modelled search for BNS and NSBH signals (Harry \& Fairhurst 2011; Williamson et al. 2014) and a generic transient search for generic GW transient signals (Sutton et al. 2010; Was et al. 2012).

Our searches found no significant GW event candidates in association with the analyzed FRBs. We set 90% confidence lower bounds on the distances to FRB progenitors for several different emission models. Additionally, we present 90% credible intervals on the luminosity distance, D_{L}, inferred from the DM measurement of each FRB source.

The D_{L} information can be used to test models based on the simulated injections used for calculating the D_{90} values of each FRB. However, the significant uncertainties in the relative contributions to the total DM for each FRB produce relatively wide credible intervals for the D_{L} posteriors. We find no FRB event can be fully excluded from any of the models we have considered due to some posterior support on D_{L} existing for the FRB outside the detection range of the analyzes performed.
The results however, as illustrated in Fig. 7, indicate that the GW network's detection range is advancing into cosmological volumes where FRB emissions are expected. This is encouraging as we look forward to future GW searches at higher sensitivity. Furthermore, the redshifts obtained from the ongoing efforts to localize host galaxies (there are currently 18 FRBs with an associated host galaxy (see http://frbhosts.org/) could significantly improve the chances of constraining progenitor populations (Heintz et al. 2020; Bhandari et al. 2021).

The distance estimates for each FRB allowed us to place 90% upper limits on the GW energy emitted by each FRB source, $E_{\mathrm{GW}}^{90 \%}$. For each non-repeating FRB analyzed with a generic transient search, we provided limits on $E_{\mathrm{GW}}^{90 \%}$ for a range of emission models. Repeating FRBs were also analyzed to determine 90% upper limits on the energy emitted through GWs. For the most sensitive repeating FRB analysis in our sample we find an energy upper limit range of $5.83 \times 10^{54} \mathrm{erg}$ to $5.98 \times 10^{55} \mathrm{erg}$, well above the predictions for GW emissions from the fundamental f-modes of NSs. Based on

Figure 7. Lower limits on the 90% confidence level exclusion distances for BNS (lower bar), generic spin NSBH (middle bar), and aligned spin NSBH (upper bar) progenitor systems are shown as found by the modelled search. These are compared to the 90% credible intervals (whisker plot) on the D_{L} posterior determined by the MCMC method for the FRBs considered in this study.

Equation 5, an FRB event such as that associated with SGR 1935+2154 occurring during O3a would have allowed the search to probe the more optimistic of these estimates allowing limits, $E_{\mathrm{GW}} \sim 10^{47} \mathrm{erg}$, assuming a generic burst waveform emitting at roughly 1 kHz at 10 kpc .

We also analyzed the repeater, FRB 20200120E, discovered on 20 Jan 2020 during O3b. A RAVEN (Urban 2016; Cho 2019) coincidence search for any previously detected compact binary coalescence GW events was conducted within a $[-6000,+6000] \mathrm{s}$ time window around the first burst of this repeater. No coincidences were found with sufficient significance to be distinguished from random coincidences, as determined by the computed joint false-alarm rate from the two samples.

A comparison of the expected volumetric rates is one avenue to yield insights on possible associations between two transient source populations. Analysis of the most recent Gravitational Wave Transient Catalog 3 (GWTC-3 The LIGO Scientific Collaboration et al. 2021a,b) has inferred merger rates in the ranges $10-1700 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ for BNS and 7.8-140 for NSBH populations. These estimates are significantly lower than estimates of the FRB rate $3.5_{-2.4}^{+5.7} \times 10^{4} \mathbf{G p c}^{-3} \mathbf{y r}^{-1}$ provided by Luo et al. (2020) for sources above $10^{42} \mathrm{erg} \mathrm{s}^{-1}$. Based on these numbers, the percentage of BNSs events that could possibly be associated with FRBs is in the range $0.01-17 \%$ and for NSBH sources, $0.008-3 \%$. As noted by (Luo et al. 2020), if BNS/NSBH sources were only associated with FRBs from the high end of the luminosity function ($>10^{43} \mathrm{erg} \mathrm{s}^{-1}$) such rates could be comparable.
However, there are a number of unknown factors that complicate reconciling the GW and FRB source populations; these include the proportion of FRBs that may repeat or the possible effects of beaming (Ravi 2019; Connor et al. 2020).

Probing the local population of FRBs through targeted searches, the strategy adopted in this study, can constrain associations between GW sources and FRBs. The distance uncertainties in the FRB sample are a particular obstacle and ongoing efforts to identify FRB host galaxies (Chatterjee et al. 2017) could provide a valuable prior information for FRBs discovered within the BNS/NSBH detection range of future searches.

CHIME/FRB is deploying a set of Outrigger telescopes located at sufficient distances to al-
low autonomous very-long-baseline interferometry on CHIME/FRB detected bursts (MenaParra et al. 2022; Cassanelli et al. 2022). This development promises sub-arcsecond localisations on hundreds of FRBs/year allowing host galaxy identification and redshift determination through optical follow-ups or through cross matching of positional data with photometric galaxy surveys (Shin et al. 2022). The resulting sample of FRBs at low-redshift will be a significant development for GW detection networks, particularly as the sensitive volume increases with future observation runs and should allow targeted searches to obtain statistical evidence towards supporting or ruling out GW-FRB associations.

