

Coating Core Optics for O4

02/02/2022 LIGO-G2200124-v1

A. Ananyeva, S. Appert, G. Billingsley, A. Brooks, P. Fritschel, S. Gras, L. Zhang

LIGO

- Waiting to coat ETMs for O4 until we have resolution of point absorber problem are we there?
 - Progress in limiting particulate in the chamber
 - Still absorbers but small, significance is uncertain
 - What does small mean???
 - Known IFO points
 - Compare what is seen on witness samples
 - Owner wait?
 - Schedule first optic arrives for installation 14 weeks from "GO" ~June 1
 - O4
 - Costs \$125k/day to run LIGO, \$ 213k to repolish ETM S1
 - Schedule LMA needs to get on development of Ti:Ge coatings for some project called A+

- Other ETM options
 - Ablation might start with ETM11/14 these have high scatter

LMA

LMA Current Status

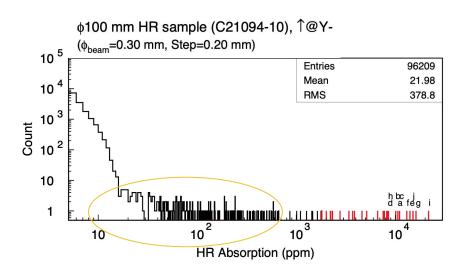
Ready to coat ~mid February

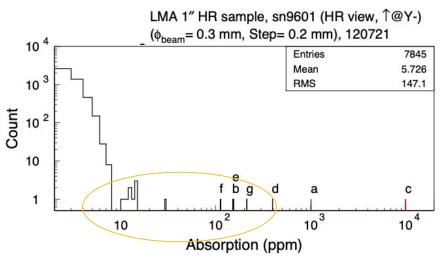
Waiting on a new target

Waiting on new mounts

Waiting on new chamber panels

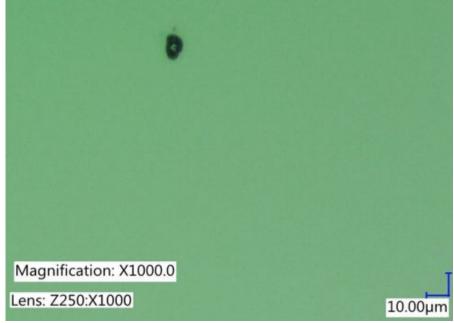
Will receive Ti:Ge targets this month




A noticeable improvement in the chamber

Foil covering sandblasted surfaces

No sandblasted surfaces



Remaining points are small

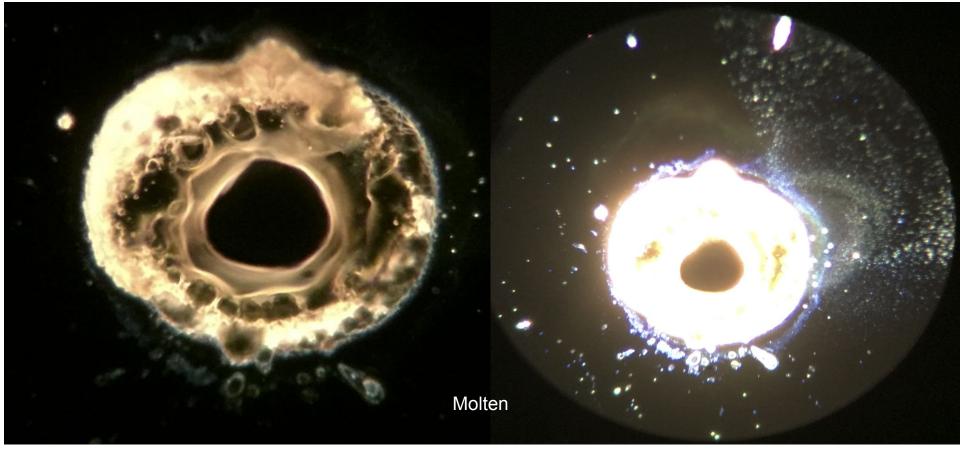
SN9601 highest absorber on RTS is point c

