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BayesWave is a library of code used to analyze data from LIGO’s gravitational wave detections.
BayesWave uses Bayesian statistics to reconstruct signals and determine possible sources. The likeli-
hoods of various models can be compared, such that BayesWave can determine the most likely sizes,
locations, and types of sources that could produce a certain detected signal. Currently, BayesWave
uses Thermodynamic Integration (TI) to calculate the likelihoods of various models. An alternative
method is called Stepping-Stone (SS) sampling. In other fields, SS has been shown to be as accu-
rate as TI while also being less computationally expensive. This project explores the comparison
between TI and SS methods when each is applied inside BayesWave, to determine if SS is a viable
replacement for TI to be used for analysis of LIGO’s fourth detection run in 2023.

I. INTRODUCTION/BACKGROUND

A. LIGO

Gravitational waves are ripples in space-time caused by
high-energy events in outer space, such as supernovae and
the collisions of black holes. LIGO [1], which stands for
Laser Interferometer Gravitational-wave Observatory, is
a large ground-based interferometer used to detect those
ripples. It first detected gravitational waves in 2015, and
has been carrying out observational runs since. LIGO de-
tects gravitational-waves produced by distant, massive,
compact objects by measuring slight fluctuations in its
interferometric “arm” length. Once LIGO has collected
data from an event, that data needs to be processed and
analyzed computationally.

B. Bayesian Statistics

Bayesian statistics is a form of statistics in which ear-
lier probability distributions (priors) can be updated to
account for new data to produce new distributions (pos-
teriors). This is done using Bayes’ Theorem, given by
equation 1.

P (A|B) =
L(B|A)π(A)

P (B)
(1)

Some P (A|B) represents the probability of some event A
given that B is true, and π(A) is the probability of some
event A independent of other events. Here, P (A|B) is the
posterior, the prior is π(A), and the likelihood is L(B|A).
When you integrate such a function over the entire pa-
rameter space, the evidence is produced. Evidences can
be compared using the Bayes’ factor, a ratio of evidences,
like so:

P (B1)

P (B2)
(2)

Such evidences can be calculated with methods such
as thermodynamic integration or a stepping-stone algo-
rithm. Being able to compare models is crucial to deter-

mining the most likely sources of gravitational wave sig-
nals that LIGO detects. The part of BayesWave which
calculates evidences and compares them is the part rel-
evant to this project. This project focuses on using
BayesWave to calculate evidences and compare them.

C. BayesWave

BayesWave [2] is a library of code which analyzes LIGO
data using Bayesian statistical methods. is able to ac-
count for noise and glitches as it reconstructs observed
signals. It reconstructs detected waveforms as a series
of wavelets which form a model [2]. Models can then be
compared with their Bayes’ Factors, to determine which
are good fits for the observed data.

When BayesWave is used for signal matching, it can ex-
ecute different types of runs that will match the observed
signal with different types of waveforms. BayesWave can
produce matches that are coherent wavelet models (sig-
nal), incoherent wavelet model (glitch), waveform tem-
plate model (CBC), and many combinations of those.
When one of these runs has been completed, BayesWave
creates and stores model data and diagrams in a direc-
tory, useful for analysis. Figure 1 shows a reconstruction
of the 150914 signal at the Hanford detector using a co-
herent wavelet model. Figure 2 shows the reconstructed
spectrogram from the same signal.

II. EVIDENCE CALCULATION

To calculate marginalized likelihoods, or evidences,
with thermodynamic integration or stepping-stone meth-
ods, we start with Bayes’ theorem. We rewrite equation
3 into more relevant notation. Here pi(θ) is the poste-
rior probability density for some model, π(θ|Mi) is the
prior distribution L(D|θ,Mi) is the likelihood function
of some data, D, given that the prior is true. zi the evi-
dence (Eq. 4), a normalizing constant also referred to as
the marginal likelihood [3].
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FIG. 1: reconstructed waveform using BayesWave

FIG. 2: reconstructed signal spectrogram using
BayesWave

pi(θ) =
L(D|θ,Mi)π(θ|Mi)

zi
(3)

zi = p(D|Mi) =

∫
L(D|θ,Mi)π(θ|Mi)dθ (4)

The likelihoods of two models can be compared using
a ratio between their evidences known as a Bayes’ factor
(Eq. 3). this ratio, which we can call µ, is generally
scaled logarithmically, as in equation 5.