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science \& Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d'Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union - European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Rus-
sian Science Foundation, the European Commission, 1809 the European Social Funds (ESF), the European Re- ${ }_{1810}$ gional Development Funds (ERDF), the Royal Society, ${ }_{1811}$ the Scottish Funding Council, the Scottish Universi- 1812 ties Physics Alliance, the Hungarian Scientific Research ${ }_{1813}$ Fund (OTKA), the French Lyon Institute of Origins ${ }_{1814}$ (LIO), the Belgian Fonds de la Recherche Scientifique 1815 (FRS-FNRS), Actions de Recherche Concertées (ARC) ${ }^{1816}$ and Fonds Wetenschappelijk Onderzoek - Vlaanderen ${ }_{1817}$ (FWO), Belgium, the Paris Île-de-France Region, the ${ }_{1818}$ National Research, Development and Innovation Office 1819 Hungary (NKFIH), the National Research Foundation 1820 of Korea, the Natural Science and Engineering Research 1821 Council Canada, Canadian Foundation for Innovation 1822 (CFI), the Brazilian Ministry of Science, Technology, ${ }^{1823}$ and Innovations, the International Center for Theoreti- ${ }_{182}^{184}$ cal Physics South American Institute for Fundamental 1825 Research (ICTP-SAIFR), the Research Grants Council ${ }_{1826}$ of Hong Kong, the National Natural Science Foundation ${ }^{1827}$ of China (NSFC), the Leverhulme Trust, the Research 1828 Corporation, the Ministry of Science and Technology 1829 (MOST), Taiwan, the United States Department of En- ${ }_{1830}$ ergy, and the Kavli Foundation. The authors gratefully 1831 acknowledge the support of the NSF, STFC, INFN and ${ }_{1832}$ CNRS for provision of computational resources.
This work was supported by MEXT, JSPS Leadingedge Research Infrastructure Program, JSPS Grant-inAid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Net- ${ }^{1839}$ works, JSPS Grant-in-Aid for Scientific Research (S) ${ }_{1840}$ 17H06133 and 20H05639, JSPS Grant-in-Aid for Trans- ${ }_{1841}$ formative Research Areas (A) 20A203: JP20H05854, ${ }^{1882}$ the joint research program of the Institute for Cosmic ${ }^{1883}$ Ray Research, University of Tokyo, National Research ${ }_{184}$ Foundation (NRF), Computing Infrastructure Project ${ }^{1845}$ of KISTI-GSDC, Korea Astronomy and Space Science ${ }^{1846}$ Institute (KASI), and Ministry of Science and ICT ${ }_{1847}$ (MSIT) in Korea, Academia Sinica (AS), AS Grid Cen- ${ }_{1888}$
ter (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK.
We acknowledge that CHIME is located on the traditional, ancestral, and unceded territory of the Syilx/Okanagan people.
We thank the Dominion Radio Astrophysical Observatory, operated by the National Research Council Canada, for gracious hospitality and expertise. CHIME is funded by a grant from the Canada Foundation for Innovation (CFI) 2012 Leading Edge Fund (Project 31170) and by contributions from the provinces of British Columbia, Québec and Ontario. The CHIME/FRB Project is funded by a grant from the CFI 2015 Innovation Fund (Project 33213) and by contributions from the provinces of British Columbia and Québec, and by the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto. Additional support was provided by the Canadian Institute for Advanced Research (CIFAR), McGill University and the McGill Space Institute via the Trottier Family Foundation, and the University of British Columbia. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research \& Innovation. The National Radio Astronomy Observatory is a facility of the National Science Foundation (NSF) operated under cooperative agreement by Associated Universities, Inc. FRB research at UBC is supported by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research. The CHIME/FRB baseband system is funded in part by a CFI John R. Evans Leaders Fund award to IHS.
We would like to thank all of the essential workers who put their health at risk during the COVID-19 pandemic, without whom we would not have been able to complete this work.

APPENDIX

A. TABLES OF UPPER LIMITS ON THE ENERGY EMITTED THROUGH GWS FOR THE GENERIC TRANSIENT SEARCH

This section provides the supplemental tables containing the upper limits on the energy emitted through GWs for the generic transient search for different waveform models and luminosity distance estimates. Table A1 and Table A2 provide the upper limits on $E_{\mathrm{GW}}^{90 \%}$ for SG models and DS2P or WNB GW burst models respectively. These limits assume that the FRB distances are at the lower limits of their inferred distance ranges. Table A3 and Table A4, provide less constraining limits on $E_{\mathrm{GW}}^{90 \%}$ based on the upper credible intervals on the distance of each FRB.

Table A1. The upper limits on the energy emitted through GWs in erg for the generic transient search using the SG waveforms described in Table 1. The distances represent the lower bounds of 90% credible intervals from the MCMC inference described in Section 3.

RB	$\begin{gathered} D_{\mathrm{L}} \\ {[\mathrm{Mpc}]} \end{gathered}$	$\begin{gathered} \mathrm{SG} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \hline \text { SG } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SG} \\ \mathrm{C} \end{gathered}$	SG	$\overline{\mathrm{SG}}$	$\overline{\mathrm{SG}}$	$\overline{\mathrm{SG}}$	$\overline{\mathrm{SG}}$
	6.0×10^{1}	1.5	2.8×1	4.9×1	$4.1 \times$	5.5×10	5.4×1	3.0	$1.1 \times$
	2.5×10^{1}	2.6	$4.3 \times$	$9.7 \times$		9.4×10^{53}	8.9×10^{54}	5.0×10^{55}	1.5×10^{58}
FRB 20190423B	5.8		. \times	3.7			5.6		
F	1.3	$2.5 \times$	$3.5 \times$	6.5×10	3.4	$2.6 \times$	$2.7 \times$	1.6	7.9×10
F	$4.4 \times$	$5.8 \times$	$8.8 \times$	2.2×10^{5}	1.3	$2.3 \times$	2.1×10^{55}	9.8×10^{55}	3.5×10^{56}
	6.	9.	1.3×10^{52}	2.3	9,5	1.1×10^{54}	6.8	3.6×10^{55}	2.0×10^{56}
FRB 201905	3.7×10^{1}	3.2	$3.4 \times$	$7.9 \times$	3.3	2.5	2.0×10^{54}	8.1	3.1×10^{5}
F	2.0×10^{2}	8.6	$1.1 \times$	$1.6 \times$	6.3	1.1	6.8	4.8	1.5×10^{57}
F	9.	1.1	3.2×10^{53}	9.	.	8.7×10^{55}	7.5×10^{56}	3.2×10^{57}	1.2×10^{58}
FRB 201906	6.8×10^{1}	3.0	$2.8 \times$	$1.0 \times$	5.2	8.7	9.4	5.2	1.6×10^{57}
F	$1.7 \times$	1.7	$1.3 \times$	$2.7 \times$	8.2	1.1	9.6	3.6	1.
F	6.5	8.2	8.5×10^{51}	1.5	7.3	. 0	7.0	3.7	3.6
FRB 201906	2.8×10^{1}	1.2	$1.0 \times$	$2.2 \times$	1.3	$9.3 \times$	7.4	4.2	1.8×10^{55}
FR	1.1×10^{2}	1.9	$2.1 \times$	6.9×10^{5}	3.1	3.5	5.1	2.8	8.2×10^{57}
FRB 201906	6.2×10^{1}	9.5	$1.3 \times$	2.4×10^{5}	9.2	9.2	8.3	4.2	8.8×10^{55}
FRB 2019061	7.8		7.7	1.7	7.0	6.8	5.9	3.0	1.4×10^{56}
FR	7.8×10^{1}	$1.1 \times$	$1.2 \times$	4.6×10^{5}	1.5×10	5.4	6.5×10	1.7	4.9
FRB 201906	$4.7 \times$	1.3	$1.9 \times$	$4.2 \times$	1.7	2.9	2.3	1.5	8.3
F	8.9	1.1	$1.6 \times$	2.3	1.0	9.4	7.6	3.3	1.4×10^{56}
FRB 201907	1.4×10^{2}	1.2	$1.6 \times$	$4.3 \times$	2.3	4.2	4.4	2.2	6.7×10^{57}
FRB 201907	$7.2 \times$	$1.1 \times$	$1.1 \times$	$2.8 \times$	1.1	$1.1 \times$	7.7	3.1	1.2
FR	$9.8 \times$	7.0	$1.3 \times$	5.0	3.3	5.4	4.0	1.6	9.6×10^{57}
FRB 201908	1.9×10^{2}	3.7	$4.1 \times$	9.9×10^{5}	4.3	4.3	3.7×10	1.6×10	5.8×10^{56}
FR	6.7×10^{1}	9.0	$9.8 \times$	$5.0 \times$	4.4	5.5	7.4×10	3.4	9.2×10^{57}
FR	$9.8 \times$	$1.2 \times$	$2.0 \times$	$7.9 \times$	4.6	$1.0 \times$	$8.1 \times$	3.8	1.7×10^{58}
FRB 20190912B	2.3×10^{1}	7.1×10^{5}	9.1×10^{5}	1.7×10^{5}	8.1×10	6.9×10	7.1×10^{5}	3.9×10	1.5×10^{55}
FR	6.6×10^{1}	5.1×10^{52}	7.7×10^{5}	3.1×10^{53}	1.5×10^{5}	2.4×10^{55}	2.8×10^{56}	1.5×10^{57}	4.7×10^{57}
FRB 20190928	2.0×10^{1}	9.9×10^{50}	1.1×10^{5}	2.3×10^{51}	$9.2 \times$	1.1×10^{53}	8.2×10^{53}	3.7×10^{54}	1.4×10^{55}
FRB 20190929B	1.5×10^{2}	2.9×10^{52}	3.9×10^{52}	6.7×10^{52}	3.4×10^{53}	2.8×10^{54}	2.6×10^{55}	1.2×10^{56}	4.0×10^{56}

