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ABSTRACT

LIGO (Laser Interferometer Gravitational wave Observatory) detectors are capable of detecting gravitational waves

created by merging massive stellar remnants moving at high accelerations . Collisions of massive stellar remnants

create electromagnetic waves that can reveal many aspects of the remnants that collided. The EM community is

attempting to use data from the LIGO instruments to pinpoint the location of the sources and view the sources

across all electromagnetic wavelengths as shown by observational campaigns conducted during LIGO’s third observing

run. Gravitational wave detectors are poor at localizing mergers, making the discovery of counterparts a challenging

task. We will compare the Bayes factor and the Terrestrial probability of alerts as metrics of classifying sources as

astrophysical in low latency. We will improve the low latency data products that are provided to EM observers in

order to aid in the discovery more counterparts in the future.

1 INTRODUCTION

1.1 Gravitational Waves

Gravitational waves (GWs) are disturbances in space-time
caused by an accelerated mass, that propagate away from
their source at the speed of light. Because GWs are the result
of a pair of massive objects in a decaying orbit around a
shared center of mass, their observed signal strength increases
as the objects approach one another.

Laser Interferometer Gravitational wave Observa-
tory(LIGO) is an instrument used to observe said propaga-
tions in space-time from massive merging stellar remnants.
For now, the gravitational waves that LIGO detects are a
result of three types of stellar remnant mergers, Binary Black
Hole merger(BBH), Binary Neutron Star merger(BNS), and
Neutron Star - Black Hole merger(NS-BH).

1.2 LIGO Detectors

LIGO detectors are Michaelson Interferometers (LIGO Sci-
entific Collaboration et al. 2015). The detector consists of one
laser, a power and signal recycling mirror, a photon collec-
tor, a beam splitter and many other components as shown in
fig(1).

The beam splitter splits the beam of light from the laser
into two beams of light orthogonal to each other, but the two
beams remain parallel to the surface of Earth. The two light
beams split from the beam splitter oscillate approximately
300 times individually between mirrors that are separated by
4km for each arm; this distance is equivalent to 1200km.

1.3 Detecting Sources

LIGO detectors aim to detect these disturbances us-
ing its powerful laser (750KWatt) and effective length
(1200km)(LIGO Scientific Collaboration et al. 2015). When

Figure 1. The design for Advanced LIGO detectors from (Mar-
tynov et al. 2016)

both beams of light in the arms of LIGO reaches a length of
1200km the beams transmit through the mirrors and inter-
fere destructively with one another. If powerful enough GWs
happen to pass through Earth the arms will no longer be the
same length which causes a phase difference between the light
beams, resulting in the beams not interfering destructively.
The photon collector can be used to find the intensity of the
GW that causes the strain on the detector.

1.4 Classifying Sources

When LIGO detects a GW, we infer properties of the merger
based on the observed signal. After sources are obtained, the
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Figure 2. Mass relationship used to classify mergers detected by

LIGO where m1 >= m2 is always true. This figure defines how

pastro is found for alerts.(LIGO Scientific Collaboration 2021)

FAR(False Alarm Rate) is used to to determine if the source
is astrophysical or not. If the alert passes the FAR threshold,
we then analyze the signal to determine what two objects
collided to create the GW. From the strain caused by a GW
on the LIGO lasers, one can directly determine the chirp
mass. This parameter is derived from the masses of the two
merging astronomical objects.
The chirp mass is defined as (Chen & Shen 2019):

M =
(m1m2)3/5

(m1 +m2)1/5
(Kapadiaet al. 2020) (1)

M is the chirp mass with m1 and m2 being the mass of the
two objects. The chirp mass allows us to use the mass from
sources to classify them depending on their mass.1

As shown in fig(2) the ratio of mass between the two collid-
ing objects reveals the types of objects that collided. There
are five classifications for sources.

