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ABSTRACT

With 70 binary black hole merger (BBHs) events detected by the LIGO -Virgo Collaboration, it is

possible to infer the overall character of the black hole population in the universe. Specifically, the mass

distribution of BBHs provides us with valuable information on stellar evolution and binary formation

channel. We here aim to test the current estimation of BBHs population mass distribution based

on the third Gravitational-wave Transient Catalog (GWTC-3). The project involves: (1) Identifying

outliers and examining the impact of non-conventional events with leave-one-out tests on population

parameter estimation; (2) explore possible ways to adjust the model to better characterize astrophysical

phenomena;(3) examine agreement between the observed data and the fitted mode by conducting

goodness-of-fit tests. We did not found any statistically significant outlier event, though some events

can help direct us with future observations. Our goodness-of-fit test shows agreement between current

observations and fitted model.

1. INTRODUCTION: BLACK HOLE POPULATION

IN THE UNIVERSE

Based on the third Gravitational-wave Transient Cat-

alog (GWTC-3), The LIGO Scientific Collaboration

et al. (2021) looked into the mass and spin distribution,

overall merger rate, as well as the cosmological evolu-

tion of the merger rate of binary black holes. These

information provides valuable information on high mass

star formation and history of stellar evolution, as well as

how compact objects fit in the evolution of the universe.

The BBHs population has been fitted with models

and described with the associated population hyper-

parameters. For example, Figure 1 shows the estimated

primary mass distribution of BBHs using the most pop-

ular POWER LAW + PEAK model (PP) model de-

scribed in Section 2.3.1.

Aiming to evaluate the population inference’s perfor-

mance, compare different black hole population mod-

els, discuss the effects of outliers, and improve the gen-

eral modeling process; we want to conduct goodness-

of-fit tests on each step of the hyper-parameter estima-

tion. In addition to supplement the GWTC-3 estima-

tions, the test can also help to better understand the

expected population from the upcoming forth observa-

tion run (O4.) For this project, I focus on the mass

distribution of BBHs.

This report is organized as follows. In Section II we

introduce the parameters from the observations and how

these parameters inform us about the BBHs events and

Figure 1. Probability density function of the primary mass
distribution for the fiducial Power-Peak (PP) model. (For
more on the model, please see Talbot & Thrane (2018))
The solid lines show the posterior population distribution
(PPD) and the region shows the 90 percent credible interval
of GWTC-3 (blue) and GWTC-2 (black), respectively. As
shown in the figure, GWTC-3 suggests that the primary mass
has more prominent peaks than we previously observed.(The
LIGO Scientific Collaboration et al. 2021)

population. We also introduce the models that we used

to describe the black hole population and how are they

characterized. In Section III, IV, and V we present three

aspects of testing and current fitted model and possible

ways of improvements. In each of the sections, we first

introduce the methods, and then present the result. In

Section III we discuss possible outliers in GWTC-3 and

their impact on the inferred population; in Section VI we

discuss the redshift evolution of BBHs population and

how it may be included in the model fitting process;
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in Section V we present a Posterior Predictive Checks

between the observed population and the fitted model

predicted result. Finally in Section VI we conclude the

results of this project.

2. BACKGROUND: STRAIN, EVENTS, AND

POPULATION

The raw data LIGO obtained are strains that record

the change of length of the interferometer arms. Merger

events are identified by match filtering the strain data

with a template bank of BBH waveforms. Once a pos-

sible BBHs event is found, its intrinsic parameters such

and mass and spin and extrinsic parameters such as red-

shift and inclination of can be estimated from the strain

data with Bayesian analysis; the process is called (single-

event) parameter estimation (PE). There are many mod-

els that may describe the entire BBHs population, and

these models are defined with hyper-parameters (power

law index, height of Gaussian peak, etc.) By analyz-

ing many BBHs events with Bayesian analysis, hyper-

parameters can be estimated. The two-step approach,

also known as the hierarchical Bayesian inference (Tal-

bot et al. 2019) is the key of studying the black hole

population.