LIGO-G2200124

Point Absorber Summary

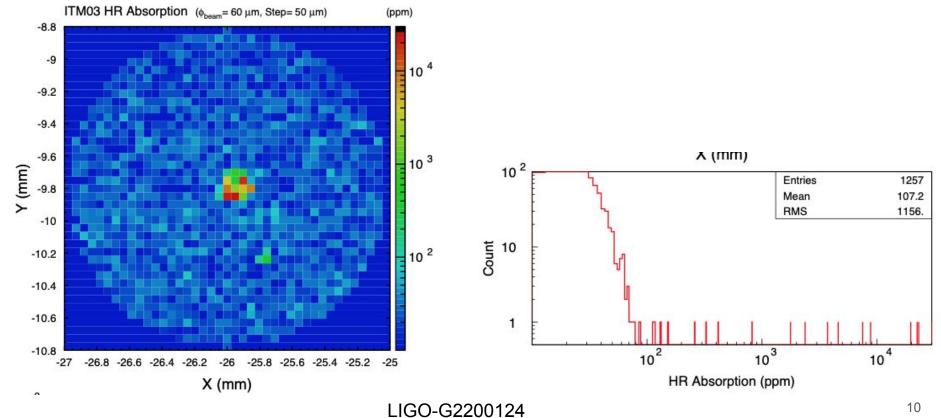
Possible causes

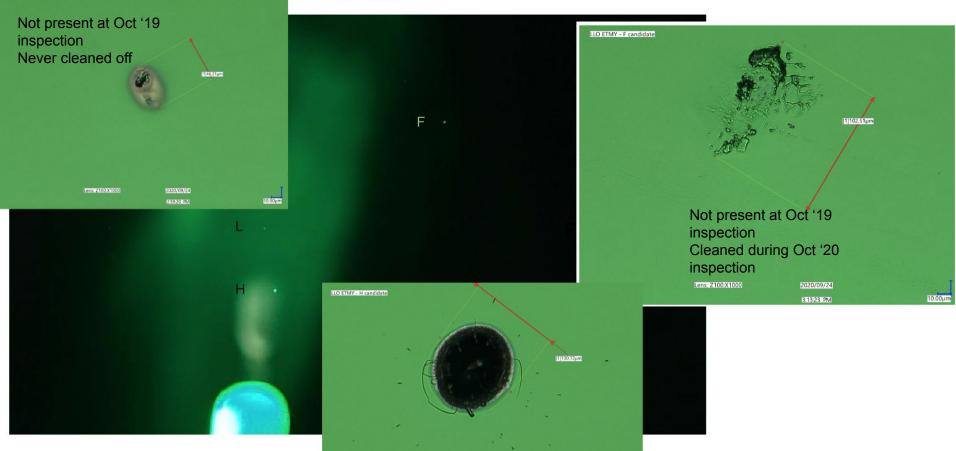
- Coating chamber panels are sandblasted and difficult to clean, may shed during coating
- Re-sputtering from the coating chamber optic mount or shutter
- o First contact_residue from in-situ cleaning
- Exploding dust we suspect this is minimal
- Identification and characterization
 - Photo-thermal Common-path Interferometery (PCI) absorption tests Zhang, Catalog at <u>T2000055</u>, <u>E2000079</u>
 - Hartmann Wavefront Sensor (HWS) Brooks <u>G2001349</u>
 - Material imaging and ID Appert/Kuns/Gras/Gomez/Kasprzak, Catalog at T2000733
- Possible mitigation
 - Prevention
 - Chamber cleaning Ananyeva <u>T2100351</u>
 - Masking parts near the optic with clean or new material each run
 - Ablation
 - Demonstrated removal of defects by ablation Fritschel G2001414 T2100216
 - Residual absorption caused by ablation on clean coatings can be mitigated by annealing in air at 300 C° <u>SN0932</u>
 - Remaining residual absorption of ablated or partially ablated points, improving with annealing, work is ongoing <u>E2100395</u>



Point Absorbers In Situ Different causes?