BNS Mergers are consist of a Binary Neutron Star(BNS)
system, as shown on fig(2) they are relatively low in mass,
with masses between 1-3 solar masses2

A NSBH merger consists of a Black Hole and a Neutron
Star colliding with one another. These collisions are classified
from mid-sized mass detections that are greater than 5 Solar
Masses for the most massive object and between 1-3 solar
masses for the less massive object.

BBH3 mergers consist of two black holes colliding. These
collisions are typically between two massive objects. Both the
low mass and high mass object have masses that are greater
than 5 Solar Masses.

MassGap mergers consists of at least one intermediate mass
object with a mass in a range of 3-5 solar masses. When an
object is in this mass range we are unsure of what to label it.

1 LIGO is most sensitive to a combination of ¿10 solar masses
2 A Solar Mass is the mass of the sun
3 Binary Black Hole

Figure 3. The gray curve is the : amplitude spectral density for the

Advanced LIGO detector, it is the design sensitivity for advanced
LIGO.This figure shows the strain noise as a function of frequency

in the detectors. All of this noise must be reduced for LIGO to

detect gravitational waves.(Martynov et al. 2016)

Finally we have the classification of Terrestrial events. If
a detection is classified as Terrestrial, it is not astrophysical.
Terrestrial signals could be a result of the noise artifacts in
the LIGO instrument or disturbance from the environment
near the instrument.

1.5 Validity of Sources

The process explained in the previous sections, in practice, is
difficult, as any disturbance to the mirrors will result in the
photon collector collecting light. To counter this a consider-
able amount of noise must be filtered out of the detectors.
The LIGO detector itself will generate noise; to counter this
we search for GW waves in frequencies where the detector
does not generate a substantial amount of noise.
The False Alarm Rate(FAR) is used to determine if a de-
tected source is astrophysical or not. FAR is defined as:

FAR(ρ) =

∫ ρmax

ρ

Λnpn(ρ′)(dρ′) (2)

Where ρ is the SNR(Signal to Noise Ratio), Λn is the
mean Poisson rate of signal and noise triggers(Callister et al.
2017),pn is the probability density describing the distribu-
tion of detection statistics of ρ. The False Alarm Rate(FAR)
is equal to 10−2 per year and is the current method used
to check if an object is astrophysical source (Callister et al.
2017).

1.6 Bayesian Statistics

P (Hi|~d, I) =
P (Hi|I)P (~d|Hi, I)

P (~d|I)
(3)

Bayesian inference, the probability of a hypothesis Hi when
given a set of observational data d and prior information I
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is given by eqn(3). P (Hi|I) is the prior probability of Hi,
P (d|Hi, I) is the likelihood function of the data, given that
Hi is true and:

P (~d|I) =
∑

P (~d|Hi, I) (4)

eqn(4) is the minimum probability of the data set d. We can
compare models by calculating probabilities in the form of
“posterior odds ratio”:

Oij =
P (Hi|I)P (~d|Hi, I)

P (Hj |I)P (~d|Hj , I)
=
P (Hi|I)

P (Hj |I)
Bij (5)

P (d|I) is the normalization factor, and it cancels out giving:

Bij =
P (~d|Hi, I)

P (~d|Hj , I)
(6)

The equation above eqn(6) will be used to determine if a
detected source is astrophysical (Veitch & Vecchio 2010).

1.7 Bayes Factors

To determine how effective of Bayesian analysis is as a low
latency method for LIGO detections I will use two Bayes
factors.

BSN is ”the signal to noise coherent Bayes Factor”(Vajpeyi
2016). This Bayes factor is the probability that a detection is
a signal given that noise is also occurring. Using the Bayesian
theorem it is defined as:

P (S|N) =
P (N |S) ∗ P (S)

P (N)
(7)

As shown in (Vajpeyi 2016) this can be simplified to:

log10(BSN) = log(
s+ n

n
) (8)

Where h is the probability of a detection being a signal and
n is the probability of a detection being noise.