2.1. Single event parameters

15 parameters describes an individual BBH events:

8 intrinsic parameters that characterized the spin and

mass of the two black holes, 7 extrinsic parameters that

describe the binary’s position and orbit as seen by us.

Packages such as bilby (Ashton et al. 2019) and LAL-

Inference (Veitch et al. 2015) use Bayesian inference

to estimate the parameters from the strain data. (Fig-

ure 2.) The result is given in the form of posterior

samples. Each sample contain a possible combination

of the parameters that may create the observed signal.

The distribution of parameters in the posterior sample

represent the probability density of each parameters, in-

cluding how they may be correlated, as shown in Figure

3.

Figure 2. The strain data of BBH event GW150914 at the
LIGO Hanford observatory. The strain contains 4 seconds of
data around the event. (Abbott et al. 2021a)

Figure 3. The posterior distribution of primary mass (m1),
and secondary mass (m2) of GW150914 and their correla-
tion. In this corner plot, all other parameters are marginal-
ized. The dotted line marked the 90 percent credibility in-
terval——90 percent of the posterior sample is in this mass
range.

One thing to note is that the estimated parameters

are in the detector frame, the properties we see on earth.

However, many BBHs events happened far away enough

that we must take cosmology into consideration. We can

directly estimate the luminosity distance from the strain

data. With the assumption of current date cosmologi-

cal parameters from Planck 2015, we can calculate the

redshift of the event. (Hogg 1999) The redshift can then

be used to calculate the source frame parameters of the

events.

Mdetector = (1 + z)Msource (1)

The source frame parameter is independent of the ob-

server and reflect the true astrophysical information.

For studying the black hole population, we always use

the source frame parameters.

2.2. Population Hyper-Parameters

With the single events parameters in hand, we would

be able to describe the entire black hole population.

We characterize the population with ”population hyper-

parameters,” such as the index of the power law α of the

POWER LAW + PEAK model, the lower mass cutoff

mmin, or the position of the peak µm.We will discuss

the specific parameters for each model and their physi-

cal motivation in Section 2.3.1.

In single event parameter estimation, we take in ob-

served strain data as the likelihood to obtain the pos-

terior distribution of black hole parameters. (Note that

in this case, as we don’t know much about the event,
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Figure 4. The empirical cumulative density function of primary mass, effective inspiral spin, and redshift. The blue region
represent the distribution from GWTC-3, while the grey represent the distribution from GWTC-2. The solid lines show the
median while the shaded area are 90 percent credible interval. (The LIGO Scientific Collaboration et al. 2021) For this project,
we hope to conduct similar comparison between the observed GWTC-3 population and the theoretical modeled population.

we use uninformative prior in the Bayesian inference.)

In population hyper-parameter estimation, the ”data”

we used as the likelihood is the single event parameters.

Through similar Bayesian approach, we may obtain the

posterior distribution of hyper-parameters. The process

is called hierarchical Bayesian inference as it consist two

”layers” of parameter estimation. (Talbot et al. 2019)

With the hyper-parameters defined by each popu-

lation model, we can construct the likelihood for the

Bayesian inference. For each BBH, we can calculate the

probability of getting such events under a defined pop-

ulation model (the model is characterized with hyper-

parameters). Given that all events are independent, the

probability of getting all the events—-the likelihood–is

the product of all individual probability.

L(d|Λ) =
N∏
i

P (di|Λ) (2)

Where Λ is the hyperparameters and θi is the parameter

of the ith event.

However, we do not have the exact value of the pa-

rameter describing each single events. We can only infer

their probability distribution from the strain data.

L(d|Λ) =
N∏
i

∫
dθiL(di|θi)p(θi|Λ) (3)

Here the L(di|θi) term is the probability of getting the

strain data di for the i
th event given a set of parameters

θi, also referred to as the likelihood. We integrate over

all θi that we can get from the strain data to get the to-

tal probability, hence the
∫
dθiL(di|θi) term. In reality,

we do not have a smooth probability distribution, but

rather discrete samples that represent the events. The

relative number of samples per differential bin represent

the probability (similar to how histogram is used to de-

scribe probability density.) Instead of integration, we

take the sum of the probability of each sample to con-

struct our hyper-parameter likelihood; this is a monte

carlo approximation.

