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The Stochastic Gravitational Wave Background (SGWB) is usually assumed to be the combination
of assumed isotropic, stationary, unpolarized, and Gaussian sources of gravitational waves. We
expect a large contribution by neutron star and black hole binaries to this unresolved signal. Current
LIGO detectors are not sensitive enough to the SGWB strain regime but we anticipate future
observing runs to have the required sensitivity to detect the SGWB. The promise of future detectors
registering the SGWB requires the introduction of detection and fitting algorithms to understand
future observation results. A Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm
permits us to probe the fitting parameters for SGWB signals via spline and power law fittings.
We present an RJMCMC fitting algorithm named Westley for this purpose. The versatility of the
RJMCMC can be applied to the astrophysical case of recovering the energy density spectra based
on injected mass distributions and merger rates for binary black hole mergers (BBHs). Accurately
fitting the SGWB profiles and parametrizing profiles via spline and broken power laws will aid in
identifying various components of the SGWB in data from upcoming LIGO observing runs.

I. INTRODUCTION

Gravitational waves are perturbations of the space-
time manifold expressed by the metric tensor gµν [10].
We are able to detect these fluctuations of space and
time as strain, or change in length per unit length. This
strain is detected by ground-based interferometers; two
of such detectors are LIGO Hanford Observatory (LHO)
and LIGO Livingston Observatory (LLO). This style of
interferometer involves a laser split in two orthogonal di-
rections and then recombined. These beams reflect off
mirrors and coherently return to the source. When a
gravitational wave passes, it strains the arms of the de-
tector. This causes the light beams to move out of phase
with one another, and so when the beams are recom-
bined the resulting change in the interference pattern is
evidence of a passing perturbation of spacetime.

Four primary sources of gravitational waves are coa-
lescing binary systems, pulsars, supernovae, and stochas-
tic gravitational wave backgrounds (SGWB) [3]. We
know that coalescing binary systems appear as "chirps".
These chirps are the only signals we have detected so far.
Pulsars should appear as sine waves due to their peri-
odic emission of gravitational waves. Supernovae are ex-
tremely challenging sources to understand since we have
yet to detect them, and parametrizing their signal in or-
der to include them in matched filtering searches is un-
likely. The fourth source, SGWBs, encompasses the un-
resolved gravitational wave sources. These unresolved
sources include, for example, fluctuations from just after
the Big Bang, as well as unresolved astrophysical sources
like compact binary coalescences. "Stochastic" refers to
a non-deterministic strain signal, either due to the gen-
eration process or detector limitations. The first three
classes of GW sources act as the foreground to the fourth
class of background that we are looking to fit and con-

strain. Because we do not have a deterministic signal
that we can compare to the data to make a detection,
we cross-correlate data to look for a common signal in
multiple detectors.

Understanding the SGWB will help researchers probe
the Universe earlier than electromagnetic signals cur-
rently allow [3]. Electromagnetic signals go back to about
400,000 years after the Big Bang, when scattering of par-
ticles decreased enough for photons to travel unimpeded.
The SGWB could take us as far as 10−32 s after the Big
Bang because GWs propagate through spacetime without
the risk of scattering off particles [11]. For comparison,
Planck Time is 5.39× 10−44 s after the Big Bang. Thus,
resolving the primordial background could help paint a
clearer picture of the early Universe [10].

Determining a better and more general fit for the
SGWB signal will also help us learn about the back-
ground itself [3]. As we add more time to our background
detection survey, we will be able to resolve more fea-
tures in the SGWB spectrum. The features in the SGWB
spectrum will help us learn about the signals beyond the
recognizable, precise events. As Allen [3] mentions, the
more we record the signals on multiple detectors simul-
taneously, the better we will be able to transition the
sources of the SGWB from "unresolved" to "resolved",
allowing us to understand the astrophysical implications
of the parameters we measure and constrain.

