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BayesWave is a library of code used to analyze data from LIGO’s gravitational wave detections.
BayesWave uses Bayesian statistics to reconstruct signals and determine possible sources. The like-
lihoods of various models can be compared so that BayesWave can determine the most likely sizes,
locations, and types of sources that could produce a certain detected signal. Currently, BayesWave
uses Thermodynamic Integration (TI) to calculate the likelihoods of various models. An alternative
method is called Stepping-Stone (SS) sampling. In other fields, SS has been shown to be as accu-
rate as TI while also being less computationally expensive. This project explores the comparison
between TI and SS methods when each is applied inside BayesWave, to determine if SS is a viable
replacement for TI to be used for analysis of LIGO’s fourth detection run in 2023.

I. INTRODUCTION/BACKGROUND

A. LIGO

Gravitational waves are ripples in space-time caused
by high-energy events in outer space, such as supernovae
and the collisions of black holes. The Laser Interferome-
ter Gravitational-wave Observatory (LIGO) [1] is a large
ground-based interferometer used to detect those ripples.
Such ripples change the way that light travels and LIGO
measures that change as slight fluctuations in its inter-
ferometric “arm” length. LIGO first detected gravita-
tional waves in 2015, and has been carrying out observa-
tional runs since, finishing its most recent observing run
in 2020[2], and is planned to start its fourth observing
run (O4) in 2023. A significant amount of data process-
ing is required to convert detected signals into astrophys-
ical data that can be used to describe properties of the
signal’s source.

B. Bayesian Statistics

Bayesian statistics is a form of statistics in which ear-
lier probability distributions (priors) can be updated to
account for new data to produce new distributions (pos-
teriors). This is done using Bayes’ Theorem, given by
equation 1.

P (A|B) =
L(B|A)π(A)

P (B)
(1)

The “posterior”, P (A|B), represents the probability of
some event A given that B is true. The “prior” π(A)
is the probability of some event A independent of other
events, and is used to encode our understanding of the
statistics before beginning an analysis. The “likelihood”,
L(B|A), is the measure of how well out model fits the
data. In order to normalize a posterior distribution
(which is necessary in order to compare probabilities of
different models), you integrate the numerator of 1 over
the parameter space. The normalization factor (written
as P (B)) is called the “evidence”. Evidences are used to

compare the probabilities between different models, and
are generally compared using the “Bayes Factor”:

P (B1)

P (B2)
(2)

Bayes factors are an essential tool in model compari-
son. In LIGO analyses Bayes factors are used to deter-
mine the most probable source of gravitational wave sig-
nals. For our purposes we use them to determine whether
excess power is astrophysical, Gaussian noise, or non-
Gaussian noise. As more GW detections are confirmed,
LIGO’s pool of confirmed sourches increases an our priors
become more accurate to what traits we expect sources
to have.
As mentioned, evidence calculation is an integral; when

parameter spaces are large, performing such an integral
can be computationally challenging. In this study we
will discuss the uses of thermodynamic integration and
the stepping-stone algorithm in the context of evidence
calculation in LIGO analyses using BayesWave.

C. BayesWave

BayesWave [3] is a library of code which analyzes LIGO
data using Bayesian statistical methods. is able to ac-
count for multiple models in its analyses including Gaus-
sian noise (PSD), non-Gaussian noise (“glitches”), and
coherent power between detectors (“signals”), and re-
cently compact binary coalescence templates (“CBC”).
The signal and glitch models are both reconstructed us-
ing wavelets where the signal model has the additional
constraint that the wavelets must be coherent between
detectors. Models can then be compared with their
Bayes’ Factors, to determine which are good fits for the
observed data. This is an important tool for determin-
ing whether a detection is actually from an astrophysical
source or from a glitch within the interferometer’s sys-
tem.
When BayesWave is used to analyze interferometric sig-

nals, it creates and stores model data and diagrams in a
directory, useful for analysis. Figure 1 shows a recon-
struction of the 150914 signal at the Hanford detector
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using a coherent wavelet (signal) model. Figure 2 shows
the reconstructed spectrogram from the same signal.

