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1 Introduction

Gravitational Waves are produced by the bulk accelerated motion of matters, that propagates
as waves in the fabric of spacetime at the speed of light. The existence of Gravitational
Waves were rst predicted by Albert Einstein in 1916 as a consequence of his work on
General Relativity. The LIGO interferometers were built using the basic idea of Michelson
interferometer and its precise strain measurements rely on the laser beam resonators in the
optical cavity of the interferometers. Many years of relentless e orts and several technical
upgradations in the detectors made by the scientists helped aLIGO to achieve the sensitivity
to detect more than 50 GW events till date.

When the GW passes through the interferometer its arm length increases and decreases
consecutively which causes change in di erential arm length during the event. The intensity
of the recombined light at the detector readout which is a function of the di erential arm
length (DARM) of the interferometer, gives the in nitesimal gravitational wave strain as
shown in Figure 1. The LIGO detector is highly susceptible to various kind of noises which
are basically unwanted signal produced by interactions among detector subsystems or with
the surrounding environment that gets added to the GW strain data. Here, we are interested
in the Fabry-Perot cavity and test masses of the detector. In this project we are trying to
detect the position of the laser beam spot on the test masses. The aLIGO is not free from
scattered light noise. The scattering of light helps us to see the scattered beam spot from
any angle on the mirror surfaces. Due to irregularities and point scatterers of the mirror, the
light undergoes de ection from its path de ned by specular re ection and hence scattering
occurs. The angular motion of the mirrors causes oscillatory translational motion of the
beam spot on the mirror. Thus, tracking the position of the beam has become one of the
important task within LIGO community.

Figure 1: Schematic Diagram of LIGO detector
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One should not observe the beam spot ideally when it is viewed at an angle to the beam axis
since no light de ects according to the laws of specular re ection. However, due to scattering
of light the beam spot can be observed from di erent angles with varying intensities according
to the Bidirectional Re ection Distribution function (BRDF) of the mirror.

Ps=

BRDF = P cos - (1)
where B and P are incident and scattered power ands is the scattering angle and is
the solid angle subtend at the CCD camera used for capturing the image of the test mass.
We are mostly interested in large angle scattering where the optic behaves as a Lambertian
surface. Here Basler ace acA640-120gm camera equipped with a Gigabyte Ethernet (GigE)
interface has been installed for faster data transmission over ethernet network as shown in
Figure 2. Two lens telescope system is placed between GigE camera and mirror to focus
the beam spot onto the GIgE camera sensor while ensuring lenses and camera are placed
perpendicular to scattered beam axis and optimum utilization of the CCD pixel arrays. It
gives the videos of the scattered light coming from the surface of the test masses.

Figure 2: GigE camera setup for imaging the scattered light

Pooja Sekhar, Milind Vaddiraju have already tried some classical image processing tech-
nigues which failed to detect the centroid of the beam because the beam do not retain its
gaussianity after scattering due to irregularities of the mirror surface. In Figure 3[2], on
plotting the intensity vs pixel number along a particular axis of the image of the beam spot,
the intensity pro le deviates quite a bit from the expected Gaussian pro le. This is caused
due to the scattering from point defects.
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Figure 3: Deviation from Gaussian intensity pro le

Several attempts made by them using Neural Networks has shown reasonable good results
in comparison to the classical methods. Neural networks were trained with hyperparameters
tuned using a grid search and beam spot motion at 0.2 Hz with an amplitude of about
3mm is tracked with maximum error under 20% [1]. But we require better accuracy for our
purpose.

2 Motivation
These are future goals of GW researchers for which our current work on laser beam tracking
is very crucial. We need to detect the position of the beam spot to understand the angular

movement of the mirror so that feedback control system attached to the test masses x its
position as shown in Figure 4.
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3 Objective

Our main objective is to get the position of the beam spot at every instances with better
accuracy using some traditional image processing techniques along with some Deep Learning
models. Although we will be stick to detecting the position only in this work, but in future

it will help in reducing some noise from the data and analysing the motion in a better way

if we become successful.

Figure 4: Angular Control of Suspended Optics
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" Generate simulated video of beam spot motion. Since Deep Learning models are ex-
pected to produce better results and we lack labelled image datasets for training, we
need to simulate scattering light images comparable to the GigE images.

" Develop a Convolutional Neural Network (CNN) model to extract features from the
images i.e. nding the centroid of the beam and angular de ection of the mirror.

4  Simulation of Beam Spot

4.1 Purely Gaussian Beam
Here we will consider a fundamental laser beam with a linearly polarized, Gaussian eld
distribution in the beam waist

(0 )2+(y0 y)?

E(x%y%0) = Ege " (2)

whereE, is constant eld vector in the transverse (x,y) plane and (x; y) is the position of
the centroid of the beam on the plane.