Additionally, developing better fits will help bound the
stochastic background signal. Bounding the frequency
ranges of key SWGB features, such as the energy spec-
trum turnover, will be helpful to deduce the components
of this signal [13]. Our goal is to better constrain proper-
ties of the SGWB using available or future data. Current
estimates from compact binary searches inform when we
might make a GWB detection, but good SGWB param-
eter estimation can also be used to predict how many
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CBCs we can detect in the future. These represent com-
plementary efforts that may inform one another.

II. BUILDING THE SGWB SIGNAL

A. SGWB

Most models for a GWB predict a power-law spectrum,
which is given by:

ΩGW(f) = Ωref

(
f

fref

)α

, (1)

where ΩGW(f) is the energy density per logarithmic fre-
quency interval used to describe the isotropic stochas-
tic background. This quantity is physically defined as
ΩGW(f) = f

ρc

dρGW

df where ρc is the critical density and
ρGW is energy density of gravitational waves in the in-
finitesimal frequency interval f to f + df [3]. Ωref is the
the amplitude at a reference frequency, fref . α is the spec-
tral index. Both Ωref and α are constrained using strain
data. Right now, we can fit various parameter combina-
tions for different frequency ranges of our spectrum [8].

B. BBH GWB

The energy density spectrum for a given BBH popula-
tion is:

Ω(f) =
f

ρc

∫
dz

R(z)⟨dEdf |f(1+z)⟩
(1 + z)H(z)

. (2)

H(z) is the Hubble constant as a function of redshift. The
(1 + z) factor in the denominator of the integral incor-
porates in the time delay of detecting redshifted objects.
The population-averaged energy spectrum with respect
to a BBH with object masses m1 and m2 is

⟨dE
df

|f(1+z)⟩ =
∫

dm1dm2
dE

df
(m1,m2; f(1+z))p(m1,m2)

(3)
and the merger rate density is:

R(z) =

∫
dtdR∗(zf (z, td))F (Z ≤ Zc, zf (z, td))p(td),

(4)
where td is the time delay [1]. F (Z) is a function describ-
ing the metallicity weighting of the star formation rate,
R∗(zf ). To gain intuition on the impact of the metallicity
on the BBH merger rate, suppose td is a fixed value for
the time delay between the time of the merger and when
it was detected. Then, the overall BBH R(z) will fol-
low R∗ with additional weighting by the metallicity at a
given redshift. We weight the star formation rate by the
metallicity to incorporate into the model that black holes
are more likely to form in low metallicity environments.

FIG. 1. Mass probability profiles. The assumed mass proba-
bility for varied R(z) is the third profile, power law + peak.
The profile gives the probability of having a merger with each
respective mass, independent of redshift. Figure from Ref. [2]

C. Mass Probability and Merger Rate Models

We will use an efficient technique to evaluate ΩGW (f)
given a model for the population of black holes and their
merger rate with redshift. We discuss this below, but first
we discuss the form of the mass distributions and merger
rate models we plan to use. The mass probability dis-
tributions predominantly follow those in [2]. These four
approximate mass probability forms (truncated, broken
power law, power law + peak, multi peak) are shown in
Fig. 1. We will default to the power law + peak profile
when varying the merger density rate. The exact model
and parameter posteriors that I utilize in my code anal-
ysis are also in [2]. For concision, I include the reference
but not the extensive parameter posterior figures or ta-
bles.

We now consider the merger density rate. This profile
is assumed to follow the star formation rate relatively
closely, as previously described. One common form of
the merger rate density that is used, because it is a good
analytic description of estimates of the star formation
rate, is given by [14]:

RBBH(z) = C(λ1, λ2, zpeak)
R0(1 + z)λ1

1 +
(

(1+z)
(1+zpeak)

)λ1+λ2
, (5)

where C(λ1, λ2, zpeak) is the normalization constant al-
lowing RBBH(0) = R0, R0 = 31.88 Gpc−3yr−1 is the
local merger density rate [12], zpeak is the location of the
highest merger rate density in redshift space, λ1 is the
power law index up until zpeak, and λ2 is the power law
index after zpeak. Based on the initial value condition,
we may manipulate λ1, λ2, and zpeak and look at the
effect on Ω(f).