L(d|Λ) =
N∏
i

∑
θi∼L(di|θi)

p(θi|Λ) (4)

L(d|Λ) ∝

N∏
i

∑
θi∼L(di|θi)

p(θi|Λ)

pdet(Λ)
N

(5)

Finally, like all other astronomical observation, gravi-

tational detection is subjected to selection effect: more

massive black holes that create stronger signals are eas-

ier to detect. As we are interested in the astrophysical

properties of black hole population, we correct this bias

by including a ”detection probability” term which is a

function of the hyper-parameters.

L(d|Λ) ∝

N∏
i

∫
dθiL(di|θi)p(θi|Λ)

pdet(Λ)
N

(6)

pdet(Λ) =

∫
p(θ|Λ)pdet(θ)dθ (7)

The ”detection probability” term include the probabil-

ity of detecting each parameter and the probability of

detection such parameter under certain model. It can

be thought of as the relative fraction of the astrophys-

ical sources in the population which are detectable by

our detectors.

With the likelihood defined, we pass it to python pack-

age gwpopulation do the Bayesian inference Talbot

et al. (2019).

2.3. Black hole population model

2.3.1. Mass Models

The POWER LAW + PEAK model (PP model) is

currently the most commonly used one that describe

the mass distribution of black holes in the universe. It
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is initially motivated by the stellar initial mass func-

tion (IMF) and pulsational pair-instability supernova

(PPSN), which motivates the power law and the Gaus-

sian peak in the model, respectively.

Stellar IMF suggested that the mass of the stars in

the universe follows a power law, where more massive

stars are rarer. As the mass of a stellar black hole is

directly related to the mass of its progenitor star, it is

reasonable for us to anticipate the mass distribution of

stellar black holes also follows a similar power law.

PPSN occurs to massive stars (roughly between

100M⊙ and 150M⊙) at the end of their life. Stars

of this size are large enough to create some electron-

positron pairs but not massive enough that the electron-

positron pairs would cause them to undergo complete

pair-instability supernovae. These stars are very likely

to lose significant amount of mass (until they reach

around 100M⊙) until they can undergo ”normal” core-

collapse supernova. (Woosley 2017) This create a peak

at the higher end of the black hole mass distribution

which is expected to be followed by a cutoff. The peak

is modeled by an Gaussian.

Though currently the POWER LAW + PEAK model

seems to best match the observation, it does not seems

to capture the full picture. In particular, the fitted re-

sult from both GWTC-2 and GWTC-3 show the peak

to be centered around 35M⊙, not at the highest end of

the mass distribution. There’s currently no commonly

agreed explanation on the issue. Some have suggested

that this might be caused by hierarchical mergers: the

black holes in the BBHs events might be a merged re-

sult from a previous merger event. This process may al-

low the mass distribution to have additional peaks and

higher maximum mass.

Other parametric models characterize different as-

pects of the black hole mass population, including the

different possible shape at the lower and higher mass

cutoff, multiple peaks that could be caused by hierarchi-

cal mergers, broken power law that adjust for the differ-

ent IMF, etc. (Figure ) One of the goal of this project

is to test whether which model have better agreement

with the observations and how they might be improved.

2.3.2. Spin Models

The spin of black hole is harder to measure than the

mass, and therefore the current fitted models have large

uncertainties. Though we do not test the spin models in

this project for their huge uncertainties, it is still help-

ful to introduce the model as all event parameters are

estimated at the same time, and the spin of the black

hole is often correlated with other properties.

The current most commonly used black hole spin

model is motivated by two formation channel of BBHs.