Absorber from O2 LHO ITMx



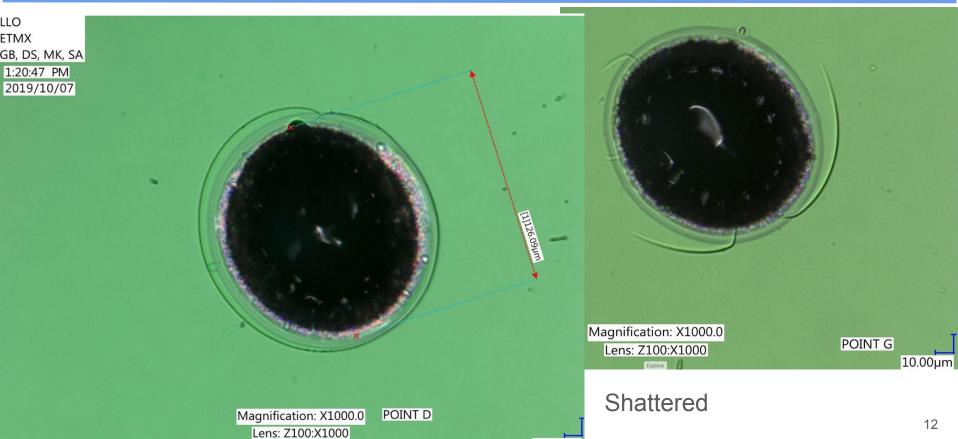


O2 LHO ITMx local absorption map

Lens: Z100:X600

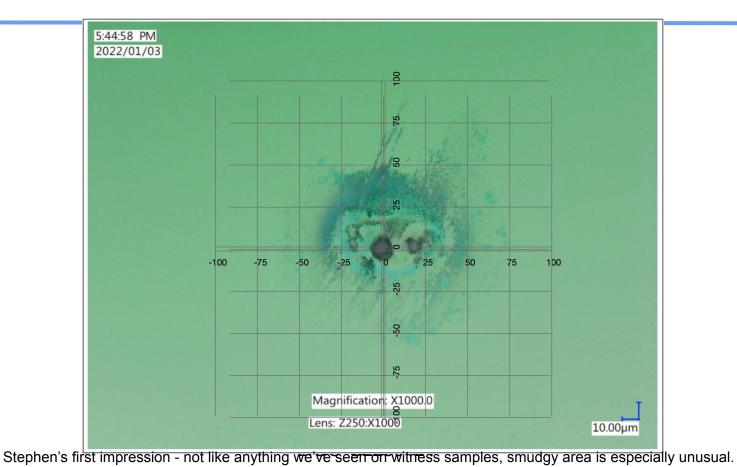
L1 ETMy Alog Source

LLO ETMY - L candidate


Original absorber candidate found Oct '19, "shattered" ~130µm

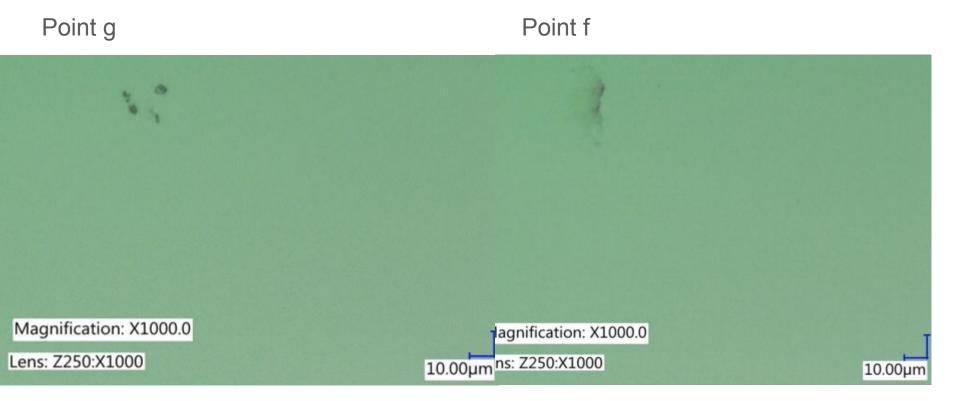
10.00µm

ETMx inspection October 7, 2019 LLO aLOG 48996, or T1900696



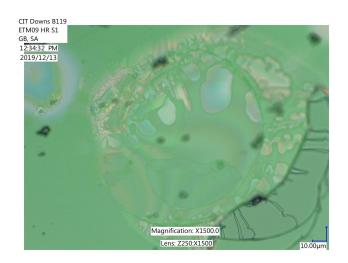
10.00µm

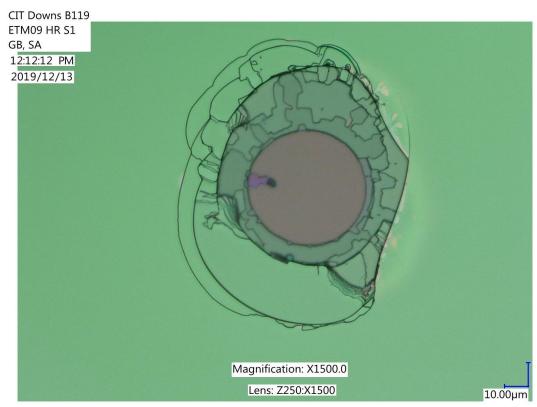
LHO O3 ITMY HR Absorber Point-i



13

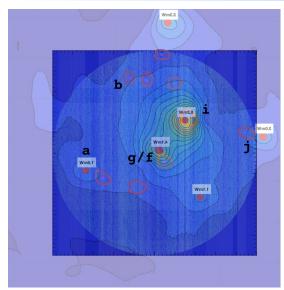
LHO O3 ITMy HR Absorber Points g and f




From ETM09 after extraction from LLO-Y

another type of point/bubble, not absorbing

(photographed in lab)



Equivalent point diameters: RTS vs in-situ vs HPAD LHO O3 ITMY

Point	RTS (µm)*	In-situ LHO (µm)	<u>HPAD</u> (μm)	Visual estimate
i	73 ± 15 μm	31 ± 2 μm	16 - 22µm	50um?
g/f	17.5 ± 4 μm/ 3μm	25 ± 4 μm	5 - 7μm	10um/10um
b	14 ± 3 µm	NA	5 - 7μm	10um
a	7.3 ± 1.5 µm	40 ± 18 μm	NA	5um
j	3.4 ± 0.7µm	27 ± 8 μm	NA	3um

Possible confounding factors:

HPAD (intensity/power, AOI) [wavelength is 1064nm] [ITM11 HR spectrum pg 6.]

Standing wave (ifo) vs. traveling wave (benchtops)

Convection cooling vs. vacuum

IFO beam position uncertainty (especially for features out near edge)

LIGO-G2200124

^{*}Based upon heating beam diameter of 300µm see Calibrating thermal lens measurements G2200069 - Brooks

Other Options

Ablation on existing ETMs
Ablation as a backup to newly coated ETMs