D. Number of Detectable Events

The number CBC events detectable using a typical
matched-filter search, given R(z) is:∫ (

dN

dzdm

)
dmdz =

∫
dmdz

TobsR(z)dVdz
(1 + z)

p(m)η(m, z).

(6)
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We integrate over the R(z) curve itself converted from its
volume density by expression dV

dz and weighted by mass
probability p(m) and detection efficiency η(m, z). The
multiplication of the integrand by factors Tobs and (1 +
z)−1 converts the integral into a time-independent rate
and account for the time delay, respectively. Probability
weights p(m) are the same as the Power Law + Peak
model shown in Fig. 1. Detection efficiencies η(m, z)
are generated in a grid by the BILBY Python Package.
We write the cosmology-driven volume conversion as:

dV

dz
=

4πcχ2(z)

(1 + z)H0E(z)
(7)

where

χ(z) =
c

H0

∫
dz

E(z)
(8)

and E(z) =
√
Ωm(1 + z)3 + 1− Ωm . In this work, we

assume Ωm = 0.3065 and H0 = 69.32km/(Mpc · s).

III. COMPUTATIONAL METHODS

A. RJMCMC

Three commonly used analytic models for the SGWB
are as follows:

• Power Law: ΩGW(f) = Ωref

(
f

fpeak

)α

• Broken Power law (BPL):

ΩGW(f) =

{
Ωpeak(

f
fpeak

)α1 for f ≤ fpeak

Ωpeak(
f

fpeak
)α2 for f > fpeak

• Smooth BPL:
ΩGW(f) = Ωpeak(

f
fpeak

)α1 [1 + ( f
fpeak

)∆](α2−α1)/∆

These models, although simplistic and described by
few parameters which require fitting, are not as general
and generic as we would like [9]. Alternative functional
approaches include spline fitting. Spline fitting utilizes
smooth, piece-wise polynomials of different degrees to
describe a curve. Parameters come in the form of co-
efficients of a polynomial expansion:

pj(x) = a0 + a1x+ a2x
2 + ...+ anx

n (9)

such that the ai coefficients allow us to fit an n-degree
polynomial to the curve segment j. This is advantageous
where a single polynomial fit, such as attempting to use
a single power law for the entire spectrum, fails. We
will start with spline fitting to recover these parameters
and their relationships to each other when constructing
functional models for our data. In our SGWB analysis,
we only require spline fit interpolations up to n = 3.
The coefficients have no astrophysical meaning that
we are aware of, but we can explore this further once

confirming that cubic splines are a viable interpolator.

We propose the Westley fitting algorithm, which uti-
lizes a combination of single power laws and splines
to interpolate a fit between an optimized number of
knots. Westley is a Reversible Jump Metropolis-Hastings
Markov Chain Monte Carlo algorithm [7]. This means
that a ratio of likelihoods between points drives the place-
ment of knots in either the spline or power law fits. The
term "Reversible Jump" means that the MCMC can pro-
pose adding or removing parameters from a model in-
stead of just probing the existing parameters. First, a
guess is made for the placement of the set of knots along
a frequency interval. For now, this guess is made on a
uniform prior over the local frequency bin. Next we cal-
culate the likelihood of this knot configuration, which is
a function of the cross-correlation between detectors and
the model we have injected. We are essentially proposing
to move a knot, interpolating between the knots to cal-
culate the model, then using that knot-motivated model
to calculate the likelihood of the data. We then propose
to move the amplitude of a knot, add another knot, or
remove a knot, and then calculate the likelihood again. If
the likelihood of the second knot configuration is greater
than the likelihood of the first knot placement, the sec-
ond knot is kept. Otherwise, we throw out the second
knot configuration and keep the first knot configuration.
We repeat this process to form a chain, which should
converge at a particular fit to the data.