Table A2. The upper limits on the energy emitted through GWs in erg for the generic transient search using the DS2P and WNB waveforms described in Table 1. The distances represent the lower bounds of 90% credible intervals from the MCMC inference described in Section 3.

	[Mpc]						
	6.0×10	2.0×10	1.8×1	1.	9.5×1	3.4×10^{54}	1.0
	$2.5 \times$						
	5.8						
	. 3		4.6				
	$4.4 \times$		5.8		3.		
	6.						
	$3.7 \times$		6.4×10^{54}		8.6×10^{51}	1.4×10^{53}	5.6
FRB 20190601 C	$2.0 \times$	5.	8.3	1.	1.	3.	8.6×10^{54}
	9.		1.6×10^{57}			1.5×10^{56}	
F	$6.8 \times$		1.7×10^{56}			6.2×10^{54}	1.8×10^{55}
FRB 20190606B	$1.7 \times$		9.9	3.	2.	4.7	1.3×10^{55}
	6.5	6.2×10^{55}	1.1×10^{58}		2.1×10^{52}	3.7×10^{53}	1.2×10^{54}
F	$2.8 \times$		1.1				1.6×10^{53}
F	$1.1 \times$		2.7		7.3	2.4	1.4×10^{56}
	$6.2 \times$	3.6	5.1		.	3.9×10^{53}	1.6×10^{54}
F	7.8		7.0			3.6	
	$7.8 \times$		4.8		9.3	2.8	5.9
	4.7		3.6		4.4		3.
F	$1.4 \times$	2.3	3.			1.5×10^{55}	
	7.2	3.7	6.	1.7	2.3	4.6	1.4
	9.8					8.	
	$1.9 \times$	2.7	5.3	8.2	.	2.4	7.1×10^{54}
	6.7	1.1	7.		3.	1.7×10^{55}	4.5
FRB 20190912A	9.8	2.0				2.9	8.9
FRB 2019091	$2.3 \times$	$7.6 \times$	$1.4 \times$	1.4	1.7	4.3	1.2
	$6.6 \times$	$2.2 \times$	3.2×10	1.5	$4.2 \times$	1.5×10	3.9
FR	$2.0 \times$	6.2	$1.1 \times$		2.6	4.3	$1.7 \times$
FRB 20190929B	1.5×10^{2}	1.4×10^{5}	3.0×10^{5}	6.6×10^{5}	7.3×10^{52}	1.8×10^{5}	4.7×10

Table A3. As for Table A1 but with distances based on the the upper bounds of 90% credible intervals on the luminosity distance.

