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In the search for gravitational waves (GWs), researchers have begun to investigate what makes
up the stochastic gravitational wave background (SGWB). Detecting the SGWB may give insight
into the decoupling of the gravitational field from the rest of the early evolving Universe and the
composition of activity in the Universe at any given time. To better fit and understand SGWB, we
develop a fitting pipeline based on the Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
algorithm using spline and power law fits. We introduce various proposals for probing the parameter
space via spline and power law functions. For now, we look to match the power laws we inject into
the simulated data from our pipeline with the MCMC-based fitter. In the future, we will work on un-
derstanding the physical meanings of our parameter posteriors for both the spline and power law fits.

I. INTRODUCTION

Gravitational waves are perturbations of the space-
time manifold expressed by metric tensor gµν [6]. We
are able to detect these fluctuations of space and time as
strain, or change in length per unit length. This strain
is detected by ground-based interferometers; two of such
detectors are LIGO Hanford, WA and LIGO Livingston,
LA. This style of interferometer involves two beams of
light at the same wavelength propagated orthogonally to
each other. These beams reflect off mirrors and coher-
ently return to the source. When a gravitational wave
passes, it strains the arms of the detector. This causes the
light beams to move out of phase with one another, and
so when the beams are recombined the resulting change
in the interference pattern is evidence of a passing per-
turbation of spacetime.

Four primary sources of gravitational waves are coa-
lescing binary systems, pulsars, supernovae, and stochas-
tic gravitational wave backgrounds (SGWB) [1]. We
know that coalescing binary systems appear as "chirps"
with an uncertainty arising from the unknown number
density of coalescences. These chirps are the only sig-
nals we have detected so far. Pulsars should appear
as sine waves due to their periodic emission of gravi-
tational waves. Supernovae are extremely challenging
sources to understand since we have yet to detect or ob-
serve them, and parametrising their signal in order to
include them in matched filtering searches is extremely
unlikely. The fourth source, SGWBs, encompasses the
unresolved gravitational wave sources. These unresolved
sources include, for example, fluctuations from just after
the Big Bang, as well as unresolved astrophysical sources
like compact binary coalescences. "Stochastic" refers to
a non-deterministic strain signal, either due to the gener-
ation process or detector limitations. We cross-correlate
data from different detectors to try to detect the SGWB.

Understanding the SGWB will help researchers probe
the Universe earlier than electromagnetic signals cur-

FIG. 1. Various GWB sources, their sensitivity, and their
energy density. Figure from Ref [6].

rently allow [1]. Electromagnetic signals go back to about
400,000 years after the Big Bang, when scattering of par-
ticles decreased enough for photons to travel unimpeded.
The SGWB could take us as far as 10−32 s after the Big
Bang because GWs propagate through spacetime without
the risk of scattering off particles [7]. For comparison,
Planck Time is 5.39× 10−44 s after the Big Bang. Thus,
resolving the primordial background could help paint a
clearer picture of the early Universe [6].

Determining a better and more general fit for the
SGWB signal will also help us learn about the back-
ground itself [1]. As we add more time to our background
detection survey, we will be able to resolve more fea-
tures in the SGWB spectrum. The features in the SGWB
spectrum will help us learn about the signals beyond the
recognizable, precise events. As Allen [1] mentions, the
more we record the signals on multiple detectors simul-
taneously, the better we will be able to transition the
sources of the SGWB from "unresolved" to "resolved",
helping contextualize our fitting parameters.

Additionally, developing better fits will help bound the
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stochastic background signal. Narrowing down the fre-
quency ranges where the SGWB signal is present will be
helpful to deduce the components of this signal [9]. By
fitting parameters to the models we develop during this
project, we may be able to better constrain where to turn
our attention in our GW searches. Since GW detection
is a relatively new scientific development, interpreting as
much of the data as we have now will only help us better
understand what makes up the SGWB.

II. BACKGROUND

A. Power Law Spectrum

Most models for a GWB predict a power-law spectrum,
which is given by:

ΩGW(f) = Ωref

(
f

fref

)α

, (1)

where ΩGW(f) is the energy density per logarithmic fre-
quency interval used to describe the isotropic stochas-
tic background. This quantity can also be expressed as
ΩGW(f) = f

ρc

dρGW

df where ρc is the critical density and
ρGW is energy density of gravitational waves in the in-
finitesimal frequency interval f to f + df [1]. Fig. 1
provides a visualization for the energy densities expected
from different sources across the frequency interval [6].
Ωref is the the amplitude at a reference frequency, fref . α
is the spectral index. Both Ωref and α are constrained us-
ing strain data. Right now, we can fit various parameter
combinations for different frequency ranges of our spec-
trum [4]. Fig. 2 shows the log-log profile of our expected
GWB, with the solid red line indicating the GWB after
subtracting events we can detect individually [8]. Since
this is not linear, we cannot perfectly fit a power law to
the solid red line. Fig. 2 is what we expect from third
generation detectors. So far, we have tried to fit various
regions of the frequency spectrum with individual power
laws but aim to fit the entire profile as best as possible.

