Projecting Sensor Noise to the Cartesian Basis - T2100336

Brian Lantz

August 2021

1 Introduction

This document contains the scaling factors to convert the noise of individual sensors used by the ISI (see SEI_sensor_noise.m) into the sensor noise for the various cartesian DOFs. This is to document calculations done long ago.

2 Math

This uses the sensor2CART matricies to calculate the noise. The matrices are documented in T1000388, and we use the projections:
\{SeismicSVN\}/BSC-ISI/Common/Basis_Change_BSC_ISI/aLIGO_BSC_ISI_ITMX_ETMY.mat \& \{SeismicSVN\}/HAM-ISI/Common/Basis_Change_Matrices/aLIGO_HAM_ISI_4_5_6.mat.
We use these because X and Y (and rX and rY) are symmetric, and because the matrix for the feed-forward L-4Cs is only saved for HAM4 and HAM5. The columns of each matrix are for the 6 sensors, and the rows are the cartesian DOFs. To calculate the noise for a particular DOF, e.g. x, consider the row for that DOF in the projections matrix. The x row is the first row. The cartesian signal C_{x} is the sum of the 6 sensors $\left(s_{h 1}, s_{h 2}\right.$, etc) and their associated matrix elements $m_{x, h 1}$, $m_{x, h 2}$, etc.

$$
\begin{equation*}
C_{x}=\left(m_{x, h 1} * s_{h 1}\right)+\left(m_{x, h 2} * s_{h 2}\right)+\ldots+\left(m_{x, v 3} * s_{v 3}\right) \tag{1}
\end{equation*}
$$

To calculate the noise, we make 2 assumptions. First, we assume that the noise of the 6 sensors is independent, so the noise terms will add in quadrature. Second, we assume that each of the 6 sensors has the same noise, s_{n}. We see that the noise N_{x} will therefore be

$$
\begin{equation*}
N_{x}=\sqrt{\left(m_{x, h 1} * s_{n}\right)^{2}+\left(m_{x, h 2} * s_{n}\right)^{2}+\ldots+\left(m_{x, v 3} * s_{n}\right)^{2}} \tag{2}
\end{equation*}
$$

We factor out the sensor noise, and see that there is a simple scaling between the noise of 1 sensor and the noise for the particular DOF.

$$
\begin{equation*}
N_{x}=s_{n} * \sqrt{m_{x, h 1}^{2}+m_{x, h 2}^{2}+\ldots+m_{x, v 3}^{2}} \tag{3}
\end{equation*}
$$

ie the noise for a cartesian DOF is the square root of the sum of the squares of the row of matrix elements for that DOF. For example, for the stage 1 CPS in the BSC-ISI, The ST1_CPS2CART
matrix is

$$
\left[\begin{array}{cccccc}
-0.6667 & 0.3333 & 0.3333 & 0.0144 & 0.0240 & -0.0384 \tag{4}\\
0 & -0.5773 & 0.5773 & -0.0361 & 0.0305 & 0.0056 \\
-0.3467 & -0.3467 & -0.3467 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.3333 & 0.3333 & 0.3333 \\
0 & 0 & 0 & -0.5980 & 0.5059 & 0.0921 \\
0 & 0 & 0 & -0.2389 & -0.3984 & 0.6373
\end{array}\right]
$$

so the scaling S_{x} for the X direction would be

$$
\begin{equation*}
S_{x}=\sqrt{-0.6667^{2}+0.3333^{2}+0.3333^{2}+0.0144^{2}+0.0240^{2}+-0.0384^{2}}=0.8179 \tag{5}
\end{equation*}
$$

Thus, the CPS noise for the X direction is 0.8179 * the noise of the stage 1 CPS sensor. Because of the symmetry of the platform, the X and Y scalings are the same, as are rX and rY . By inspection we can see that the Z scaling is $\sqrt{1 / 3}$ as expected.

3 Scaling Values

The scalings for the sensors on the BSC-ISI are

DOF	Stg1 CPS	Stg1 T240	Stg1 L-4C	Stg2 CPS	Stg2 GS-13
X	0.8179	0.6007	0.8189	0.8210	0.8181
Y	0.8179	0.6007	0.8189	0.8210	0.8181
rZ	0.6005	1.0104	0.7332	0.8350	0.7577
Z	0.5773	0.5773	0.5773	0.5773	0.5773
rX	0.7887	1.4289	0.9937	1.2034	1.1906
rY	0.7887	1.4289	0.9937	1.2034	1.1906

The scalings for the sensors on the HAM-ISI are

DOF	Stg0 L-4C	Stg1 CPS	Stg1 GS-13
X	0.8759	0.8172	0.8172
Y	0.9418	0.8172	0.8172
rZ	1.1365	0.8497	0.8497
Z	0.5978	0.5773	0.5773
rX	1.1722	1.0370	1.0370
rY	0.7921	1.0370	1.0370

Note that since the feed-forward L-4Cs on stage 0 of HAM4 and HAM5 are not uniformly distributed about the center of stage 1 , the noise projections do not have the same simple structure of the sensors on the suspended stages.

4 Saved files

All the files for this are in the Seismic SVN. The script to do the calculations is: SeismicSVN/Common/MatlabTools/make_basis_change_noise_scalings.m

The scalings are all saved as a single data structure in the file SeismicSVN/Common/MatlabTools/SEI_sensor_noise_projections.mat This data structure looks like sensor_noise_projections.\{bsc/ham\}.stg\{0/1/2\}.sensor.dof
sensors are $\{\mathrm{cps}, \mathrm{t} 240, \mathrm{gs} 13,14 \mathrm{c}\}$, and the dofs are $\{\mathrm{x}, \mathrm{y}, \mathrm{rz}, \mathrm{z}, \mathrm{rx}, \mathrm{ry}\}$
For example, sensor_noise_projections.ham.stg1.gs13.x $=0.8172$.
I also added this to the SEI_sensor_noise function. If you call SEI_sensor_noise with the argument 'projections' (or 'proj') it will return the data structure. For Example.
\gg freq $=\operatorname{logspace}(-1,2,1000)$;
\gg cps_noise_1mm $=$ SEI_sensor_noise ('ADE_1mm', freq);
\gg proj $=$ SEI_sensor_noise ('projections');
\gg stg1_cps_x_noise $=$ proj.bsc.stg1.cps.x $*$ cps_noise_1mm;