FRB	$\begin{gathered} D_{\mathrm{L}} \\ {[\mathrm{Mpc}]} \end{gathered}$	$\begin{gathered} \hline \text { SG } \\ \text { A } \end{gathered}$	$\begin{gathered} \hline \mathrm{SG} \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} \hline \mathrm{SG} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} \hline \text { SG } \\ \text { D } \end{gathered}$	$\begin{gathered} \hline \text { SG } \\ \text { E } \end{gathered}$	$\begin{gathered} \hline \text { SG } \\ \text { F } \end{gathered}$	$\begin{gathered} \hline \text { SG } \\ \text { G } \end{gathered}$	$\begin{gathered} \hline \text { SG } \\ \mathrm{H} \end{gathered}$
FRB 20190410A	9.6×10^{2}	3.9×10^{5}	7.2×10^{54}	1.2×10^{55}	1.0×10^{56}	1.4×10^{57}	1.4×10^{58}	7.5×10^{58}	2.7×10^{59}
FRB 20190419B	5.8×10^{2}	1.4×10^{54}	2.3×10^{54}	5.2×10^{54}	3.2×10^{55}	5.1×10^{56}	4.8×10^{57}	2.7×10^{58}	8.0×10^{60}
FRB 20190423B	1.7×10^{3}	$5.1 \times$	7.7×10	3.2×1	$3.2 \times$	4.0	4.9×10^{59}	2.9×10^{60}	9.4×10^{60}
FRB 20190425A	3.9×10^{2}	2.4×10^{53}	3.3×10^{53}	6.1×10^{53}	3.2×10^{54}	2.4×10^{55}	2.5×10^{56}	1.6×10^{57}	7.5×10^{57}
FRB 201905	1.0×10^{3}	3.1	4.7	1.2	6.8	1.2×10^{57}	1.1×10^{58}	5.3×10^{58}	1.9×10^{59}
FRB 20190518D	8.5×10^{2}	1.8	$2.4 \times$	4.4×1	1.8	$2.0 \times$	$1.3 \times 1{ }^{5}$	6.9	3.8×10^{58}
FRB 20190531B	6.8×10^{2}	1.0×10^{54}	1.1×10^{54}	2.6×10^{54}	1.1×10^{55}	8.2×10^{55}	6.7×10^{56}	2.7×10^{57}	1.0×10^{58}
FRB 2019060	1.7×10^{3}	6.6×10^{54}	8.3×10^{5}	1.2×10^{5}	4.8×10^{55}	8.2×10^{56}	5.2×10^{57}	3.6×10^{58}	1.1×10^{59}
FRB 2019060	1.1×10^{3}	1.5	$4.5 \times$	1.3	5.	1.2	1.	5	1.6×10^{60}
FRB 20190605C	8.9×10^{2}	5.1×10^{54}	4.9×10^{54}	1.7×10^{55}	8.9×10^{55}	1.5×10^{5}	1.6×10^{58}	8.9×10^{58}	2.7×10^{59}
FR	1.5×10^{3}	1.3×10^{55}	9.6×10^{54}	2.0×10^{55}	6.2×10^{55}	8.3×10^{56}	7.3×10^{57}	2.7×10^{58}	1.0×10^{59}
FRB 201906	9.2×10^{2}	1.7	$1.7 \times$	$3.1 \times$	1.5	$1.6 \times$	1.4×10^{57}	7.	7.3×10^{58}
FRB 20190613B	7.8×10^{2}	9.7×10^{53}	8.2×10^{53}	1.8×10^{54}	1.0×10^{55}	7.4×10^{55}	5.8×10^{56}	3.4×10^{57}	1.4×10^{58}
FRB 20190616	1.1×10^{3}	2.1×10^{55}	2.4×10^{55}	7.6×10^{55}	3.4×10^{56}	3.9×10^{57}	5.6×10^{58}	3.1×10^{59}	9.0×10^{59}
FRB 20190617A	8.7×10^{2}	$1.9 \times$	$2.5 \times$	4.7×10^{5}	$1.8 \times$	1.8×10^{56}	1.6×10^{57}	8.2×10^{57}	1.7×10^{58}
FRB 20190618A	9.6×10^{2}	9.1×10^{53}	1.2×10^{54}	2.6×10^{54}	1.1×10^{55}	1.0×10^{56}	9.0×10^{56}	4.5×10^{57}	2.1×10^{58}
FRB 20190621	9.8×10^{2}	1.7×10^{5}	2.0×10^{55}	7.2×10^{55}	2.3×10^{56}	8.4×10^{57}	1.0×10^{59}	2.6×10^{59}	7.7×10^{59}
FRB 20190624B	8.2×10^{2}	4.0×10^{54}	5.8×10^{54}	1.3×10^{55}	5.1×10^{55}	8.9×10^{56}	7.0×10^{57}	4.6×10^{58}	2.5×10^{59}
FRB 20190710A	1.0×10^{3}	1.4×10^{54}	2.0×10^{54}	2.9×10^{54}	1.2×10^{5}	1.2×10^{56}	9.5×10^{56}	4.1×10^{57}	1.7×10^{58}
FRB 20190713A	1.4×10^{3}	1.2×10^{55}	1.6×10^{55}	4.4×10^{55}	2.4×10^{56}	4.4×10^{57}	4.6×10^{58}	2.2×10^{59}	6.9×10^{59}
FRB 20190718A	9.7×10^{2}	2.0×10^{54}	2.1×10^{54}	5.1×10^{54}	2.0×10^{55}	1.9×10^{56}	1.4×10^{57}	5.8×10^{57}	2.3×10^{58}
FRB 20190722A	1.1×10^{3}	9.4×10^{5}	1.7×10^{55}	6.7×10^{55}	4.4×10	7.2×10^{57}	5.3×10^{58}	2.2×10^{59}	1.3×10^{60}
FRB 20190812A	1.4×10^{3}	2.0×10^{54}	2.2×10^{54}	5.3×10^{54}	2.3×10^{55}	2.3×10^{56}	2.0×10^{57}	8.7×10^{57}	3.1×10^{58}
FRB 20190903A	9.3×10^{2}	1.7×10^{55}	1.9×10^{55}	9.6×10^{55}	8.4×10^{56}	1.0×10^{58}	1.4×10^{59}	6.5×10^{59}	1.8×10^{60}
FRB 20190912A	1.1×10^{3}	1.5×10^{5}	2.5×10^{5}	9.9×10^{55}	5.8×10^{5}	1.2×10	1.0×10^{59}	4.7×10	2.2×10^{60}
FRB 20190912B	4.9×10^{2}	3.2×10^{53}	4.1×10^{53}	7.7×10^{53}	3.7×10^{54}	3.1×10^{55}	3.3×10^{56}	1.8×10^{57}	6.7×10^{57}
FRB 20190922A	9.6×10^{2}	1.1×10^{55}	1.6×10^{55}	6.6×10^{55}	3.2×10^{56}	5.0×10^{57}	5.9×10^{58}	3.2×10^{59}	9.8×10^{59}
FRB 20190928A	5.1×10^{2}	6.1×10^{53}	6.9×10^{53}	1.5×10^{54}	5.7×10^{54}	6.6×10^{55}	5.1×10^{56}	2.3×10^{57}	8.4×10^{57}
FRB 20190929B	1.5×10^{3}	3.0×10^{54}	4.1×10^{54}	7.1×10^{54}	3.6×10^{55}	3.0×10^{56}	2.8×10^{57}	1.3×10^{58}	4.2×10^{58}

Table A4. As for Table A2 but with distances based on the the upper bounds of 90% credible intervals on the luminosity distance.