1 Z 1 Z 1
E(kky:0) = 2= E(x4y" 0)e "™ K9 dxly” (3)
1 1
E(ke; ky; 2) = E(ky; ky; 0)€ = (4)
Then, the eld at the object plane becomes
Z 1 Z 1
E(x;y;z) = E(kx; ky; z)dkydky (5)
1 1

The intensity of the beam i.e. Ik;y;z) = E?E will give the image of the beam spot shown
in Figure 5(left).

4.2 Scattered Beam

Using these equation we can construct beam spot centred at( ) at any irregular mirror
surface by varying the z over the surface. Now the di erence between the eld for varying z
and eld for constant z gives the eld of scattered light.

Suppose, the mirror surface is at an approximate distance z from the source plane. Then,
the electric eld of the scattered will be

Escater(X;¥;2) = E(X;y;2)€% 2 E(X;y;2) (6)

where z(x;y) is the height of irregularities on the mirror surface. For the places of no
irregularities on the mirror z =0.
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Figure 5. These images of resolution 512x512 are generated on a 34 cm x 34 cm camera for
a gaussian laser beam of radius 6.5 cm

Thus, the intensity of the scattered light is

?
I scatter (X; Y Z) = Escatter E scatter (7)

Using these formulation we can simulate beam spot as shown above in Figure 5(right).

5 Noise

From the scattered power of the laser beam spot we can get number of photons generated
per second by dividing the average power by the energy of a single photon of wavelength

Ps
hc=

p:

If a lens of 2" diameter has been placed at a distance of 1 meter from the ETM and making
angle of 10 to the bgam axis as shown in Figure 2, the solid angle subtended at the CCD
camera will be, = sindd =0.0256

For a laser power of 500 kW inside the Fabry-Perot cavity and the mirror surface being
Lambertian for large angle scattering i.e. BRDF=Zsr ! the scattered power is obtained
from Eq. 1,

1

Ps=BRDF P ;cos = 0:0256 5 10° cos10 =4022:15W (8)
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So, for a 1064 nm wavelength laser the number of photons incident on the camera will be,
p=2:15 107

Now the number ofe generated per pixel per second is proportional to the number photons
stored in the pixel

where %—Np is the photon to electron conversion rate in the CCD camera. But this is not

perfectly true for all values of p. Below a certain threshold value of p, N is just the number
of electrons contributing to the Dark Current noise and above some value of p, the number
of electrons at each pixel reach a saturation point resulted a saturation in intensity.

5.1 Shot Noise

Shot noise originates due to the discrete nature of photons i.e. same number of photons
can not generate same number of photo-electronspeich time. The uctuation follows Poisson
statistics and therefore, shot noise is equivalent to N. Shot noises for various simulation
models have been shown below considerind2 10?° photons have been incident on the
CCD camera for a exposure time of 10 ms assuming photon to electron conversion rate is
0.8.

Figure 6:
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5.2 Dark Current Noise

Dark current noise is generated due to the electrons that are produced thermally within the

silicon structure of CCD which is independent of the photon induced signal. Cryogenics

helps in reducing the temperature within the cavity and hence reduces the dark current up

to several orders. Like Shot noise, Dark Current noise follows Poisson relationship and is
equivalent to the square root of humber of thermal electrons generated within the image

exposure time.

Figure 7: (a) Dark Current noise for dark current of 11 electron per pixel per second for a
exposure time of 10 ms [3], (b) Image of the gaussian beam spot considering dark current,
(c) Image of the scattered beam spot considering dark current

5.3 Photon Saturation e ect

After a certain threshold value of number of photon incident on each pixel, the number of
photo-electrons do not increase hence the intensity at such pixels get saturated. Here we
have assumed this threshold value is of the order of 0

Figure 8:
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6 Data Generation

Data preparation is one of the important steps in any Supervised Learning problem. Here
we will be generating images of beam spot corresponding to a prede ned beam motion on
the mirror based on each of these following simulation models:

" Gaussian Beam [5]
" Scattered Beam [5]

" Gaussian Beam with CCD Noise [8]

" Scattered Beam with CCD Noise [8]

Considering there types of motion (i.e. along X axis only, along Y axis only, along both
direction) Train, Validation and Test set have been prepared. For all of these cases we will
be taking a CCD screen of 34 34cnt and beam radius 6.5 cm and all of the images have
512 512 resolution.

Figure 9: De ning coordinate system on CCD screen

6.1 One Dimensional Motion: Movement along X-axis/ Y-axis only

Now we will show beam position on X or Y axis at di erent times in our datasets which we
are going to use.

