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Find parameters by fitting waveforms

m1, m2, sl, s2, RA, DEC, iota, ... muel)  Waveform

Vo

By checking how well a waveform .- /. ,
fits the data, we get a measurement of |
how likely is this set of parameters

| | | | | | | | | | | 1 | | 1 1 | |
241,852,074.75 1,241 852,074.77 1,241,852,074.79 1,241,852,074.81 1,241,852,074.83 1,241,852,074.85 1,241,852,074.87 1,241,852,074.89
GPS Time (s)



How many waveforms?

“ For searches, we use 1 detector at a time, so we can ignore lots of parameters

* Searches typically use a 2 or 3 dimensional parameter space, with m1, m2,
and maybe a spin parameter.
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2-D “Parameter Space”

For a search, we have a 2-D parameters space

If we want to cover the parameter space in 1%
steps, maybe we need 10072 ~ 10,000 waveforms

A modern computer can perform 109
calculations per second, so with enough
computers, we can compute the SNR for all of
these templates



PE uses a 15 dimensional parameter space

“ For parameter estimation, we want to evaluate all the parameters

“ This includes lots of position parameters that can be ignored for the search
(e.g. the source location in the sky)

“ Then, we have a 15 dimensional parameter space. If we want a grid with 1%
spacing, that would be 10015 = 10730 waveforms (!)

* At modern computing speeds, it would longer than the age of the universe to
make all these calculations. So, using a grid is not possible
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Bayesian Samplers to the rescue

“Samplers:”

. Select a point in parameter space

. Check the waveform fit

(likelihood)

. Record the values

. Repeat

Samplers are designed to be more likely to

select points with a better fit
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Samplers to the rescue

* There are a few different classes of
sampling algorithms

* (Go by names like “Markov Chain
Monte Carlo” and “Nested
Sampling”

Samplers are designed to be more likely to

select points with a better fit
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A bucket of Samples

ml detector_ frame Msun m2_ detector_ frame Msun spinl spin2 costiltl costilt2 = VR e S R SR T O S ik,
39.037380 37.044563 0.417147 0.867740 -0.280624 0.403853
34.620096 34.184416 0.125709 0.260679 -0.757349 -0.312285
37.894343 33.970520 0.581047 0.926893 0.649781 -0.510843
36.412973 35.684463 0.235808 0.094391 0.116578 -0.720505
39.477251 31.645008 0.511521 0.868009 -0.438237 0.269333

mass_1

0.18 - Event

0.16 - o GW150914

0.14 -

0.12 -

£ 0.10-
»n

§ 0.0

0.06 -

After running sampler, histogram the samples

to calculate probability density



|ikelihoods

* At each step in sampler, need to evaluate |
how well the waveform fits the data

* Do this with a quantity called the

“Likelihood” g S S N N
+ The likelihood asks:

“Assuming these are the right parameters, p ( d ‘ h / )

what is the probability of getting this

particular data “The probability of the data,

given this wavetorm”



Calculating the likelihood

d=h+n i

data = signal + noise

I = d— ]/l, IARAA AL A
u v /

noise = data - signal

| | | ! ] | | | | | 1 1 1 1 | 1
1,241 ,852,074.75 1,241 85207477 1,241 ,852,074.79 1,241 .852,074.81 1,241,852,074.83 1,241,852,074.85 1,241,852.074.87 1,241,852,074.89
! GPS Time (s)

(all this the “residual’ data, after

subtracting the trial wavefom



Calculating the likelihood

By assuming the data are Gaussian, we know how likely we are to get a noise sample.

Noise much louder than the PSD value is very unlikely!

p(dl hl) X e_%(”ln) = _%(d—h/ld—h’)

The Likelihood is the probability of getting the residual we see.