FRB	$\begin{gathered} D_{\mathrm{L}} \\ {[\mathrm{Mpc}]} \end{gathered}$	$\begin{gathered} \hline \text { DS2P } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \text { DS2P } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WNB } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { WNB } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \text { WNB } \\ \text { C } \\ \hline \end{gathered}$	WNB
FRB 20190410	9.6×10^{2}	5.0×10^{58}	4.5×10^{58}	3.2×10^{55}	2.4×10^{55}	8.6×10^{56}	2.5
F	5.8×10^{2}	2.3	1.6×10^{58}	8.3	9.5	3.2×10^{56}	56
FRB 201904	1.7×10^{3}	2.1×10	2.2×10^{6}	$2.4 \times$	2.6×10	1.2	3.2×10^{58}
FRB 20190425	3.9×10^{2}	1.6×10^{59}	4.4×10^{57}	4.5×10^{53}	7.4×10^{53}	1.3×10^{55}	4.4×10^{55}
FRB 20190517C	1.0×10^{3}	3.6	3.2×10^{58}	1.	1.7×10^{55}	7.	57
FRB 20190518D	8.5×10^{2}	$1.3 \times$	$2.1 \times$	3.7	4.9	1.	3.
FR	6.8×10^{2}	1.9×10	2.1×10^{57}	1.9×10^{5}	2.9×10^{54}	4.5×10^{55}	1.8×10^{56}
FRB 20190601 C	1.7×10^{3}	4.	6.	9	1.2×10^{55}	2.6×10^{56}	
FRB 20190604G	1.1×10^{3}	$2.6 \times$	2.2		6.8	2.0	4.7×10^{58}
FRB 20190605 C	8.9×10^{2}	4.1×10	2.9×10^{58}	5.9×10^{5}	2.7×10^{5}	1.1×10^{57}	3.0×10^{57}
FRB 20190606	1.5×10^{3}	$4.3 \times$	7.5×10^{5}	2.	1.5×10^{55}	3.	. 7×10^{56}
FRB 201906	9.2×10^{2}	1.3	2.2	2.7	4.2	7.5	2.5×10^{56}
FRB 20190613B	7.8×10^{2}	4.9×10^{57}	8.9×10^{57}	1.3×10^{5}	2.0×10^{54}	4.3×10^{55}	1.3×10^{56}
FRB 20190616	1.1×10^{3}	2.4×10^{59}	3.0×10^{5}	1.2×10^{5}	8.0×10^{5}	2.6	1.6
FRB 201906	8.7×10^{2}	$7.1 \times$	1.0×10	6.4	5.3	7.7	3.2
FRB 20190618	9.6×10^{2}	6.7×10^{57}	1.1×10^{58}	$1.5 \times$	2.7×10^{54}	5.4×10^{55}	1.8×10^{56}
FRB 20190621	9.8×10^{2}	1.8×10^{5}	7.6×10^{5}		1.5×10^{56}	4.4×10^{57}	9.2×10^{57}
FRB 20190624	8.2×10^{2}	$5.9 \times$	1.1×10^{59}	$8.5 \times$	$1.4 \times$	3.1×10^{56}	1.1
FRB 20190710	1.0×10^{3}	4.8×10^{57}	5.4×10^{57}	2.1×10^{54}	3.2×10^{54}	6.9×10^{55}	2.0×10^{56}
FRB 2019071	1.4×10^{3}	2.4×10	3.8×10^{5}	3.2×10^{5}	5.2×1	1.6×10^{57}	4.5×10^{57}
FRB 20190718	9.7×10^{2}	$6.7 \times$	1.1×10^{58}	$3.2 \times$	4.2×10^{54}	8.4×10^{55}	2.6
FRB 20190722A	1.1×10^{3}	1.5×10^{5}	1.1×10^{5}	1.2×10^{5}	3.6×10^{56}	1.1×10	2.3×10
FRB 201908	1.4×10^{3}	1.4×10^{58}	2.8×10^{58}	4.4×10^{54}	6.1×10^{54}	1.3×10^{56}	3.8×10^{56}
FRB 20190903	9.3×10^{2}	2.1×10^{5}	1.4×10^{59}	9.6×10^{5}	7.0×10^{55}	3.3×10^{57}	8.7×10^{57}
FRB 20190912A	1.1×10^{3}	2.5×10^{5}	1.8×10^{5}	9.9×10^{55}	8.2×10^{55}	3.7×10^{57}	1.1×10^{5}
FRB 20190912B	4.9×10^{2}	3.5×10^{57}	6.4×10^{57}	6.5×10^{53}	7.9×10^{53}	2.0×10^{55}	5.3×10^{55}
FRB 20190922	9.6×10^{2}	4.7×10^{5}	6.7×10^{59}	3.2×10^{5}	8.8×10^{55}	3.1×10^{57}	8.3×10^{57}
FRB 20190928A	5.1×10^{2}	3.8×10^{5}	7.1×10^{57}	1.1×10^{5}	1.6×10^{5}	2.6×10^{5}	1.1×10^{56}
FRB 20190929B	1.5×10^{3}	1.5×10^{58}	3.1×10^{58}	7.0×10^{54}	7.8×10^{54}	1.9×10^{56}	5.0×10^{56}

Aasi, J., et al. 2014, PhRvD, 89, 122004, doi: 10.1103/PhysRevD.89.122004

Aasi, J., et al. 2015, Class. Quant. Grav., 32, 074001
Abadie, J., Abbott, B. P., Abbott, R., et al. 2012, ApJ, 760, 12, doi: 10.1088/0004-637X/760/1/12
Abbott, B., et al. 2016, Phys. Rev. D, 93, 122008, doi: 10.1103/PhysRevD.93.122008
Abbott, B. P., J., LIGO Scientific Collaboration, \& Virgo Collaboration. 2017a, PhRvL, 119, 161101, doi: 10.1103/PhysRevLett.119.161101

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, PhRvL, 119, 161101, doi: 10.1103/PhysRevLett.119.161101
Abbott, B. P., et al. 2017, Astrophys. J., 848, L13, doi: 10.3847/2041-8213/aa920c
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJ, 841, 89, doi: 10.3847/1538-4357/aa6c47

Abbott, B. P., et al. 2018, Phys. Rev. Lett., 121, 161101, doi: 10.1103/PhysRevLett.121.161101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019a, ApJ, 886, 75, doi: 10.3847/1538-4357/ab4b48
—. 2019b, ApJ, 874, 163, doi: 10.3847/1538-4357/ab0e15
—. 2019c, PhRvD, 100, 024017, doi: 10.1103/PhysRevD.100.024017
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020, Living Reviews in Relativity, 23, 3, doi: 10.1007/s41114-020-00026-9