An MCMC sampler such as Westley relies on the
Metropolis-Hastings algorithm. In the following propos-
als, a set of equations is used to evaluate the likelihood
of the proposal and the Hastings ratio, R. We define the
acceptance probability for a new knot as:

P (m′|m) = min

(
1,

p(m′)

p(m)

p(d|m′)

p(d|m)

q(m|m′)

q(m′|m)

)
. (10)

p(m) is the prior on model m, and p(d|m) is the likelihood
of the data given model m. Meanwhile, q(m|m′) is the
ratio of probability of proposing to move from model m
to model m′. The Hastings ratio, R, is embedded into
the acceptance probability and is expressed as:

R =
q(m|m′)

q(m′|m)

p(m′)

p(m)
. (11)

The difference between the acceptance probability and
the Hastings ratio lies in the ratio of the likelihoods for
the two models.

For now, the Hastings ratios are consistently 1. How-
ever, in future Gaussian-based updates to the proposals,
R will be more complicated, including a Gaussian expo-
nential term. Future work will be deriving and imple-
menting that expression.
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B. Efficient Calculation of BBH ΩGW Model

To avoid computing the 4D integral in Fig. 2, we utilize
a matrix multiplication approximation presented by Tom
Callister [5]. The computation of this integral occurs in
two phases: the precomputation of an energy grid given
mass and redshift values, followed by the calculation of
the merger rate density as a function of redshift, z, and
time delays, td. We may rewrite the population-averaged
energy spectrum as a convolution of the radiated energy
at every combination of masses, source redshifts, and fre-
quencies with the probabilities over the mass grid given
our population model:{

⟨dE
df

⟩
}

f,z

=
∑

m1,m2

{
dE

df

}
m1,m2,f,z

{p}m1,m2
. (12)

The merger rate density becomes a grid of merger red-
shifts and time delays. The grid of formation redshifts is
given as {zf}z,td . We distinguish between the source and
detected reshifts and times due to the time delay of the
CBC information reaching our detectors. We addition-
ally utilize the star formation rate, {R∗}z,td , a function
we assume the merger rate follows. Finally, we combine
these matrices with metallicity weights, {F}z,td , repre-
senting the CBC formation as a function of redshift and
time. The final expression for the merger rate density
becomes:

{R}z =
∑
td

({R∗}z,td × {F}z,td){p}td . (13)

Using these matrix multiplication approximations, in-
stead of eqn. 2, we write:

Ω(f) =
∑
z

{
R(z)

(1 + z)H(z)

}
z

{
⟨dE
df

⟩
}

f,z

. (14)

The independence of the two terms within the sum
allows us to manipulate the merger rate density and
energy spectrum independent of each other. In the next
section, I will introduce how the various models for R(z)
and p(m) affect the Ω(f) spectrum.

IV. RESULTS & DISCUSSION

A. Parameter Variation

The first step of exploring the relationship between
R(z) and Ω(f) is to vary the parameters of the merger
density rate (eqn. 5) and map the effects onto Ω(f). In-
creasing zpeak alone results in much greater energy at low
frequencies, as shown in Fig. 2. We expect this, since
increasing zpeak alone also increases the area under the
R(z) curve, implying more overall mergers which is ef-
fectively proportional to the amount of energy present.

FIG. 2. Variance of only the zpeak parameter in R(z), leaving
the spectral indices constant. The left plot shows the merger
density rate profile for each zpeak. The right plot shows the
corresponding Ω(f) for each varied R(z).

However, if we vary the location of the peak while at-
tempting to conserve the area beneath R(z) as best as
possible, we see effects on a different feature of the en-
ergy density spectrum than other parameter variations.
Whereas the shift of zpeak alone caused the entire low fre-
quency energy density to increase, horizontally shifting
the peak location, as shown in Fig. 3, induces an energy
density increase at the turnover in the BPL energy den-
sity spectrum. This effect agrees with less low-redshift
mergers for higher zpeak, since those closer BBHs con-
tribute greater to the energy density than high-redshift
mergers.