FIG. 1: reconstructed waveform using BayesWave

FIG. 2: reconstructed signal spectrogram using
BayesWave

An important part of BayesWave that influences this
project is BayesLine, which is used to more accurately
estimate the power spectral density (PSD) of the in-
strumental noise during a detection [3] than other PSD
estimation methods. There are many sources of noise
such as ground motion and optical thermal fluctuations.
The more accurately that noise can be quantified and
parsed through, the more accurately a signal can be re-
constructed. [3]. The details of BayesLine’s algorithm
are not relevant to this project, but it is important to be
aware that applying BayesLine to a run of BayesWave
produces different evidence estimates than when it is off,
due to its effect on signal reconstruction.

II. EVIDENCE CALCULATION

Evidence calculation is the integration of likelihoods in
a high dimensional space. When the likelihood is sharply
peaked in a large space, this integration can be tricky. We
need methods such as thermodynamic integration and

stepping-stone, which can be used to calculate multiple
evidences on likelihoods which can be scaled to smooth
out their peak. The factor called “temperature” scales
the likelihood, with a larger temperature making the like-
lihood peak easier to find since it will be non-negligible
on a larger set of parameter space compared to the un-
scaled likelihood. The set of points used to calculate the
likelihood at a given temperature is called a “chain”.
A high temperature corresponds to a chain which, sim-

ilar to the behavior of a thermodynamic system, has a
higher chance of jumping to less likely states. This means
that the likelihood function flattens to approach the prior
distribution (flattening out in parameter space). Like-
wise, a low temperature corresponds to chains that are
more likely to stay in areas of high probability [4], re-
sulting in a peaked probability distribution approaching
that of the posterior. We define β as the inverse of the
temperature such that a β value moving from zero to one
corresponds to chains “cooling down”, while starting at
one and moving to zero corresponds to a chain “heating
up”.

pi(θ) =
L(D|θ,Mi)π(θ|Mi)

zi
(3)

We will rewrite Bayes’ theorem (Eq 1) as the above in
order to show what it looks like on a given chain and to
motivate both thermodynamic integration and the step-
ping stone algorithm. We introduce an index i which
corresponds to the chain or equivalently “temperature”
of the likelihood we are evaluating. Here pi(θ) is the pos-
terior probability density for some model, π(θ|Mi) is the
prior distribution L(D|θ,Mi) is the likelihood function of
some data, D, given that the model is true. We will also
write the evidence corresponding to a given temperature,
zi, more explicitly below [4]:

zi = p(D|Mi) =

∫
L(D|θ,Mi)π(θ|Mi)dθ (4)

The marginalized likelihoods can be compared using
the log Bayes’ factor which we will call µ:

µ = ln(
z1
z0

) (5)

What we can do is rewrite equation 5 in terms of the
symbol β.

µ = ln(
z1
z0

) = ln(z1)− ln(z0) =

∫ 1

0

∂ln(zβ)

∂β
dβ (6)

III. THERMODYNAMIC INTEGRATION

Currently BayesWave uses thermodynamic integration
(TI) [5] to calculate evidences for potential models. To
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do so TI estimates the integral form of equation 6[6].
TI is also known as path sampling, because it involves
taking samples along a path of temperatures. β (again,
inverse temperature) begins at one extreme, either zero
or one, and travels along a path to the other extreme as
the temperature changes. β = 0 corresponds to the chain
containing posterior samples, and β = 1 corresponds to
the chain containing prior samples.

TI estimates µ by taking many discrete steps as β
moves between 0 and 1 and taking samples at each tem-
perature. The samples can then be used to estimate the
integral. As can be expected, the estimate of an inte-
gral curve using a finite number of values will introduce
discretization bias into the estimate. The more samples
we take, the smaller this bias, and the more accurate the
estimates are.

Eβ [log(L(D|θ,M))] =

∫
log(L(D|θ,M))βπ(θ)dθ (7)

To estimate the integral in equation 6, we rewrite the
integral in terms of the expectation value of the log likeli-
hood, affected now by the term β, as seen above [7]. β is
the inverse of the temperature of a sampling chain. From
this integral, the logarithmic evidence can be rewritten
as the following [7]:

log(µ) = log(
z1
z0

) = log(z1) =

∫ 1

0

Eβ [log(L(D|θ,M))]dβ

(8)
For each chain location along β’s path, samples will be

taken and a sample average acquired. Then, those values
can be used to estimate the integral [7], as per equation
8. This takes some time, as each β chain is run one at a
time, rather than in parallel. An estimate can be seen in
the following plot.