Abbott, B. P., et al. 2020, Classical and Quantum Gravity, 37, 055002, doi: 10.1088/1361-6382/ab685e
Abbott, R., LIGO Scientific Collaboration, et al. in preparation, Search for gravitational wave transients associated with magnetar bursts during the third Advanced LIGO and Advanced Virgo observing run
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021, ApJ, 915, 86, doi: 10.3847/1538-4357/abee15
Accadia, T., et al. 2012, JINST, 7, P03012, doi: 10.1088/1748-0221/7/03/P03012
Acernese, F., et al. 2015, Class. Quant. Grav., 32, 024001
Amiri, M., et al. 2019a, Nature, 566, 235, doi: 10.1038/s41586-018-0864-x
-. 2019b, Nature, 566, 230, doi: 10.1038/s41586-018-0867-7 1945
Anderson, M. M., Hallinan, G., Eastwood, M. W., et al. 2018, ApJ, 864, 22, doi: 10.3847/1538-4357/aad2d7

Arun, K. G., Buonanno, A., Faye, G., \& Ochsner, E. 2009, Phys. Rev., D79, 104023, doi: 10.1103/PhysRevD.79. 104023,10.1103/PhysRevD.84.049901
Babak, S., Taracchini, A., \& Buonanno, A. 2017, Phys. Rev., D95, 024010, doi: 10.1103/PhysRevD.95.024010

Bandura, K., Addison, G. E., Amiri, M., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9145, Ground-based and Airborne Telescopes V, ed. L. M. Stepp, R. Gilmozzi, \& H. J. Hall, 914522, doi: 10.1117/12.2054950

Bannister, K. W., Shannon, R. M., Macquart, J.-P., et al. 2017, ApJL, 841, L12, doi: 10.3847/2041-8213/aa71ff
Bannister, K. W., Deller, A. T., Phillips, C., et al. 2019, Science, 365, 565, doi: 10.1126/science.aaw5903

Bhandari, S., Sadler, E. M., Prochaska, J. X., et al. 2020, ApJL, 895, L37, doi: 10.3847/2041-8213/ab672e
Bhandari, S., Heintz, K. E., Aggarwal, K., et al. 2021, arXiv e-prints, arXiv:2108.01282.
https://arxiv.org/abs/2108.01282
Bhardwaj, M., Kirichenko, A. Y., Michilli, D., et al. 2021a, ApJL, 919, L24, doi: 10.3847/2041-8213/ac223b
Bhardwaj, M., Gaensler, B. M., Kaspi, V. M., et al. 2021b, ApJL, 910, L18, doi: 10.3847/2041-8213/abeaa6
Blanchet, L., Iyer, B. R., Will, C. M., \& Wiseman, A. G. 1996, Class. Quant. Grav., 13, 575, doi: 10.1088/0264-9381/13/4/002
Bochenek, C. D., Ravi, V., Belov, K. V., et al. 2020, Nature, 587, 59, doi: 10.1038/s41586-020-2872-x
Bohé, A., Faye, G., Marsat, S., \& Porter, E. K. 2015, Class. Quant. Grav., 32, 195010, doi: 10.1088/0264-9381/32/19/195010
Bohé, A., Marsat, S., \& Blanchet, L. 2013, Class. Quant. Grav., 30, 135009, doi: 10.1088/0264-9381/30/13/135009 Bouwhuis, M., Bannister, K. W., Macquart, J.-P., et al. 2020, Monthly Notices of the Royal Astronomical Society, 497, 125, doi: 10.1093/mnras/staa1889
Brown, D. A., Harry, I., Lundgren, A., \& Nitz, A. H. 2012, Physical Review D, 86, doi: 10.1103/physrevd.86.084017
Caleb, M., Flynn, C., Bailes, M., et al. 2017, MNRAS, 468, 3746, doi: 10.1093/mnras/stx638
Capano, C., Harry, I., Privitera, S., \& Buonanno, A. 2016, PhRvD, 93, 124007, doi: 10.1103/PhysRevD.93.124007
Cassanelli, T., Leung, C., Rahman, M., et al. 2022, AJ, 163, 65, doi: 10.3847/1538-3881/ac3d2f
Champion, D. J., Petroff, E., Kramer, M., et al. 2016, MNRAS, 460, L30, doi: 10.1093/mnrasl/slw069
Chatterjee, S., Law, C. J., Wharton, R. S., et al. 2017, Nature, 541, 58, doi: 10.1038/nature20797
CHIME/FRB Collaboration. 2020, The Canadian Hydrogen Intensity Mapping Experiment is a revolutionary new Canadian radio telescope designed to answer major questions in astrophysics and cosmology., https://chime-experiment.ca/

CHIME/FRB Collaboration, Andersen, B. C., Bandura,
K. M., et al. 2020, Nature, 587, 54,
doi: 10.1038/s41586-020-2863-y
CHIME/FRB Collaboration, Andersen, B. C., et al. 2019, CHIME/FRB Detection of Eight New Repeating Fast
Radio Burst Sources. https://arxiv.org/abs/1908.03507
CHIME/FRB Collaboration, Amiri, M., Bandura, K.,
Berger, P., et al. 2018, ApJ, 863, 48,
doi: 10.3847/1538-4357/aad188
CHIME/FRB Collaboration, Amiri, M., et al. 2021, arXiv e-prints, arXiv:2106.04352.
https://arxiv.org/abs/2106.04352
Cho, M.-A. 2019, PhD thesis, University of Maryland
Connor, L., Miller, M. C., \& Gardenier, D. W. 2020,
MNRAS, 497, 3076, doi: 10.1093/mnras/staa2074
Cordes, J. M., \& Chatterjee, S. 2019, ARA\&A, 57, 417, doi: 10.1146/annurev-astro-091918-104501
Cordes, J. M., \& Lazio, T. J. W. 2002, arXiv e-prints, astro. https://arxiv.org/abs/astro-ph/0207156
Corsi, A., \& Owen, B. J. 2011, PhRvD, 83, 104014, doi: 10.1103/PhysRevD.83.104014
Dal Canton, T., \& Harry, I. W. 2017, arXiv e-prints, arXiv:1705.01845. https://arxiv.org/abs/1705.01845
Dolag, K., Gaensler, B. M., Beck, A. M., \& Beck, M. C. 2015, MNRAS, 451, 4277, doi: 10.1093/mnras/stv1190
Falcke, H., \& Rezzolla, L. 2014, A\&A, 562, A137, doi: 10.1051/0004-6361/201321996
Foreman-Mackey, D., Hogg, D. W., Lang, D., \& Goodman, J. 2013, PASP, 125, 306, doi: 10.1086/670067

