

Marginalizing over Noise Properties in Parameter Estimation

Cailin Plunkett Mentors: Katerina Chatziioannou, Sophie Hourihane

LIGO

Background: •PSDs •BayesWave

Signal and PE Results

Discussion & Future work

Power Spectral Density (PSD)

What is it and what does it tell you?

★ Characterizes stationary random noise

in the frequency domain

★ Variance of the noise at each

frequency

LIGO Data

BayesWave

- ★ Bayesian algorithm to separate GW signals from noise and glitches
- Markov Chain Monte Carlo (MCMC) algorithm: way of randomly sampling parameter space weighted by likelihood

BayesWave Models

Signal (wavelet) model

- ★ Models signal as sum of sine-Gaussian wavelets
- ★ Weakly modeled search

CBC (templated) model

- ★ Template-based search
- ★ Returns CBC parameters

Analyses

Signal (wavelet) model

CBC (templated) model

- ★ Signal +fixed PSD
 ★ CBC+fixed PSD
- ★ Signal +BL (varying PSD) ★ CBC+BL (varying PSD)

Goal: Compare signal reconstruction and PE between fixed and BL methods

Results: signals and parameter estimation for GWTC-2 events

GW150914: comparing signal & CBC

GW150914: comparing fixed & BL

Parameter posteriors: GW150914

Parameter posteriors: GW150914

GW190521

GW170104, GW170814

Why are the distributions so similar?

With more uncertainty, we expected a wider (but not shifted) posterior

First, what happens with a shifted PSD?

Overestimate the PSD

- → Overestimate variance of noise
- → Underestimate the SNR
- → Overestimate uncertainty in posteriors

Using shifted PSDs on GW150914

Using shifted PSDs on GW150914

Impact of Marginalization

By marginalizing (integrating) over possible PSDs, broadening effect is limited

$$\left(\int_{-x}^{x} \mathcal{N}(\theta, (1+\varepsilon)\sigma) d\varepsilon\right) - \mathcal{N}(\theta, \sigma) \sim \varepsilon^{4}$$

Broadening is a higher order effect—not a leading term

Conclusions

Future Goals

- ★ Fixed PSD and BL recover similar waveforms for signal and CBC models
- ★ Parameter posteriors agree; we aren't currently underestimating uncertainty
- ★ At current sensitivities, PSD
 uncertainty is a subdominant effect
 compared to other uncertainties

- ★ Continue analyses on
 interesting events in O1-O3a
- Thoroughly study of the impact of shifting the PSD on posterior uncertainty

Acknowledgements:

National Science Foundation REU Program

LIGO Laboratory

Caltech

Katerina and Sophie

All those associated with the LIGO SURF program :)

Questions?

MCMC

Issues & Bug Fixes

High PSD issue

Low signal + sampling issue

Had problems when heterodyning ... switching to f_{low} = 16 fixed things

Asterisk on shifted PSDs

The ones we used weren't shifted by a constant... especially around spectral lines

For that example, we
used the upper and
lower 90% CIs on the
PSD that BW returned
in addition to the
median (the usual way)