BCI is ”The coherent versus incoherent log Bayes Fac-
tor”(Vajpeyi 2016). BCI is found from the BSN, particularly
two different types of BSN. Both BSNs are defined the same,
the difference is that the coherent Bayes factor is found from
combining data from all detectors and the incoherent Bayes
factor is found from only looking at one detectors compo-
nents. BCI is defined as:

log10(BCI) = log10(
BSNcoherent

BSNincoherent1 +BSNincoherent2
) (9)

The Bayes factors are the primary parameters we will be
using to find an efficient low latency filtering method for
alerts.

1.8 Localizing Sources

Localization maps are created by using GW source param-
eters and antenna patterns of the LIGO detectors. When
LIGO detectors detect a GW assuming it is astrophysical,
the time delay between detections from different observato-
ries can locate what direction the GW came from. The timing
accuracy for a given source is:

σt =
1

2πρσf
(10)

Figure 4. This is a skymap of a simulated gravitational wave

source (Singer et al. 2014)

where ρ4 and σf is the effective bandwidth. The localization
will depend on the time delay as shown in:

p(r|R) = p(r) ∗ e
− (D·(r−R))2

2(σ21+σ22) (11)

D is the distance between detectors, r is the reconstructed
location, R is the position of the source and σ1 and σ2 are
different σt values.

When localizing a source we find the smallest region of the
sky that contains a source:

Area(.90)

4
= 3.3

√
σ2
1 + σ2

2

D
(12)

This gives the distribution of time observed with, t being the
observed time, and T being the time of arrival at the sites.
The result is a localization map as shown in fig(4).
Decreasing the size of the sky maps will result in faster multi-
messenger counterpart searches.

1.9 Motivation

Comparing both Bayes Factors and pastro, we hope to find
a reliable Bayes factor threshold from the comparison that
will allow us to easily determine if an alert is astrophysical or
not. We will do this by viewing Catalog(GWTC-2) and low
latency(OPA) alerts (Prestegard 2021).

If our Bayes factor threshold allows us to more easily distin-
guish astrophysical alerts we will add these to the low latency
packets. If the threshold yields no useful results, I will look
into p-astro fig(2) to increase accuracy in a shorter amount
of time.

An efficient low latency filtering method is valuable because
it will allow us to conduct rapid multi-messenger counterpart
searches upon receiving alerts(Chatterjee et al. 2020). Kilo-
novae are particularly interesting EM counterparts that will
require a rapid EM follow up to observe. From BNS merg-
ers heavy elements form that will decay radioactively which
results in isotropic thermal expansion. The heavy elements
are very neutron rich and this results in BNS mergers cre-
ating heavier radioactive elements than supernovae. The re-
sulting energy will release bright emissions when the ejecta
from the merger have spread out enough. These bright emis-
sions can last for a few days (Metzger & Berger 2012). The

4 Signal to Noise Ratio
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Figure 5. EM counterparts to BNS and NSBH mergers (Metzger

& Berger 2012). In the figure you see the brief time we have to
observe EM counterparts like kilonovae and afterglows. This is

why an efficient low latency filtering method for LIGO alerts is so

important.

name of such an event is a kilonova, represented by the yel-
low strain noise as a function of frequency in the detectors
shown in fig(5). Kilonovae will require a rapid EM follow up
due to their faintness, short lifespan, and prominence in IR,
making detections difficult (Mohite et al. 2021). Observations
from kilonovae will yield insights to many lingering questions
within the astronomy community, such as Hubble constant
adjustments, NS equation of state, and r-process nucleosyn-
thesis.

2 OBTAINING AN THRESHOLD

2.1 Objective and approach

The goal of our project is to find a reliable low latency filter-
ing method, in hopes that we can facilitate more rapid multi
messenger counterpart searches upon receiving alerts.

To achieve this, we compare low latency and post process-
ing Bayes factors and pastros from O3 alerts.