µ = ln(
z1
z0

) (5)

What we want to do is rewrite equation 5 in terms of
the symbol β. For this, we need more context about how
BayesWave solves for evidences. It does so with a Markov
chain Monte Carlo (MCMC) process [4]. A chain is a se-
ries of points that move through a parameter space to
take samples of the probability distribution of the space.
It moves in a way determined by the chain’s “tempera-
ture” until reaching an equilibrium state.

A high temperature corresponds to a chain which, sim-
ilar to the behavior of a thermodynamic system, has a
higher chance of jumping to less likely states. This causes
the likelihood function to approach the prior distribu-
tion (flattening out in parameter space). Likewise, a low
temperature corresponds to chains that is more likely
to stay in areas of high probability [3], resulting in a
peaked probability distribution approaching that of the
posterior. Because β is the inverse of the temperature, a
β value moving from zero to one corresponds to chains
“cooling down”, while starting at one and moving to zero
corresponds to a chain “heating up”.
the result of a series of chains is sample expectations,

which can then be used to estimate the integrals we need.
An example of this is figure 3, where the changing β value
is on the x axis, and the sample expectation values of each
chain are on the y axis. The evidence of a model can then
be rewritten in terms of β, in equation 6

µ = ln(
z1
z0

) = ln(z1)− ln(z0) =

∫ 1

0

∂ln(zβ)

∂β
dβ (6)

III. THERMODYNAMIC INTEGRATION

Currently BayesWave uses thermodynamic integra-
tion [5] to calculate evidences for potential models. The
goal of thermodynamic integration and the stepping-
stone algorithm is to do this by estimating the integral
form of equation 6. TI is also known as path sampling,
because it involves taking samples along a path of tem-
peratures. β begins at one extreme, either zero or one,
and travels along a path to the other extreme as the tem-
perature changes.
The goal of thermodynamic integration and the

stepping-stone algorithm is to estimate the integral form
of equation 6. This is done with TI by taking many
discrete steps as β moves between 0 and 1 and taking
samples at each temperature. The samples can then be
used to estimate the integral, as we can see in figure 3 [3].
In figure 4, a curve estimated with TI using 1000 sample
points is shown.

FIG. 3: Using discrete points to estimate an integral

Thermodynamic integration estimates the integral in
equation 6 using general path sampling [6]. this involves
using the expectation E. This is given in equation 7,
read as the expectation of the likelihood, given β. For
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FIG. 4: Estimation using 1000 points

each chain location along β’s path, samples will be taken
and a sample average acquired. Then, those values can
be used to estimate the integral [6], as per equation 8.
This takes some time, as each β chain is run one at a
time, rather than in parallel.

Eβ [log(L(D|θ,M))] =

∫
log(L(D|θ,M))π(θ)dθ (7)

log(z) =

∫ 1

0

Eβ [log(L(D|θ,M))]dβ (8)

Thermodynamic integration has proven to be a very
reliable method, provided enough samples are taken to
minimize bias and produce accurate estimations of the
desired curve. TI experiences thermic lag bias [3] as it
changes β values and adjusts to each new value. This
causes TI to slightly underestimate marginal likelihood
values if β begins at zero, and a slight overestimate if it
starts at one. It also experiences discretization bias, be-
cause of the limits on the accuracy with which a discrete
number of values can estimate a continuous integral. De-
spite these points, and the fact that it is computationally
expensive, TI is significantly more accurate than simpler
methods, and thus a very helpful tool.

IV. THE STEPPING-STONE METHOD

The stepping-stone algorithm [6] is a method for find-
ing evidences that is similar to TI but is less computa-
tionally costly. like TI, SS calculates marginal likelihoods
directly, producing similar, and actually slightly more ac-
curate [7] estimates.

the stepping-stone method calculates evidences differ-
ently than TI. Rather than calculating the average like-
lihood at each β value and summing them to estimate
the integral, SS compares marginal likelihoods between
each discrete βi value and that of the one before it, in a
process called importance sampling. Then the product
of those ratios can be used to estimate the evidence [6].

This is shown in equation 9, where K is the number of
chains (β values) used.

z =
z1
z0

=

K−1∏
k=1

zβk

zβk−1

(9)

A benefit of this method is that every chain does not
need to sample from the posterior distribution, as it refers
to the distribution immediately before it instead. This is
more accurate than the TI method of averaging samples
at each step in comparison to the posterior [7].
LIGO’s fourth observational run is expected to detect

significantly more events than previous runs, so it is pos-
sible that the SS algorithm will make an important addi-
tion to the tools BayesWave has at its disposal to analyze
that data.