For common evolution BBHs, it is expected that the

spin of individual black hole is in the same direction of

the binary’s angular momentum. This is represented as

a normal distribution centered at θ = 0. (The tilt angle

θ is the angle between the direction of spin of individ-

ual black hole and the direction of angular momentum

of the system.) For black holes that formed separately,

there should be no preferred orientation, and thus a flat

distribution of θ.

3. POTENTIAL OUTLIERS IN GWTC-3

In previous studies, two BBHs events (GW190814 and

GW190917) are identified as outliers as they have very

low secondary mass. The rest of the population can

not predict the existence of these two black holes, as

shown in Fig 5. The probability with and without these

two events have almost no overlaps, and it is very un-

likely that there is a value that can predict both scenario.

We wonder if any other events have similar constraining

power that with or without them in the population infer-

ence, the hyper-parameters estimated would not agree.

No new statistically significant outliers were found.

However, several events have strong constraining power

on certain hyper-parameters and may be potential

source of interests. Future observations may help clarify

whether other distinct sub-populations exist.

3.1. Methods: Leave-one-out Tests

To identify outliers, we conducted leave-one-out test

for all 69 events (excluding the previously identified out-

liers.) First, all 69 events are used in the population

inference. The result is used as a default comparison.

We then exclude one event for population inference and

generate a new set of population result. This ”leave-one-
out” trial is done for all 69 events. By comparing the

leave-one-out results with the original result, we may see

the impact of individual events when characterizing the

whole population. Note, we used PP mass model and

Default spin model for both the default and leave-one-

out tests.

Two sample Kolmogorov–Smirnov tests (KS tests)

were used to compare the probability distribution of

hyper-parameters and quantify the differences. The two

sample KS test measure the difference between two pop-

ulation’s cumulative distribution function; higher KS

test statistic implies that the two sample are more dis-

tinct. For all hyper-parameters the test runs, the events

yields the highest statistic value in KS tests are picked

out for closer analysis.

3.2. Results: Potential Outliers
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3.2.1. GW190924: Low Mass

The secondary black hole of GW190924 has a mass of

roughly 5 M⊙, the lowest among all 69 events. Other

lowest masses are around 7 M⊙ (including uncertain-

ties.) The posterior probability distribution of the leave-

one out test in Figure 6 also shows this potential gap

in the minimum mass. The KS test statistic value on

minimum mass is over 0.9, much higher than the second

highest statistic value of just over 0.1. It is possible that

this black hole belongs to a separate population, or be

more aligned with the two previously identified outliers.

However, though the distributions of the minimum mass

are quite different, they still have significant overlap and

may agree with each other. Thus, we cannot conclude

GW190924 s an outlier.

GW190924 also has the highest KS test statistic value

on λ, a hyper-parameter in the PP model that charac-

terize the normalized ratio between the black hole pop-

ulation falls into the Gaussian peak and the power law.

Without GW190924, the inferred λ centered at around

0.07; with it, the he inferred λ centered at around 0.03.

Excluding GW190924, less back holes are following the

power law and more black holes are in the Gaussian

peak. (Figure 7) This is highly correlated with the min-

imum mass: As the Gaussian peak is centered around

35 M⊙, the lowest mass population is dominated by the

power law. The power law also predicts low mass black

holes are much more common than the high mass ones.

Together, small decrease on the minimum mass would

significantly impact λ as the it allows large portion of

the events to be presented at the power law dominated,

lowest mass range. Similar to minimum mass, we can-

not conclude GW190924 to be an outlier based on λ as

the two result overlap significantly.

Figure 5. The posterior distribution of the minimum black
hole mass inferred with the PP model. Posterior including
and excluding GW190814 and GW190917 are shown. Inclu-
sion of either event significantly impacted the distribution.
Thus, we conclude that these two events may belong to a
separate population that cannot be predicted by the rest of
the events. (The LIGO Scientific Collaboration et al. 2021)

3.2.2. GW190521: High Mass

The primary mass of GW190521 is roughly 85 M⊙,

and has been flagged as a possible high-mass outlier in

GWTC-2. As shown in Figure 8, the maximum mass

predicted with or without GW190521 is centered around

85 M⊙ and 70 M⊙, respectively. The uncertainty of

black hole mass on high mass events are often large,

as the gravitational wave signal we detected are shorter

and have lower frequencies. This is then reflected on

the large spread on the probability distribution of max-

imum mass. The two distribution have significant over-

lap and we cannot conclude that GW190521 is an out-

lier. GW190521 also do not have significant impact on

other hyper-parameters that defines the population as

high mass events are, by nature, very rare in the total

population.