2.2 Obtaining Bayes factors and Pastros

We used the Gracedb database (Prestegard 2021) to access
publicly released alert data. From the database we can ex-
tract the log10(BSN), log10(BCI) and pastros from Bayestar
skymaps. We treat these as the low latency (OPA)5 data.
In order to receive post processing bayes factors we ran
Bayestar(Singer & Price 2016). For post processing pastros
we used values from GSTLAL and PYCBC catalogs(GWTC-
2)6 (Davis et al. 2021). We will treat all events from the
catalogs(GWTC-2), GSTLAL and PYCBC as astrophysical,

5 OPA = Open Public Alerts
6 GWTC-2 = Gravitational Wave Transient Catalog -2

Figure 6. This figure shows the number of alerts vs. the pastro for

low latency and catalog alerts. The three components have a total

number of seventy-seven alerts. The image has bins = 30. There
are 77 alerts in total for every pipeline and for low latency.

the events in low latency (OPA) that do not cross match with
the catalogs are viewed as terrestrial.

There are 77 total alerts and 45 of those alerts are astro-
physical.

2.3 Low latency vs. Post processing alerts

Before finding a threshold we should take a look at the
difference between number of alerts at a certain pastro or
log10(BCI) for GWTC-2 and OPA. Below, we also explain
how each of these terms is defined.

To accurately compare the low latency and catalog values
we crossmatched the events

Pastro is measured by comparing the differential rates of
gravitational waves and background events (Lynch et al.
2018). Pastro has a minimum of zero and an maximum of one.
If the pastro is zero the alert is very likely to be retracted; if
pastro is equal to one it is likely to be an astrophysical alert.

There are two pipelines that are used for our analysis. GST-
LAL is a pipeline that was primarily created for mergers of
neutron stars and black holes, but also played an integral
role in many other aspects of the LIGO collaboration (Can-
non et al. 2021). PYCBC is a pipeline that was created to
meet the advanced detectors computational challenges (Dal
Canton et al. 2014). There are different pastros derived from
each pipeline’s independent analysis of astrophysical events
that gets published in the catalog

When creating tables for the pastros of the two catalogs, if
an alert was terrestrial the pastro is equal to zero, because it
did not make it to the catalog. This explains the high density
of pastro values equal to zero in fig(6). The figure also shows
how polarized the two catalogs are. Most events are either
equal to zero or 1, this fact will be more prevalent in later
figures.

BCI is a Bayes factor derived from another Bayes factor
eqn(9). The higher the value of this Bayes factor the more
likely a candidate is to be astrophysical and the lower the
value, the less likely it is to be astrophysical.

Running Bayestar required an alert to have made it to the
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Figure 7. The Histogram is the Number of alerts vs. log10(BCI).

As previously stated, retracted events were given a random

log10(BCI) value between -10 and -15.The green bins are from
low latency(OPA) and the blue bins are from Bayestar(GWTC-2).

Both the green and blue bins have a total of 77 alerts. The number

of bins = 40.

catalog. This caused a short-lived dilemma when trying to
compare the updated BCI to the low latency BCI because
we did not know what to set the terrestrial events equal to.
Shreya Anand recommended setting the terrestrial alerts to
an updated BCI that is less than -10. We gave the terrestrial
values a random log10(BCI) with a value between -10 and
-15. This was done to avoid a polarized histogram as seen in
fig(6) this way we may have a closer look at the values in
between the two endpoints as shown in fig(7). fig(7) has a
much better spread than fig(6), though the number of astro-
physical Bayestar events stop around log10(BCI) = 0 leaving
only retracted alerts below that value. This shows promise
as it means a considerable number of terrestrial alerts are
still left out of any threshold we set even if we include all
astrophysical events.

2.4 Bayes factors vs. Pastro

The goal of our project is to see if using Bayesian factors is
a reliable method for determining if a source is astrophysical
or not. To determine if it is a reliable method, we plot two
scatter plots, one scatter plot, plotting the low latency OPA
Bayes factors and pastros and, the scatter plot on top of the
previously mention plot, which plots the low latency pastro
vs. the post processing Bayes factors.