Gao, H., Zhang, B., \& Lü, H.-J. 2016, PhRvD, 93, 044065, doi: 10.1103/PhysRevD.93.044065
Goodman, J., \& Weare, J. 2010, Communications in Applied Mathematics and Computational Science, 5, 65, doi: 10.2140/camcos.2010.5.65
Gourdji, K., Rowlinson, A., Wijers, R. A. M. J., \& Goldstein, A. 2020, MNRAS, 497, 3131, doi: 10.1093/mnras/staa2128
Grote, H. 2010, Class. Quant. Grav., 27, 084003, doi: 10.1088/0264-9381/27/8/084003
Harry, I. W., \& Fairhurst, S. 2011, Phys. Rev., D83, 084002, doi: 10.1103/PhysRevD.83.084002
Harry, I. W., Fairhurst, S., \& Sathyaprakash, B. S. 2008, Class. Quant. Grav., 25, 184027, doi: $10.1088 / 0264-9381 / 25 / 18 / 184027$
Harry, I. W., Nitz, A. H., Brown, D. A., et al. 2014, Physical Review D, 89, doi: 10.1103/physrevd.89.024010
Heintz, K. E., Prochaska, J. X., Simha, S., et al. 2020, ApJ, 903, 152, doi: 10.3847/1538-4357/abb6fb
Hessels, J. W. T., Ransom, S. M., Stairs, I. H., et al. 2006, Science, 311, 1901, doi: 10.1126/science. 1123430

Ho, W. C. G., Jones, D. I., Andersson, N., \& Espinoza, C. M. 2020, PhRvD, 101, 103009, doi: 10.1103/PhysRevD.101.103009
Husa, S., Khan, S., Hannam, M., et al. 2016, Phys. Rev., D93, 044006, doi: 10.1103/PhysRevD.93.044006
Ioka, K. 2001, MNRAS, 327, 639, doi: $10.1046 / \mathrm{j} .1365-8711.2001 .04756 . x$
Khan, S., Husa, S., Hannam, M., et al. 2016, Phys. Rev., D93, 044007, doi: 10.1103/PhysRevD.93.044007
Kirsten, F., Marcote, B., Nimmo, K., et al. 2021, arXiv e-prints, arXiv:2105.11445. https://arxiv.org/abs/2105.11445
Kiziltan, B., Kottas, A., De Yoreo, M., \& Thorsett, S. E. 2013, ApJ, 778, 66, doi: 10.1088/0004-637X/778/1/66
Kokkotas, K. D., Apostolatos, T. A., \& Andersson, N. 2001, MNRAS, 320, 307-315, doi: 10.1046/j.1365-8711.2001.03945.x
Kreidberg, L., Bailyn, C. D., Farr, W. M., \& Kalogera, V. 2012, Astrophys. J., 757, 36, doi: 10.1088/0004-637X/757/1/36
Kumar, P., Shannon, R. M., Osłowski, S., et al. 2019, The Astrophysical Journal, 887, L30, doi: 10.3847/2041-8213/ab5b08
Levin, Y., \& van Hoven, M. 2011, MNRAS, 418, 659, doi: 10.1111/j.1365-2966.2011.19515.x
Li, B.-A., Krastev, P. G., Wen, D.-H., \& Zhang, N.-B. 2019, European Physical Journal A, 55, 117, doi: 10.1140/epja/i2019-12780-8
Li, Y., \& Zhang, B. 2020, ApJL, 899, L6, doi: 10.3847/2041-8213/aba907
LIGO Scientific Collaboration. 2018, LIGO Algorithm Library, doi: 10.7935/GT1W-FZ16
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., \& Crawford, F. 2007, Science, 318, 777-780, doi: 10.1126/science. 1147532
Luo, R., Men, Y., Lee, K., et al. 2020, MNRAS, 494, 665, doi: 10.1093/mnras/staa704
Lyons, N., et al. 2010, MNRAS, 402, 705
Macquart, J. P., Prochaska, J. X., McQuinn, M., et al. 2020, Nature, 581, 391, doi: 10.1038/s41586-020-2300-2
Marcote, B., Nimmo, K., Hessels, J. W. T., et al. 2020, Nature, 577, 190, doi: 10.1038/s41586-019-1866-z
Margalit, B., Berger, E., \& Metzger, B. D. 2019, ApJ, 886, 110, doi: 10.3847/1538-4357/ab4c31
Margalit, B., Metzger, B. D., \& Sironi, L. 2020, MNRAS, 494, 4627, doi: 10.1093/mnras/staa1036
Masui, K., Lin, H.-H., Sievers, J., et al. 2015, Nature, 528, 523, doi: 10.1038/nature15769
Mena-Parra, J., Leung, C., Cary, S., et al. 2022, AJ, 163, 48, doi: 10.3847/1538-3881/ac397a

Metzger, B. D., Berger, E., \& Margalit, B. 2017, ApJ, 841 14, doi: 10.3847/1538-4357/aa633d
Mikoczi, B., Vasuth, M., \& Gergely, L. A. 2005, Phys. Rev., D71, 124043, doi: 10.1103/PhysRevD.71.124043
Miller, M. C., \& Miller, J. M. 2014, Phys. Rept., 548, 1, doi: 10.1016/j.physrep.2014.09.003
Mishra, C. K., Kela, A., Arun, K. G., \& Faye, G. 2016, Phys. Rev., D93, 084054, doi: 10.1103/PhysRevD.93.084054
Moortgat, J., \& Kuijpers, J. 2005, in 22nd Texas Symposium on Relativistic Astrophysics, ed. P. Chen, E. Bloom, G. Madejski, \& V. Patrosian, 326-331

Newburgh, L. B., Addison, G. E., Amiri, M., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9145, Ground-based and Airborne Telescopes V, ed. L. M. Stepp, R. Gilmozzi, \& H. J. Hall, 91454V, doi: 10.1117/12.2056962