FIG. 3: Estimate of the marginal likelihood using 1000
points, from ”Computing Bayes’ Factors Using

Thermodynamic Integration” [4]

Thermodynamic integration has proven to be a very
reliable method, provided enough samples are taken to
minimize bias and produce accurate estimations of the

desired curve. TI experiences thermic lag bias [4] as it
changes β values and adjusts to each new value. This
has been shown to cause TI to slightly underestimate
marginal likelihood values if β is integrated from zero to
one, and a slight overestimate if it is taken from one to
zero. It also experiences discretization bias, because of
the limits on the accuracy with which a discrete num-
ber of values can estimate a continuous integral. Despite
these points, and the fact that it is computationally ex-
pensive, TI is significantly more accurate than simpler
methods, and thus a very helpful tool.

IV. THE STEPPING-STONE METHOD

The stepping-stone algorithm [7] is a method for find-
ing evidences that is similar to TI but is less computa-
tionally costly. like TI, SS calculates marginal likelihoods
directly, producing similar, and actually slightly more ac-
curate [8] estimates.
the stepping-stone method calculates evidences differ-

ently than TI. Rather than calculating the average likeli-
hood at each β value and summing them to estimate the
integral as in Eq 8, SS compares marginal likelihoods
between each discrete βi value and that of the one be-
fore it, in a process called importance sampling. Then
the product of those ratios can be used to estimate the
evidence [7]. This is shown in equation 9, where K is the
number of chains (β values) used.

z =
z1
z0

=

K−1∏
k=1

zβk

zβk−1

(9)

In other fields, this method has been shown to be more
accurate than the TI method of averaging samples at each
step[8]. LIGO’s fourth observational run is expected to
detect significantly more events than previous runs, so it
is possible that the SS algorithm will make an important
addition to the tools BayesWave has at its disposal to
analyze that data.

V. OBJECTIVES

Ultimately, the goal of this project has been to com-
pare Thermodynamic Integration to a Stepping-Stone al-
gorithm, to compare their abilities to accurately esti-
mate evidences for modeling GW signals. These com-
parisons provide information about which method ought
to be used for future gravitational wave analyses in the
upcoming 04 run in 2023. If it seems worthwhile, Meg
Millhouse’s branch of BayesWave, which incorporates SS
sampling, can be incorporated into the main branch.
To do this, many runs of BayesWave have been done

using both TI and SS, so that the output data could be
compared. Run data has been organized into dataframes
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inside Python so that it can be easily observed and plot-
ted. Conclusions drawn from this are detailed in the
following section.

VI. RESULTS

The first step of this project was to familiarize my-
self with the functions of BayesWave, and with the other
background knowledge required for this project. I began
by working through the GWOSC open data workshop
for signal analysis, a helpful basis for understanding the
steps that go into matching models to raw signal data.
This made looking at the output data from BayesWave
runs more intuitive.

Rather than working from the main branch of
BayesWave, runs for this project were done on Meg Mill-
house’s branch, which includes the stepping-stone algo-
rithm in addition to thermodynamic integration. Runs
provide evidences calculated using each of those methods.
Early in the process of this project, I did various runs to
familiarize myself with the process of configuring them,
using Condor to automate runs, and reading the output
files. These runs were done using an injected signal of
the 150914 waveform, with a fairly high signal-to-noise
ratio.

To test the stepping-stone algorithm, we varied multi-
ple parameters including the number of chains used, the
number of iterations, and whether BayesLine was on or
off. The number of chains refers to the number of dis-
crete β values at which the evidence is being estimated.
As is to be expected, more chains leads to a more ac-
curate estimate of how well a model matches the signal.
The number of iterations is how many times each sam-
pling chain moves within parameter space as it samples.
BayesLine can be toggled on and off for runs, and turned
out to effect the comparison between the accuracy of TI
and SS. Later, the realization of the random background
noise was also varied.

My first large set of runs included runs with 2, 5, 7, 10,
12, 15, 20, and 30 chains. For each chain value, runs were
conducted with 1, 2, 3, and 4 million iterations. This set
of runs was done with BayesLine both on and off, and
used both TI and SS.