The bayes factors used are all logarithmic, to achieve a
more fair comparison to pastro we plot must plot pastro on
a logarithmic scale.

Out of pure preference, we used terrestrial probability in-
stead of pastro. Terrestrial probability is the probability that
an alert is the result of terrestrial disturbance. To find the
terrestrial probability we simple input:

pterr = 1− pastro (13)

Plotting Terrestrial probability against log10(BCI) yields the
figure shown in fig(8). Looking at the scatter plots in fig(8),

Figure 8. The figures above shows the log10(BCI) (y-axis)
vs. the probability of a detection occurring from terrestrial

disturbance(x-axis). In the plot ’low latency alerts’ are the blue

circular points, it is a plot of low latency terrestrial probability
vs log10(BCIlow−latency). Above the ’low latency alerts’, we have

’Bayestar’, these points are the low latency terrestrial probability

vs the Bayes factors obtained from running Bayestar log10(BCI),
represented as a red star ’*’. As in the previous section, the

’Bayestar’ points below -10 log10(BCI) are all terrestrial alerts.

If a blue dot does not have the red star from Bayestar above it,
that means that the alert is terrestrial as it did not make it to the

catalog. There are 77 events in total

we can see that this method shows some promise in deter-
mining if sources are astrophysical or not. We can clearly
see what value of log10(BCI) yields the first terrestrial event
and all astrophysical events. Fig(8) displays an issue when at-
tempting to plot log10(BCI) against terrestrial probability,
most astrophysical alerts occur near Terrestrial probability
= 0, but many retracted alerts do as well, making it difficult
to comfortably set a threshold hold for pastro and terrestrial
probability. The plot shows some promise in finding an BCI
threshold, however further analysis between the fraction of
alerts at a given threshold must be done.

The dotted red line in fig(8) allows us to view the
log10(BCI) value at which the first terrestrial alert occurs.

2.5 ROC curve

In order to find the optimal threshold for our Bayes factors
and Pastro, we have to create an ROC curve. An ROC curve
is the Receiver Operator Characteristic curve. It is made from
a plot between the true positive rate(TPR) and false positive
rate(FPR). ROC curves can tell us how well are data is at
distinguishing the true and false results from each other, from
this distinguishing, we can find a reliable and optimal thresh-
old. If you create an ROC curve and the outcome is a diagonal
slope from 0 to 1, your data is indistinguishable. However
if your plots outcome is in the shape of a 90 degree angle,
then your data is perfectly distinguishable (Sarang Narkhede
2021).

So first, we need to define the TPR and FPR.
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Figure 9. Plot of the ROC for log10(BCI), log10(BSN), and

pastro.x-axis is false positive ratio and y-axis is the true positive
ratio. The black dotted line, is a plot of where the TPR and the

FPR are indistinguishable. Over 9000 thresholds were compared to

create this plot. The blue dots represent log10(BCI), orange stars
represents log10(BSN) and the green ’+’ represents pastro.

TPR is defined as:

TPR =
TP

TP + FN
(14)

Where TP is the true positive7, FN is false negative 8

FPR is defined as:

FPR =
FP

FP + TN
(15)

Where FP is false positive9 and TN is true negative10 After
these values has been found for a set of many thresholds, you
can create your ROC curve by plotting TPR in the y-axis and
FPR in the x-axis as shown in fig(9) The outcome of this plot
is absolutely amazing! It shows that we have many choices for
a reliable threshold for log10(BCI). There are also points on
the plot for log10(BCI) where TPR = 1 and FPR = 0, signi-
fying that there is a threshold that yields only astrophysical
alerts!

Fig(9) proves that log10(BCI) is a very reliable statistic to
find a threshold for because of the perfect 90 degree angle of
its curve.

The next section will show us many of these thresholds and
their reliability.