Nitz, A., Harry, I., Brown, D., et al. 2020, gwastro/pycbc: PyCBC, Zenodo, doi: 10.5281/zenodo. 3961510
Nitz, A. H., Dent, T., Dal Canton, T., Fairhurst, S., \& Brown, D. A. 2017, ApJ, 849, 118, doi: 10.3847/1538-4357/aa8f50
Owen, B. J., \& Sathyaprakash, B. S. 1999, Phys. Rev. D, 60, 022002, doi: 10.1103/PhysRevD.60.022002
Özel, F., Psaltis, D., Narayan, R., \& McClintock, J. E. 2010, Astrophys. J., 725, 1918, doi: 10.1088/0004-637X/725/2/1918
Pace, A., Prestegard, T., Moe, B., \& Stephens, B. 2012, Gravitational-Wave Candidate Event Database, https://gracedb.ligo.org
Pan, Y., Buonanno, A., Taracchini, A., et al. 2014, Phys. Rev., D89, 084006, doi: 10.1103/PhysRevD.89.084006
Petroff, E., Hessels, J. W. T., \& Lorimer, D. R. 2019, Astron. Astrophys. Rev., 27, 4, doi: 10.1007/s00159-019-0116-6
Petroff, E., Hessels, J. W. T., \& Lorimer, D. R. 2022, A\&A Rv, 30, 2, doi: 10.1007/s00159-022-00139-w
Petroff, E., Barr, E. D., Jameson, A., et al. 2016, PASA, 33, e045, doi: 10.1017/pasa.2016.35
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A\&A, 594, A13, doi: 10.1051/0004-6361/201525830
Platts, E., Weltman, A., Walters, A., et al. 2019, Physics Reports, 821, 1-27, doi: 10.1016/j.physrep.2019.06.003
Popov, S. B., \& Postnov, K. A. 2013, arXiv:1307.4924 [astro-ph]. http://arxiv.org/abs/1307.4924
Prochaska, J. X., \& Zheng, Y. 2019, MNRAS, 485, 648, doi: 10.1093/mnras/stz261
Pshirkov, M. S., \& Postnov, K. A. 2010, Ap\&SS, 330, 13, doi: 10.1007/s10509-010-0395-x

Quitzow-James, R., Brau, J., Clark, J. A., et al. 2017, Class. Quant. Grav., 34, 164002, doi: 10.1088/1361-6382/aa7d5b
Rafiei-Ravandi, M., et al. 2021. https://arxiv.org/abs/2106.04354
Ravi, V. 2019, Nature Astronomy, 3, 928, doi: 10.1038/s41550-019-0831-y
Ravi, V., \& Lasky, P. D. 2014, MNRAS, 441, 2433, doi: 10.1093/mnras/stu720
Rowlinson, A., \& Anderson, G. E. 2019, MNRAS, 489, 3316, doi: $10.1093 / \mathrm{mnras} / \mathrm{stz2295}$
Rowlinson, A., O'Brien, P. T., Metzger, B. D., Tanvir, N. R., \& Levan, A. J. 2013, MNRAS, 430, 1061, doi: 10.1093/mnras/sts683
Rowlinson, A., et al. 2010, MNRAS, 408, 383, doi: 10.1111/j.1365-2966.2010.17115.x
Rowlinson, A., Starling, R. L. C., Gourdji, K., et al. 2020, arXiv e-prints, arXiv:2008.12657.
https://arxiv.org/abs/2008.12657
Sagiv, A., \& Waxman, E. 2002, ApJ, 574, 861, doi: 10.1086/340948
Sarin, N., \& Lasky, P. D. 2021, General Relativity and Gravitation, 53, 59, doi: 10.1007/s10714-021-02831-1
Sathyaprakash, B. S., \& Dhurandhar, S. V. 1991, Phys.
Rev., D44, 3819, doi: 10.1103/PhysRevD.44.3819
Shannon, R. M., Macquart, J.-P., Bannister, K. W., et al. 2018, Nature, 1, doi: 10.1038/s41586-018-0588-y
Shin, K., Masui, K. W., Bhardwaj, M., et al. 2022, arXiv e-prints, arXiv:2207.14316. https://arxiv.org/abs/2207.14316
Spitler, L. G., Cordes, J. M., Hessels, J. W. T., et al. 2014, ApJ, 790, 101, doi: 10.1088/0004-637X/790/2/101
Sutton, P. J. 2013, arXiv e-prints, arXiv:1304.0210. https://arxiv.org/abs/1304.0210
Sutton, P. J., Jones, G., Chatterji, S., et al. 2010, New Journal of Physics, 12, 053034, doi: 10.1088/1367-2630/12/5/053034
Taracchini, A., Buonanno, A., Pan, Y., et al. 2014, PhRvD, 89, 061502, doi: 10.1103/PhysRevD.89.061502
The LIGO Scientific Collaboration, the Virgo
Collaboration, the KAGRA Collaboration, Abbott, R., et al. 2021a, arXiv e-prints, arXiv:2111.03606. https://arxiv.org/abs/2111.03606
—. 2021b, arXiv e-prints, arXiv:2111.03634. https://arxiv.org/abs/2111.03634
Thornton, D., Stappers, B., Bailes, M., et al. 2013, Science, 341, 53, doi: 10.1126/science. 1236789
Totani, T. 2013, Publ Astron Soc Jpn Nihon Tenmon Gakkai, 65, doi: 10.1093/pasj/65.5.L12

Troja, E., Cusumano, G., O’Brien, P. T., et al. 2007, ApJ, ${ }_{2162}$ 665, 599, doi: 10.1086/519450

Urban, A. L. 2016, PhD thesis
Usov, V. V., \& Katz, J. I. 2000, A\&A, 364, 655

Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G., \& Wang, F.-Y. 2016, ApJL, 822, L7, doi: $10.3847 / 2041-8205 / 822 / 1 / L 7$

Was, M., Sutton, P. J., Jones, G., \& Leonor, I. 2012, PhRvD, 86, 022003, doi: 10.1103/PhysRevD.86.022003

Wen, D.-H., Li, B.-A., Chen, H.-Y., \& Zhang, N.-B. 2019, Physical Review C, 99, doi: 10.1103/physrevc.99.045806

Williamson, A. R., Biwer, C., Fairhurst, S., et al. 2014, Phys. Rev., D90, 122004, doi: 10.1103/PhysRevD.90.122004
Yamasaki, S., \& Totani, T. 2020, ApJ, 888, 105, doi: 10.3847/1538-4357/ab58c4
Yamasaki, S., Totani, T., \& Kiuchi, K. 2018, PASJ, 70, 39, doi: 10.1093/pasj/psy029
Yao, J. M., Manchester, R. N., \& Wang, N. 2017, ApJ, 835, 29, doi: 10.3847/1538-4357/835/1/29
Zhang, B. 2014, ApJL, 780, L21, doi: 10.1088/2041-8205/780/2/L21
—. 2018, ApJL, 867, L21, doi: 10.3847/2041-8213/aae8e3
—. 2020a, Nature, 587, 45, doi: 10.1038/s41586-020-2828-1
—. 2020b, ApJL, 890, L24, doi: 10.3847/2041-8213/ab7244
Zink, B., Lasky, P. D., \& Kokkotas, K. D. 2012, PhRvD, 85, 024030, doi: 10.1103/PhysRevD.85.024030

[^0]: * Deceased, August 2020.