B. Alternative Fittings

Current alternative functional fittings for the SGWB
are as follows:

• Power Law: ΩGW(f) = Ωref

(
f

fpeak

)α

• Broken Power law (BPL):

ΩGW(f) =

{
Ωpeak(

f
fpeak

)α1 for f ≤ fpeak

Ωpeak(
f

fpeak
)α2 for f > fpeak

• Smooth BPL:
ΩGW(f) = Ωpeak(

f
fpeak

)α1 [1 + ( f
fpeak

)∆](α2−α1)/∆

FIG. 2. The lines on this log-log plot correspond to our signal
and errors. The solid red line is expected from our GWB
search, which does not resemble a power law after subtracting
the binary neutron stars (BNS). Figure from Ref. [8]

These models, although simplistic and described by
few parameters which require fitting, are not as general
and generic as we would like [5]. Alternative functional
approaches include spline fitting. Spline fitting utilizes
smooth, piece-wise polynomials of different degrees to
describe a curve. Parameters come in the form of co-
efficients of a polynomial expansion:

pj(x) = a0 + a1x+ a2x
2 + ...+ anx

n (2)

such that the ai coefficients allow us to fit an n-degree
polynomial to the curve segment j. This is advantageous
where a single polynomial fit, such as attempting to use
a single power law for the entire spectrum, fails. We
will start with spline fitting to recover these parameters
and their relationships to each other when constructing
functional models for our data.In our SGWB analysis, we
only require spline fit interpolations up to n = 3.

III. WESTLEY FITTING ALGORITHM

The Westley fitting algorithm utilizes a combination of
single power laws and splines to interpolate a fit between
an optimized number of knots. Westley is a Reversible
Jump Metropolis-Hastings Markov Chain Monte Carlo
algorithm. This means that a ratio of likelihoods between
points drives the placement of nodes in either the spline
or power law fits. The term "Reversible Jump" means
that the MCMC can propose adding or removing param-
eters from a model instead of just probing the existing
parameters. First, a guess is made for the placement of
the set of nodes along a frequency interval. For now, this
guess is made on a uniform prior over the local frequency
bin. Next we calculate the likelihood of this node config-
uration, which is a function of the cross-correlation be-
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tween detectors and the model we have injected. We are
essentially proposing to move a node, interpolating be-
tween the nodes to calculate the model, then using that
node-motivated model to calculate the likelihood of the
data. We then propose to move the amplitude of a node,
add another node, or remove a node, and then calculate
the likelihood again. If the likelihood of the second node
configuration is greater than the likelihood of the first
node placement, the second node is kept. Otherwise, we
throw out the second node configuration and keep the
first node configuration. We repeat this process to form
a chain, which should converge at a particular fit to the
data.

A. Relevant Equations

An MCMC parameter probe such as Westley relies on
probability formulations and statistics. In the following
proposals, a set of equations is used to evaluate the likeli-
hood of the proposal and the Hastings ratio, R. We define
the acceptance probability for a node as:

P (m′|m) = min

(
1,

p(m′)

p(m)

p(d|m′)

p(d|m)

q(m|m′)

q(m′|m)

)
. (3)

The lower-case p functions are standard probabilities
while q(m|m′) is the ratio of probability to move from
model m to model m’ and vice versa. The R value, or
Hastings ratio, is embedded into the acceptance proba-
bility and is expressed as:

R =
q(m|m′)

q(m′|m)

p(m′)

p(m)
. (4)

The difference between the acceptance probability and
the Hastings ratio lies in the probability of the data given
the various models that are multiplied into the accep-
tance probability.

For now, the Hastings ratios are consistently R=1.
However, in future Gaussian-based updates to the pro-
posals, R will be more complicated, including a Gaussian
exponential term. Future work will be deriving and im-
plementing that expression.

B. Theoeretical Proposals

Westley includes 4 proposals for node movement:
birth, death, horizontal shift, vertical shift. These pro-
posals create the changes to the nodes that are responsi-
ble for the acceptance or rejection of the nodes described
above via changes in the likelihood. The fitter chooses a
proposal by randomly generating a value between 0 and
1. Depending on the range of the random value, one of
the proposals is chosen to alter a node.