LIGO Ablation sample annealing to reduce absorption

Feature c partial removal - some metal found in SEM.

Feature i no residual metal found in SEM but possibly some buried under apparent coating blob?

All ablated areas seem to still have features left.

Note that per <u>T2100216 slide</u> <u>21</u>, we are looking for a factor of 4 to 6 reduction from anneal.

SN1009, Laser Ablation and Annealing Test

ID	Before Ablation (ppm)	After Ablation (ppm)	300C 10hr Annealing (ppm)	400C 10hr Annealing (ppm)	500C 10hr Annealing (ppm)
а	8.8E+04	3.0E+04	2.0E+04	2.2E+04	1.4E+04
С	5.2E+04	1.2E+04	1.5E+04	6.7E+03	4.7E+03
е	2.4E+04	4.2E+04	4.4E+04	2.8E+04	1.5E+04
i	1.9E+04	1.5E+04	1.5E+04	1.2E+04	6.6E+03
#14	3.8E+03	1.3E+04	1.2E+04	8.7E+03	7.1E+03
#35	9.0E+03	7.0E+03	8.2E+03	3.3E+03	1.0E+03

The State of Ablation Art

SN1009

Cost and Schedule

Schedule 20 weeks

LMA coat/process one - 4 weeks

Measure Figure - 1 week

Measure Scatter - 1 week

Measure Transmission - 1 week

Measure Absorption - 3 weeks

Ship/Bond/Ship - 3 weeks

Install - 7+ weeks

Second optic arrives for installation 5 weeks after the first

ETM Inventory

4 ETMs polished, at LMA ready to coat

ZYGO is under contract to polish 2 more on OPS funding

Zygo is under contract to polish 4 more ETMs on UK funding

Zygo is under contract to polish 2 more ETMs on A+ funding

We hold 2 optics for India (<u>ETM11/ETM14</u>) that have point absorbers found with RTS, also have high scatter (~20 ppm) as measured with an integrating sphere.