Introduction to gravitational-wave parameter estimation

Alan M. Knee GWANW 2023 Student Workshop June 26 @ LHO

Gravitational-wave sources

 Ground-based detectors are sensitive to gravitational waves (GWs) from several sources, including stellar-mass compact binary coalescences (CBCs)

What we want to know

• GWs tell us about the physics of the binary that emitted them, such as ...

• Goal of parameter estimation is to measure these properties from the GW signal

Outline

How to estimate parameters from the strain data? Use the framework of Bayesian inference

Waveform model

Parameters

- In general, 8 intrinsic parameters: two masses, six spin elements
- Neutron stars add a tidal parameter

"Chirp mass" sets leading-order frequency evolution:

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Mass ratio, spins have higherorder effects

Parameters

• 7 extrinsic parameters, describing location/orientation of the system relative to the detector

Parameters

Have a waveform model for the signal parameterized by

Intrinsic

Masses: m_1, m_2

Spins: $\overrightarrow{\chi}_1$, $\overrightarrow{\chi}_2$ Tidal (for NSs): Λ_1 , Λ_2

Extrinsic

Luminosity distance: D_L

Inclination: $\theta_{\rm IN}$

Sky position: (α, δ)

Polarization angle: ψ

Coalescence time: t_c

Coalescence phase: ϕ_c

• Bayesian statistics gives us a set of tools to infer these parameters and their uncertainties from the data

Bayesian inference

• Bayes' theorem is a statement about conditional probabilities

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• A and B are statements, e.g. "it will rain tomorrow" or "the total mass of GW190521 is $160~M_{\odot}$ "

Bayesian inference

• In the context of GW parameter estimation, can write Bayes' theorem like this

Likelihood function

$$P(\boldsymbol{\theta}|\boldsymbol{d},\boldsymbol{h}) = \frac{\mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta},\boldsymbol{h})\pi(\boldsymbol{\theta}|\boldsymbol{h})}{\mathcal{Z}(\boldsymbol{d}|\boldsymbol{h})}$$

- The probability of observing the data d given a waveform model h with parameters θ
- Usually approximate the noise as being stationary and Gaussian

Priors

$$P(\boldsymbol{\theta}|\boldsymbol{d},\boldsymbol{h}) = \frac{\mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta},\boldsymbol{h})\pi(\boldsymbol{\theta}|\boldsymbol{h})}{\mathcal{Z}(\boldsymbol{d}|\boldsymbol{h})}$$

- Prior distributions represent our a priori (initial) assumptions about the parameter values
- Often pick uniform/isotropic distributions
 - e.g., uniform in component masses, isotropic in spin angles, etc.
- ... or incorporate previous measurements

Evidence

$$P(\boldsymbol{\theta}|\boldsymbol{d},\boldsymbol{h}) = \frac{\mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta},\boldsymbol{h})\pi(\boldsymbol{\theta}|\boldsymbol{h})}{\mathcal{Z}(\boldsymbol{d}|\boldsymbol{h})}$$

Normalizes the posterior distribution

$$\mathcal{Z}(\mathbf{d}|\mathbf{h}) = \int \mathcal{L}(\mathbf{d}|\boldsymbol{\theta}, \mathbf{h}) \pi(\boldsymbol{\theta}|\mathbf{h}) d\boldsymbol{\theta}$$

• Can construct Bayes' factors to compare evidence for competing models

$$\mathcal{B} = rac{\mathcal{Z}(d|h_1)}{\mathcal{Z}(d|h_2)}$$

ullet Larger Bayes' factor means hypothesis h_1 is favoured by the data over h_2

Marginalized posterior

$$P(\boldsymbol{\theta}|\boldsymbol{d},\boldsymbol{h}) = \frac{\mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta},\boldsymbol{h})\pi(\boldsymbol{\theta}|\boldsymbol{h})}{\mathcal{Z}(\boldsymbol{d}|\boldsymbol{h})}$$

• The posterior distribution is multi-dimensional, but can recover a 1D posterior for a single parameter, θ_1 , by marginalizing over every other parameter

$$P(\theta_1|\mathbf{d},\mathbf{h}) = \int P(\mathbf{\theta}|\mathbf{d},\mathbf{h}) d\theta_2 \dots d\theta_n$$

Obtaining the posterior

$$P(\boldsymbol{\theta}|\boldsymbol{d},\boldsymbol{h}) = \frac{\mathcal{L}(\boldsymbol{d}|\boldsymbol{\theta},\boldsymbol{h})\pi(\boldsymbol{\theta}|\boldsymbol{h})}{\mathcal{Z}(\boldsymbol{d}|\boldsymbol{h})}$$

- Posterior distribution is given by Bayes' theorem, so we can just calculate it directly, right?
- Not so fast remember that we have ~ 15 -17 free parameters
- Imagine we are evaluating the likelihood over a coarse grid in parameter space, using just 10 values for each parameter, 1ms waveform generation

 10^{15} points $\times 10^{-3}$ seconds/point $\approx 30,000$ years!

• High dimensionality renders brute-force calculation impractical, need to try something else

Stochastic sampling

- Instead we use a stochastic sampler to infer the posterior distribution, e.g. Markov chain Monte Carlo (MCMC) or nested sampling
- Several sampling algorithms/implementations publicly available, e.g. dynesty
- Get results typically on scale of hours to days, depending on setup/processing power

Bilby

- Bilby* is a publicly available Python package for Bayesian parameter estimation
- Designed for GW analyses but can also tackle more general applications
- Analyze strain data, inject simulated signals, generate random noise
- Main workhorse for PE analyses within the LVK
- See papers: [1811.02042, 2006.00714]
- Next: using Bilby to analyze a real event

*A "bilby" is a small marsupial found in Australia, where Bilby was originally developed

Visualizing the output

- This kind of diagram is called a "corner plot"
- Histograms show the 1D marginalized distributions for chirp mass and mass ratio
- Contour plot is the joint posterior distribution for both parameters
- Obtaining credible intervals a matter of computing percentiles of the marginal posteriors

Visualizing the output

• Reconstructed waveform plotted on top of whitened and bandpassed strain in H1, L1

Resources

- Link to tutorial notebook: https://colab.research.google.com/github/alanknee/gwanw22 bilby tutorial.ipynb
- Bilby documentation: https://lscsoft.docs.ligo.org/bilby/
- More examples: https://lscsoft.docs.ligo.org/bilby/examples.html