V. OBJECTIVES

The main goal of this project is to run BayesWave us-
ing both TI and SS methods, to compare the speed and
accuracy of the two methods. This will help determine
if the stepping-stone algorithm would be a worthwhile
replacement to TI for LIGO’s upcoming run. This will
mean doing runs in bulk and comparing both the runtime
and evidence convergence.
To determine this, many runs must be done using con-

dor, which automates the run process. The data from
these runs must then be organized so that the TI and SS
data can be compared. If SS proves to be faster or more
accurate, it may be incorporated into the master branch
of BayesWave for future data analysis.

VI. PROGRESS

The first three weeks of this project were primarily
dedicated to familiarizing myself with the background
required for the project, and learning to run BayesWave
from my computer.
I began in week one by working through the GWOSC

open data workshop, in order to understand some of the
steps that go into signal matching, noise reduction, and
glitch removal. Because I am working in data analysis,
and BayesWave is used for signal matching, this was an
important basis of understanding for me to have that has
made working with BayesWave and the data it outputs
more intuitive.
To be able to work with BayesWave, I learned how

to enter the LIGO computing cluster from my computer,
and make a branch of BayesWave that I can edit and work
with, based on the master branch. Additionally, I needed
a branch off of Meg Millhouse’s version of BayesWave,
which includes the stepping-stone algorithm that I am
working with. After I had a branch of BayesWave with
the stepping-stone algorithm, I learned how to configure



4

runs for it, changing parts of the run. This was to famil-
iarize myself with the process of doing runs, and learn to
analyze BayesWave outputs. These runs used signal data
from the 150914 detection. The familiar signal made it
easier to identify that the BayesWave outputs were as
expected.

My next step was to write a python script which could
access the stored evidence data from BayesWave runs.
This included files which contained final evidence esti-
mations using TI and the standard deviations thereof, as
well as evidence estimations using SS. I could also access
information about the sampling chains used in the run.
This file included the number of temperatures at which
samples were taken, the corresponding β value at each
temperature, the average log likelihood at each temper-
ature, and the standard deviations of those likelihoods.
From this, I am able to produce scatter plots such as
figure 5.

FIG. 5: Average log likelihood over a range of β values

Next, I remotely ran many runs with BayesWave, using
simulated data from an injection of the 150914 signal.
For these runs, I varied the number of sampling chains,
beginning with runs where chains were used at five β
values between zero and one, and increasing by fives to
runs which used chains at 40 β values. Additionally, the
number of iterations each sampling chain uses has been
varied. For each number of chains used, I did runs with
1000000, 2000000, 3000000, and 4000000 iterations each.
These runs all make use of both TI and SS sampling, so
that the outputs can be compared.

Figure 6 shows the varying number of chains used for
the runs along the x axis, and the evidences calculated
by each run along the y axis. The green dots represent
evidences found using thermodynamic integration, and
the pink represent evidences found with the stepping-
stone algorithm. For thermodynamic integration, when
the number of chains used is small, the calculated evi-
dences are underestimated. As the number of chains is
increased, the evidences stabilize towards a very good
estimate. It seems that as the number of chains is in-
creased, evidences calculated using SS converge on a good
estimate much more quickly than those from TI.

Another way to see this is with figure 7. The number
of iterations used for sampling is along the x axis and

FIG. 6: Number of chains used for sampling vs
calculated evidence values

FIG. 7: Number of iterations sampled vs calculated
evidence values

the evidences along the y axis. All of the SS evidences
are near the same value, while you can see that the TI
evidences from the 5-chain runs are significantly lower
than the rest.

FIG. 8: Number of chains used for sampling vs
standard deviation of the calculated evidences

Figure 8 plots the number of chains vs the standard
deviation of the calculated evidences. As you can see,
the error if very large when the number of chains used
is small, and stabilizes to a near-zero value as the num-
ber of chains used increases. The evidence files currently
provide standard deviation values for thermodynamic in-
tegration but not for stepping-stone. In the future, it
would be helpful to be able to plot error for SS as well.
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In the next steps of this project, I am going to do
runs using 3, 7, and 12 chains, so that the shape of the
curve given in figure 6 is more clear. Hopefully it will
become easier to tell how much more quickly SS estimates
stabilize compared to TI. In addition, I will be plotting
graphs which compare signal models compared to glitch
models for these runs. The figures produced so far are
signal model evidences. In addition, it will be helpful to
do runs on different waveforms other than 150914, to see
how TI and SS compare across the board.
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