Waveforms that fit badly will tend to leave large residuals, and so will have a low likelihood

a(f)0*(f)
Sn(f)

== Above, we used this definition of an “inner product”
~ which is just a cross-correlation between the two values

(alb) =4 df




One more element: The prior

* For all of this to work, we need one more thing: “the prior”

* Prior distributions encode how likely we are to find each value of a
parameter

* An important step in defining priors is to set the possible range of each
parameter

+ For example, we might expect masses from [1, 100] M, , and latitudes
(DEC) from [-7/2, /2]



One more element: The prior

For mass, a simple prior would be to look for Expect BBH to be distributed uniformly in volume
any mass from [1,100] M, with a So, a prior on distance would have
p ( m ) flat distribution more black holes further away p (D)
1 %1072
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Putting 1t together: Bayes™ Theorem

p(d|h')p(h')
p(d)

p(h'|d) =




Putting 1t together: Bayes™ Theorem




Putting 1t together: Bayes™ Theorem




Putting it together: Bayes” Theorem

“The Likelihood”

The Posterior Probability of getting these data

Probability the source has these parameters, if this is the right parameter

given the data
Sl Rrigrs
This is what we want to know! * kGuei?:St S?;Ouatr};;“eftleﬂ:ely
—) p(d|h")p(h) ;
p(h'|d) =
” ( d> K

“The Evidence”

With one model, just a normalization factor




PE: Right-side up

Start with Bayes Theorem

Build a model

Set priors on all parameters

Run a sampler to explore parameter space

Collect a bucket of posterior samples

Histogram the samples to measure Posterior distributions



PE: Right-side up
p(d|h)p(R’)

Start with Bayes Theorem p(h/ | d ) e

Build a model

Set priors on all parameters

p(d)

Run a sampler to explore parameter space

Collect a bucket of posterior samples

Histogram the samples to measure Posterior distributions



PE: Right-side up

Start with Bayes Theorem

. £, Sq
Build a model . my mg ™ G,

Histogram the samples to measure Posterior distributions




PE: Right-side up

Start with Bayes Theorem

0.0104 - p (m 1 )
Build a model 0.0102 -

co100 —]m————11wmv o oo o oo oooo——oovoeo'''\'-’-” e v\ .t nn oo~

p(mass_1)

Set priors on all parameters

0.0098 -

Run a sampler to explore parameter space 0.0096 -

0 20 40 60 80 100

Collect a bucket of posterior samples mass_1

Histogram the samples to measure Posterior distributions




PE: Right-side up

"
Run a sampler to explore parameter space ?
Collect a bucket of posterior samples o

8285 35.0 B85 40.0 42.5 45.0 47.5 50.0 52.5

Histogram the samples to measure Posterior distributions



PE: Right-side up

ml detector_ frame Msun m2_ detector_frame Msun

Start with Bayes Theorem

39.037380

34.620096

Blllld d mOdel 37.894343
36.412973

Set priors on all parameters 30.477251

Run a sampler to explore parameter space

Collect a bucket of posterior samples

37.044563
34.184416
33.970520
35.684463
31.645008

spinl
0.417147
0.125709
0.581047
0.235808
0.511521

spin2
0.867740
0.260679
0.926893
0.094391
0.868009

Histogram the samples to measure Posterior distributions

costiltl
-0.280624

-0.757349

0.649781

0.116578

-0.438237

costilt2

0.403853

-0.312285
-0.510843

-0.720505

0.269333
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PE: Rightside 'y @

36

34

Start with Bayes Theorem :

Build a model 28

Set priors on all parameters g

Run a sampler to explore parameter space /\

32,5 35.0 375 40.0 425 450 475 50.0 525

Collect a bucket of posterior samples (M

Histogram the samples to measure Posterior distributions




OO

/ % Fermi/

Key parameters: Skymaps

GBM
12h

IPN Fermi /
INTEGRAL

8h

Swope +10.9 h

The Declination (latitude)
and

: . Right Ascension

30 "

(longitude)

of a source tell us where to

DLT40-20.5d

find it

AR Measured mainly by time-

of-flight between detectors
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Mass posteriors for GW150914

The size of an object gives clues to
its origins and history

Measured mainly by
frequency evolution



Degeneracies

Sometimes, the measurement of
one parameter depends on the measurement
of another parameter.

Here, the chirp mass is measured very well,
but it can be ditficult to measure
individual masses

0.7 |

0.6

125 150 1.75 2.00 225 250 2.75
m1 [Mg)



Degeneracy: Distance and inclination angle

300 Overall

— |IMRPhenom
—— EOBNR

600
The distance and inclination

angle of a source both impact the amplitude
of the signal

0° 30° 60° 90° 120° 150° 180°
01N



Summary

* Parameter Estimation is used to learn the masses, spins, and position of
sources

“ Uses a Bayesian statistical framework and a sampler (e.g. MCMC) to explore
a large parameter space

* Posterior samples represent the probability of different parameter values