For the runs that did not use BayesLine, the number
of chains used versus the calculated evidence estimates
is given by figure 4. The cool colored dots are evidences
found using TI, and the warm X’s are evidences found
using SS. The color bars indicate the number of iterations
used to obtain each evidence. For thermodynamic inte-
gration, we have estimates for the standard deviation of
the evidence estimates, so error bars are included in the
plot. Currently, the standard deviation from SS is not
calculated. Figures 5 and 6 show the standard deviation
on the TI evidence estimates depending on the amount
of sampling chains used.

From figure 4, we can see that TI estimates are poor
when a small amount of chains are used, especially when

FIG. 4: Number of chains used for sampling vs
calculated evidence values (BayesLine off)

FIG. 5: Number of chains used for sampling vs
standard deviation of the calculated TI evidences

FIG. 6: Close-up of figure 5

run with few iterations. As the number of chains in-
creases, the estimates of the evidence value quickly con-
verge to a very accurate value. In the case of TI, the
standard deviation drops to a value very close to zero.
From figures 7 and 8, we can see that both TI and SS
provide very accurate estimates when 10 or more chains
are used. However, the deviation from this value at low
chains is much larger using TI than it is for SS. This
behavior agrees with figure 9[7], from a 2018 paper also
exploring the comparison between SS and TI in the con-
text of gravitational wave physics.
Interestingly, behavior is different when BayesLine is



5

FIG. 7: Thermodynamic integration evidence values
(BayesLine off)

FIG. 8: Stepping-Stone evidence values (BayesLine off)

FIG. 9: TI and SS evidence comparison from ”The
stepping-stone sampling algorithm for calculating the

evidence of gravitational wave models”, [7]

turned on. Here, the accuracy of evidences at low chains
is comparable between SS and TI. One does not seem to
be a better choice than the other. As you can see in fig-
ure 10, at low numbers of chains SS overestimates the ev-
idence by about the same amount that TI underestimates
it. Once again, after about ten chains are used, both
become very accurate. It is interesting that BayesLine

FIG. 10: Number of chains used for sampling vs the
ratio between signal evidences and noise

seems to remove the advantage that SS had over TI dur-
ing runs with BayesLine turned off. A question that
arises here is whether TI and SS are producing the same
accuracy of evidences when a large number of chains is
used. In the future, a method for calculating SS’s stan-
dard deviation will likely be incorporated.

FIG. 11: TI evidences versus SS evidences (BayesLine
off)

FIG. 12: TI evidences versus SS evidences (BayesLine
on)

To see how well estimates evidences from TI and SS
correlated, the next step was to do many runs with vary-
ing realizations of random noise. We simulate gaussian
noise with different random seeds to obtain many noise
realizations. With the same injected signal, runs at both
10 and 20 chains were conducted, with BayesLine both
on and off. Then, plotting TI evidences on the X axis
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and SS evidences on the Y axis provides a comparison
between the two, where points will fall along the diago-
nal if the evidences are equivalent. When BayesLine is
off, the results are exhibited by figure 11. At ten chains,
as both sampling methods begin to converge at an accu-
rate estimate, SS evidences are larger than TI evidences.
This makes sense, as at low chains SS tends to overesti-
mate evidences and TI tends to underestimate. However,
when 20 chains are used, the evidences fall right along the
diagonal, meaning that both SS and TI are producing ac-
curate estimates, and either can be used safely for signal
matching. Interestingly, when BayesLine is on, both TI
and SS cluster close along the diagonal, as seen in 12.
Even at low chains, they are well matched in accuracy,
and both produce good results.

VII. CONCLUSIONS

The results of this project have shown that when
BayesLine is off, the Stepping-Stone sampling algo-
rithm is able to provide more accurate evidence esti-
mates than Thermodynamic Integration with less com-
putational work. However, it seems as though when
BayesLine is turned on, the two methods are on par
with one another. This brings to rise questions about
under what circumstances SS is more accurate than TI,
and when are the two equally effective. In future studies,

it could be beneficial to construct more complicated run
and compare the two. For example, runs in this project
were done assuming a single signal or glitch within the
data. Runs in which we assume that both a signal and a
glitch are present will require more computational labor,
and may present a different comparison.
It is likely that the Stepping-Stone branch of

BayesWave will be incorporated into the main branch.
It has been shown that the SS branch runs smoothly and
contains no major bugs, and incorporation will make SS a
more accessible tool that can be used by any BayesWave
users for their runs. It would be beneficial in the fu-
ture to be able to calculate the standard deviation on SS
estimates. This will give us a better idea of how error
estimation compares between SS and TI.
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