Variation of spectral indices, λ1 and λ2, only changes
the low frequency energy density before the turnover.
This makes sense, since increasing the number of low-
redshift BBHs adds energy to the system. In Fig. 4,
the increase of λ2 reduces the energy density at low fre-
quencies. This is because cutting off high-redshift merg-
ers and compressing the R(z) function at low redshifts
reduces the overall BBHs allowed in the system, there-
fore lowering the total energy. Varying the parameters of
R(z) within a reasonable range is a good way for building
intuition of the effects of changing the BBH population
concentrations at various redshifts on Ω(f).
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FIG. 3. Horizontal shifting of zpeak with corresponding changes in spectral indices λ1 and λ2. The legend refers to respective
[λ1, λ2, zpeak] values required to generate the respective RBBH(z) profiles. The left plot shows the merger density rate profile
for each zpeak. The right plot shows the corresponding Ω(f) for each varied R(z).

FIG. 4. Variance of only the λ2 or β parameter in R(z),
leaving the spectral indices constant. The left plot shows the
merger density rate profile for each λ2. The right plot shows
the corresponding Ω(f) for each varied R(z).

FIG. 5. Posterior fits for the injected R(z) (blue) utilizing
Westley RJMCMC algorithm. Knots in this application of
Westley are linearly interpolated.

FIG. 6. The blue envelope encompasses the average posterior
fit in redshift space up to 1σ of deviation. This envelope is
overlaid on the heat map of fits to indicate the majority of the
fits lie in the envelope region. The injected R(z) is in orange
with primary spectral features corresponding to the envelope.

B. Fitting Merger Rate Distribution

While fitting Ω(f) allows us to measure or constrain
the energy density spectrum of our GWB detections, we
can also try to estimate the merger rate as a function of
redshift for BBHs using the same fitting method. With a
positive detection of Ω(f), we can constrain the merger
rate, R(z) in redshift space.

We begin by initialising knots in the redshift space of
R(z) instead of frequency space. This is an arbitrary
placement in redshift space using randomized placement
along uniform priors of the general shape of the suspected
R(z). This is the same BBH merger density rate as a
function of redshift utilised in eqn. 5. We then interpo-
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late between these knots utilizing linear interpolation or
cubic splines, depending on what we indicate to the fitter.
The process of varying the knots is the same algorithm
previously described.

Instead of then comparing the interpolated fit to the
provided data, we calculate the Ω(f) using the interpo-
lated R(z) using eqn. 2. The calculated energy density
profile is compared to the data energy density profile.
This comparison constructs the likelihood statistic used
to either accept or reject the R(z) fit. We repeat this
process for the specified number of iterations, for which
we chose 100,000. In this case, we utilize the star for-
mation rate (SFR) informed merger density rate. The
SFR yields parameters α = 2.7, β = 2.9, zpeak = 1.9
that we inject into Ω(f). We then utilize Westley to re-
cover these parameters from the calculated Ω(f) from
this merger density rate (shown in blue in Fig. 5).

The posteriors of this abstracted fitting are shown in
Fig. 5 in redshift space with calculated posteriors in
frequency space shown in Fig. 8. We attribute the vari-
ation of energy spectrum posteriors in Fig. 8 to needing
more iterations of Westley in future runs. Additionally,
detector noise has greater energy than the GWB energy
spectrum, which we consider in our analysis of the pos-
teriors. In this run of the RJMCMC, we chose linear
interpolation to minimize the divergence of the fits at
high redshift. Fig. 5 is convoluted, so we superpose the
posteriors as a heat map in Fig. 6. The lighter regions
of the heat map reveal that using the RJMCMC in an
alternate space from the data still returns key features of
the parameter profile. For example, the spectral indices
before and after the merger density peak are visually very
similar to the blue injected R(z). Calculating the fits re-
turns zpeak = 1.96 ± 1.26, which is consistent with the
injected zpeak = 1.9. Fig. 9 shows the histogram of
merger density rate redshift peaks from the posteriors.
We use eqn. 5 to find the parameters, namely zpeak for
each posterior fit. We utilize built-in python curve-fitting
to find the best parameters to fit Eqn. 5 to the posterior
for each of the returned posteriors. The resulting zpeaks
are then plotted on the histogram in Fig. 9. Since we
are able to recover this key feature of the merger den-
sity rate, we conclude applying Westley in an alternate
parameter space from the data is a viable approach for
understanding the energy density spectrum and general
application of Westley.