1. Birth

The birth proposal turns "on" a node that was previ-
ously "off". First, a random index is chosen out of the
"off" nodes which are the nodes set to "False". This
node is then set to "True", thus turned "on". The newly
birthed node, is set to the frequency and amplitude that
it was last at before it was turned off. This is because
the fitter saves the location of the nodes when they are
turned off but just does not incorporate them into the
fit calculations. The fit is then re-calibrated between the
updated nodes and returned.

2. Death

This is the most straightforward proposal within the
fitting. A random node index is selected from the list of
active nodes. The chosen node is then set to "False" and
removed from the list of active nodes. The fit is then
re-calibrated between the remaining nodes and returned.

3. Horizontal Shift

A horizontal node shift corresponds to a change in the
frequency position of the node. Based on the maximum
number of nodes allowed (inputted as an argument into
the fitter), the total frequency range is divided into even
intervals. A random node is chosen corresponding to one
of the segments of the overall frequency interval from 20-
200 Hz. Then, the new frequency position of the node is
chosen from a uniform prior over the frequency bin. The
original amplitude of the node is kept. The fit is then
re-calibrated between the updated nodes and returned.

4. Vertical Shift

A vertical node shift corresponds to a change in the
amplitude or cross-correlation value of the node. First, a
random node is chosen to be vertically perturbed. Then,
we draw a normalized Gaussian about the initial vertical
position of the node. Next, a random value within the
first STD of the initial location is chosen and the node is
moved to that vertical location. The original frequency
position of the node is kept. The fit is then re-calibrated
between the updated nodes and returned.

C. Updates on Proposals

I have been focusing on two primary updates to the
proposals after writing the horizontal shift proposal.
First, I am looking at generalizing the vertical shift pro-
posal. Initially, that proposal only updated the ampli-
tude of one node at a time. Now, every "on" node is per-
turbed about its initial position up to one STD. Adding
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FIG. 3. Evidence of node shifting given updated proposals
given by the point smearing. The Westley fitter tends to 2
nodes on average, which allows for a single power law. Blue
corresponds to the first node and orange corresponds to the
second node of the fitting.

in more movement allows the fitter to find the optimal
node placements quicker and probe a larger expanse of
the parameter space in each iteration of the fitter. So far,
I have gotten the horizontal and vertical perturbations to
work for various nodes, as shown in Fig. 3. The visible
smearing about the first and second node locations for an
injected single power law indicate the updated proposals
are working for the fitter.

Next, I am working on making a more data-motivated
birth proposal. Initially, the birth proposal would turn
on a node where it had been turned off previously or ini-
tialized. This is a problem because the other nodes have
likely moved since the node we are birthing was turned
off. Thus, I am working on generating the birth proposal
at the nearest data point to the last "on" location. This
causes the newly birthed node to correspond directly to
the data before it is moved around by the other pro-
posals. An alternative approach is to place the newly
birthed node as close to the neighboring "on" node as
possible. This would place the node within the known fit
bounds and the newly birthed node could be perturbed
into place in following proposals. I plan to explore these
both to determine which is a better approach, if there is
any variation.

IV. SIMPLE MODELS

To test the effectiveness of the fitter in the context
of SGWB, I injected both single and broken power laws
to see if the known injection could be recovered. While
the focus of my project is on the Westley fitter itself, I
initially created a pipeline from the simulation of SGWB
data through the pyGWB Python package. This pipeline
returns a Baseline object that can be used to fit the
energy density of the simulated data with the Westley

MCMC. The signal injection occurs at the beginning of
the data simulation with pyGWB, where the injection
is specified to the package and transformed into a time
series and frequency spectrum automatically.

A. Single Power Law

As a base case, I injected the following single power
law into the pipeline:

ΩGW (f) = Ωref

(
f

fref

)α

, (5)

where Ωref = 5× 10−5, fref = 10 Hz, and α = 2/3. Fig.
4 shows the injection (orange) and the simulated data
by the pyGWB package detector simulator. Following
simulation within the pipeline, the cross-correlation or
energy density is returned as shown in Fig. 5. The orange
corresponds to the simulated noise, the green with the
injected single power law, and the blue with the overall
combined data. The green power law is what we wish to
recover with our fitting. The fitting is only provided the
blue and orange data and noise from Fig. 5.