Train Data:

We are taking uniformly separated data points on the axis between -1 cm and 1 cm as
centroid position of our generated beam spot images [10]. Our simulated video is of 20 secs
duration with 32 fps.
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Figure 10: Position of beam at di erent times for consecutive frames

Validation Data:

For generating validation data we will be taking superposition two sinusoidal waves of fre-
guency 0.2 Hz and 0.4 Hz and of amplitude 0.5 cm each for a time period of 10 sec with 32
fps.

Figure 11: Position of beam at di erent times for consecutive frames
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Test Data:
Here we will superpose two sinusoidal waves of frequency 0.1 Hz and 0.2 Hz and of amplitude
0.5 cm each for a time period of 10 sec with 32 fps.

Figure 12: Position of beam at di erent times for consecutive frames

6.2 Two Dimensional Motion: Movement on X-Y plane

In this case we will be taking 2D motion of the beam spot on X-Y plane of mirror and
corresponding beam positions at various times have been shown below.

Train Data:

Here we have generated 3232 meshgrid on 2 2cn? area of CCD screen centered at origin.
Here beam is moving along +ve X axis and after completing one axis it moves to next Y
position and starts moving towards +ve X direction.

Figure 13: X coordinate of the beam spots
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Figure 14: Y coordinate of the beam spots

Validation and Test Data:
Here our beam movenment along X axis is similar to 11 and 12 respectively but Y axis
movement is sinusoidal with frequency of 0.1 Hz and amplitude of 1 cm.

Figure 15: Y coordinate of the beam spots
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7 Convolutional Neural Network

Convolutional neural network is a special type of machine learning algorithm which is mainly
used to extract complex features from images. 1D convolution is exception which is used on
any timeseries data instead of images.

It consists of several convolution operations, maximum or average pooling, activation layer
etc as shown below.

7.1 Model Architecture

Figure 16: CNN Model Architecture
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When this model will be applied on any beam spot image it will try to predict its position
by giving two values corresponding to x and y coordinate of its centroid.

7.2 Cost Function

Mean Squared Error (MSE) is our preferred choice of cost function for this problem. It gives
the MSE loss of the predicted position and true position of the beam spot i.e. the lesser loss
indicates better model for centroid detection.

P N

Mean Squared Error = _ Fameno=1 (Predicted Position - True Position)

Total no. of Frames

(9)

7.3 Metric

Metric is a measure of the goodness of any Machine Learning model. Here we will be using
Signal to Noise Ratio (SNR) as our metric which is ratio of mean squared value true position
and MSE loss of predicted and true value of beam position of all the frames. For a very good
model the SNR value should be higher.

. . . True Position)?
Signal to Noise Ratio (SNR) = P Fr_ames( — ) —
(Predicted Position - True Posmon)2

(10)

Frames

7.4 Optimizer

We have chosen Adaptive Moment (Adam) as optimizer for our purpose. Optimizer helps us
to reach at the optimised values of the weights. Adam is modi ed gradient descent method
which nds the weights faster.

7.5 Hyperparameters

Batchsize: Instead of using the whole large training set at a time, we divide the data set
into smaller sets called batches. The length of the these batches is called batchsize which is
taken 32 in our problem.

Learning Rate: Here for Adam optimizer we are using a learning rate of 0.001. This
learning rate de nes how far away is your new weights from previous weights.

Learning Rate Scheduler: We are decreasing our learning rate by a factor of 2 after each
10 epochs. Changing learning rate with time helps to reach at the optimal solution faster
by reducing overshooting.

Epochs: We are using 50 epochs i.e. training the model on train dataset 50 times.
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8 Results

We have obtained following results for each of the simulation models after training the
above discussed CNN model. Here we will show the di erence between predicted position
and true position of di erent frames of our test datasets. All of the positions are measured
in centimeters. And corresponding histograms of residues have also been plotted in terms of

fractional pixel error where 1 pixel =53—142:O.066 cm.

8.1 Gaussian Beam

8.1.1 Movement along X axis only

" Mean Squared Error: 385 10 8cm?
" Signal to Noise Ratio: 3236578.25

8.1.2 Movement along Y axis only

" Mean Squared Error: 26 10 ‘cm?
" Signal to Noise Ratio: 292608.21
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Figure 17: Di erence between predicted position and true position for gaussian beam simu-
lation model
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Figure 18: Histogram of error in centroid detection for gaussian beam simulation model
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Figure 19: Di erence between predicted position and true position for gaussian beam simu-
lation model
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Figure 20: Histogram of error in centroid detection for gaussian beam simulation model
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8.1.3 Movement on X-Y plane

" Mean Squared Error: 49 10 Scn?
~ Signal to Noise Ratio: 250350.57

Figure 21: Di erence between predicted position and true position for gaussian beam simu-
lation model
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