An alternative, more visual attestation to the gener-
ality of Westley is Fig. 6. The blue envelope overlaid
with the heatmap encompasses 1σ from the average R(z)
posterior fit. This is obtained by taking each vertical
histogram of the heatmap and constructing a Gaussian.
The zpeak value appears to be recovered by the envelope
and the injected R(z) profile lies within the posterior en-
velope. The envelope is a good approximation for the
merger density rate at low redshifts. We observe that
as z > 6, the envelope diverges and oversaturates the
posterior space. Better fitting at high redshift requires
future work, since we need to apply boundary condition

RBBH(z >> 1) → 0. An issue we encountered with
spline and linear interpolation is the envelope divergence
shown in Fig. 6. Despite, the behavior of the fits at high
redshift, Westley recovers the low-redshift merger den-
sity rate features. This further reinforces the ability of
the RJMCMC algorithm to recover astrophysical param-
eter profiles given a energy density profile. In this case,
we knew the injected R(z), but the placement of knots
in a different space from the data may help extract un-
derlying relationships to obtained data.

FIG. 7. The heatmap of posterior fits shown in Fig. 5.
Lighter regions indicate more linearly interpolated fits run-
ning through that area of the heatmap. Spectral features
matching the injected R(z) (blue) are evident on either side
of zpeak = 1.9. The lighter region along the horizontal axis is
a consequence of the energy density spectrum noise exceeding
the magnitude of the actual energy density spectral profile.

FIG. 8. The corresponding energy density spectral to the
posterior R(z) shown in Fig. 5. These profiles are obtained
by evaluating Eqn. 2 for the posterior R(z). The injected
data Ω(f) is in blue.
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FIG. 9. The recovered zpeak values from the posterior R(z)
fits in Fig. 5. The vertical red line is the injected zpeak = 1.9
from the SFR merger density rate. This histgram indicates
the peak redshift of BBH merge density is recovered by the
Westley fitting in redshift space given data in frequency space.

V. NEXT STEPS

There are a few potential next steps for applying both
the Westley RJMCMC and merger rate density explo-
ration. First, the Westley code can be packaged and
cleaned up to operate as a pipeline. This is a versatile
and generic tool for understanding parameter profiles and
distributions that contribute to an energy density spec-
trum. Since not much prior knowledge is necessary to fit
R(z) given an Ω(f), we can use this generalized fitter to
learn about the distribution and characteristics of CBC’s
in our Universe that contribute to the GWB.

Similarly, we can push the fitting back another step
and inject a Time Series instead of an Ω(f) data profile.
This Time Series is a more realistic representation of the

data, so we could investigate the effects of small changes
to the merger density rate to what our interferometers
see.

For Westley, it would also be productive to develop
mechanisms of implementing stronger boundary condi-
tions. Fig. 6 reveals a relatively consistent envelope
about the injected merger density rate while z < 6. Once
the redshift exceeds 6, the fits diverge where they should
converge to 0. We know physically that there are a neg-
ligible number of mergers at high redshift due to the
metallicity of the earlier universe. These diverging fits
are evident in the individual posterior fits in Fig. 5,
since the calculation itself knows there is little contribu-
tion to the overall energy density by high-redshift CBCs.
Better understanding how to constrain the knots and fits
in Westley will further Westley as a dependable fitter.

Overall, applying RJMCMC algorithms to data fitting
is a new but hopeful approach. We expect this method to
be more generic and general that previous fitting methods
for GWB, which will give us more information about this
elusive component of GW detection. As future detectors
get more sensitive, we hope to use Westley to understand
and fit the detections we make, making way for more
knowledge about our early Universe.
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