2.6 BCI threshold vs. Fraction of alerts

The best way to observe the validity of thresholds that we find
with the ROC curve in fig(9) is to see how many astrophysical
events out of the total astrophysical events are included at the
different thresholds. Finding an comfortable balance between
fraction of astrophysical alerts out of the total astrophysical
alerts versus astrophysical alerts over total number of alerts

7 TP = Alerts are in both the catalog and OPA at threshold
8 FN = Alerts are not in OPA but in catalog at threshold
9 FP = In OPA but not in catalog
10 TN = Alert not in OPA and catalog

Figure 10. This plot can be used to find a reliable threshold. The

x-axis consists of over 9000 log10(BCI) thresholds in the range of
-15 to 21. The y-axis is the fraction of total alerts. The total num-

ber of alerts for ’Low latency’ and ’Bayestar’ is 77. As previously

stated, for ’Bayestar’ log10(BCI) ¡= -10 all events are retracted.

will be the deciding factor is our decision of a threshold. With
fig(10), we can find such a balance. The three dotted lines in
fig(10) represents three potential thresholds.

The purple dotted line marks the fraction of events pass-
ing the log(BCI) threshold at which the first retracted alert
occurs. This shows that at log10(BCI) > 9.811 you get a 100
percent of the events are astrophysical, however only 15 per-
cent of the total alerts pass this threshold. Taking a closer
look at the number of events, we see that there are 12 out of
the 45 astrophysical alerts detected at this threshold, yield-
ing a 26.7 percent fraction of total astrophysical events at
this threshold.

The green dotted line represents the point where all astro-
physical events are included in a threshold. At a threshold
of log10(BCI) < -0.04365 you will have all 45 astrophysical
alerts in your threshold, however at the exchange of a higher
number of terrestrial events. At a threshold of -0.0435 you
have 45 astrophysical alerts but a total number of 64 alerts,
giving you a 70.3 percent of alerts total that are astrophysi-
cal.

We can use the two established thresholds as endpoints
when selecting a threshold with a fair balance between ter-
restrial and astrophysical alerts.
The threshold we are looking for will be within the bounds
of both endpoints as shown in eqn(16):

−0.0436 < log10(BCI)threshold > 9.811 (16)

Where we are certain that there are 26.7 percent of total
astrophysical events at log10(BCI) > 9.811

The red dotted line in fig(10) is what we found to be the
threshold with the most favorable trade off between astro-
physical and terrestrial alerts. When log10(BCI) = 4.188, we
get 39 out of the total 45 astrophysical events, yielding 86.7
percent of all astrophysical events at this threshold. We get a
total of 43 events at this threshold, dividing our 39 astrophys-
ical alerts with the 43 total alerts detected at this threshold
an astrophysical to total alert rate of 90.7 percent is found.

This result will allow us to be much more confident in
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our low latency gravitational wave alerts. This in turn could
potentially lead to a higher number of rapid multi messenger
counterpart searches upon receiving alerts

3 CONCLUSION

Bayes factors have proven to be an extremely efficient method
of filtering low latency LIGO alerts. Fig(9) shows that
log10(BCI) is the best tool for distinguishing the right thresh-
old, the plot confirms that log10(BCI) is better than both
log10(BSN) and pastro. Fig(10) provides a threshold bound-
ary. If a low latency LIGO alert is obtained and its log10(BCI)
value is within the boundaries stated, you now know the prob-
ability of that event being astrophysical. Furthermore any
values above both boundaries can be interpreted as astro-
physical. This result is major because it allows us to have
near 100 percent confidence with low latency alerts.

Implementing these results in the process for filtering low
latency results will prove to be advantageous. Testing the
results obtained, with simulated events can provide evidence
for the validity of our results.

If our final results prove to be effective in filtering out re-
tracted events in the simulated events, we will implement it
in the low latency packages.

The log(BCI) threshold will allow rapid EM counterpart
follow ups. The astronomer will be able to choose their own
criteria for triggering a follow up as we can provide the prob-
abilities of an alert being terrestrial for every log(BCI) value.
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