We then fit the data and noise with Westley. When
probing the returned data, we see the Westley fitter fa-
vors 2 nodes to fit the data, which corresponds to a single
power law. Visually, these posterior fits have found the
injected signal. Fig. 6 shows the spectral indices for this
fit. Since we injected 2/3, we expect to get back this
same value if the fits are as good as they appear in Fig.
6. Calculating the spectral index is a simple computation
using the node locations:

α =
log10 Ω2 − log10 Ω1

log10 f2 − log10 f1
, (6)

where Ωi and fi reflect the positions of nodes i = 1,2.
Fig. 6 shows the histogram of the spectral indices for
the returned fits. The estimated spectral index is α =
0.66 ± 0.03 where 0.03 is the standard deviation of the
sampled spectral index. We observe that the average is
close to the injected value. We expect this value to refine
and the histogram to appear more solidly Gaussian with
more iterations of the Westley fitter.

B. Broken Power Law

As a slightly more complex case, I injected a broken
power law (BPL) into the pipeline:

ΩGW(f) =

{
Ωpeak(

f
fpeak

)α1 for f ≤ fpeak

Ωpeak(
f

fpeak
)α2 for f > fpeak

(7)

with Ωpeak = 5 × 10−5, fpeak = 45 Hz, α1 = 6, and
α2 = 2/3. Applying our Westley fitter yields the
posterior fits shown in Fig. 7. The BPL fits do not
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FIG. 4. Injected single power law (orange) over the simulated
data (blue) using the pyGWB detector strain simulator. This
plot reflects the data from one of the simulated detectors.
Two sets such as this are required for the pipeline to generate
the cross-correlation function.

FIG. 5. The cross-correlation as a function of frequency after
the pyGWB pipeline incorporating simulated data from Han-
ford and Livingston detectors. The green is the same injected
signal shown in Fig. 4. The simulated detector noise is in or-
ange and the simulated cross-correlation data is in blue. The
orange and blue are fed into the Westley fitter to determine
a best fit.

appear as neat as the SPL fits, with BPL posterior
turnovers between 130-160 Hz, evident in Fig. 7.

An interesting feature of the BPL fits is the node place-
ment tendencies. The fitter favors 4 nodes when only
fitting with power laws, drawing a power law between
each node that translates to a linear segment in log-log
space. In Fig. 7, the first and second nodes find the min-
imum frequency of 20 Hz and the knee of the injected
BPL at 45 Hz. We expect this. The second 2 nodes
are a bit more unexpected because we only anticipate 3
total nodes. We need one before the peak, one at the
peak, and one after the peak to get the two spectral in-
dices. The placements of the second 2 nodes indicate a

FIG. 6. Histogram of spectral indices calculated for 2 node fits
in the single power law case. Our injected signal has α = 2/3.
The average spectral value for our posterior is in red.

FIG. 7. The posterior fits of an injected BPL. The dark orange
band reflects the posterior fits from Westley of the injected
BPL. Green is noise and blue is simulated data. Vertical solid
lines correspond to the average node placement for the BPL,
which tends to 4 node fits. The vertical dotted lines of the
same color indicate one STD from the average node value.
Red is the first node, orange is the second, yellow is the third,
and purple is the fourth.

turnover at higher frequencies, which does not follow our
injected BPL. The first STD of the third and fourth node
placement, indicated by the dotted lines about the aver-
age value solid line, are much wider spaced than the first
two nodes. Perhaps running more iterations of these fits
will help more patterns emerge for the locations of these
second two nodes in the power law fits of the injected
BPL. In doing this, we may be able to discover why the
fits diverge at higher frequencies with an injected BPL.
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V. NEXT STEPS

Before we can begin interpreting the physical meaning
of our fit parameters, we need to run the Westley fit-
ter for more iterations. Patterns in the spectral indices
and node placements are emerging at a million iterations,
but more iterations will better reinforce the fits. Further-
more, by running the fitter for longer, we can thin out
the results more. Thinning removes a certain percentage
of the posterior fits, helping eliminate the outliers of the
fits. Increasing the thinning from 10 to >100 will reduce
the number of fits received but hopefully increase the
quality. This is something that can be probed following
the proposal refining previously discussed.

Once the parameters have converged or give a nearly
Gaussian posterior, we can begin to physically interpret
these values. The benefits of using power law fits are
we know the physical correspondence of the parameter
values and can connect them with our injected values.
While this only holds for our simulated data, we can
use these trends on real data to interpret the fits we

get back. Alternatively, spline fits give more parameters
and flexibility, but we do not yet know the physical
correspondence. This would be an interesting avenue of
investigation going forward using higher iteration runs.
However, the fits systematically utilize a higher number
of nodes in spline fits, so this would be something to
confirm and investigate constraining before moving on
to interpreting.
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