It is worth noting that though we do not see

GW190521 as an outlier, high mass events still

lack an astrophysical explanation. GW190521, along

with GW190602 175927 and GW190519 153544 (Ab-

bott et al. 2021b), have primary mass above 45 M⊙
at a > 99% confidence interval, above the mass range

predicted by PPSN. They may involve with hierarchical

mergers or other unknown astrophysical process.

3.2.3. GW190412: Low mass ratio and well-measured tilt
angle

GW190412 is an outstanding event for both its un-

usually low mass ratio and its well-measured, positive

aligned spin.

The two black holes of GW190412 have masses of

around 30 M⊙ and 8 M⊙, making the mass ratio be-

low 0.3, the lowest among all events. However, due to

the high uncertainty on mass ratio and the scarcity of

such unbalanced binaries, GW190412 does not signifi-

cantly change the estimation of population mass ratio

distribution, as shown in Fig 9.

GW190412 also has a relatively high constraining

power on the component spin tilts (cosθ) and effective

inspiral spin distribution because this property is eas-

ier to measure for unbalanced pairs. The uncertainty

of cost (tilt angle) of GW190412 is much smaller com-

pared to the others. Here, σspin is the width of the

aligned normal distribution; a lower σspin indicate that

the population is more concentrated and more binaries

are formed together. As shown in Figure 10, the inclu-

sion of GW190412 shift the peak of σspin distribution to

an lower value, and the uncertainty also dropped signifi-

cantly. With future observation with lower uncertainty,

we expect to have better estimation of hyper-parameters

related with black hole spin and tilt.
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Figure 6. The plot on the left showed the posterior probability distribution of the minimum mass of black holes inferred from
the default 69 events population and the population excluding GW190924, respectively. The middle plot shows the cumulative
distribution that is used to conduct the KS test, and the KS test result is shown at the right.

Figure 7. The figure shows posterior probability distribu-
tion of λ inferred by the default population and the leave-
one-out test without GW190924. The default population
predicts a much lower λ where smaller ratio of the total pop-
ulation are predicted to belong to the Gaussian peak.

Figure 8. The figure shows posterior probability distribu-
tion of maximum mass inferred by the default population
and the leave-one-out test without GW190521. The distri-
bution stopped at 100 M⊙ as the it is the highest allowed
range of the prior.

4. REDSHIFT EVOLUTION OF BBHS MERGER

RATE

In previous study of BBHs population, a simple power

law is used to describe the redshift evolution of BBHs

event rate, with more events at higher redshift. The

most common redshift observed by LIGO is around 0.2.

Figure 9. The mass ratio of BBHs primary and secondary
mass is modeled with a power law where equal mass bina-
ries are more common. The figure shows posterior proba-
bility distribution of mass ratio power law index inferred by
the default population and the leave-one-out test without
GW190412. The power law index is sightly higher when ex-
cluding the unbalanced binary GW190412, but the difference
is small.

Figure 10. The figure shows posterior probability distri-
bution of σspin inferred by the default population and the
leave-one-out test without GW190412. Without GW190412,
the estimation is more widespread and have higher uncer-
tainties.

This is a combined result from the detection ability of

the instrument and the black hole population with red-

shift evolution. GW190805W is the farthest event we

have seen so far with an estimated redshift of 1. This
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Figure 11. The plot shows how the inferred astrophysical
BBH event rate change with the redshift. The shaded region
marks the 90% confidence interval. The blue region shows
the estimation including GW190805, and the orange region
shows the estimation with it. The estimation has the lowest
uncertainty at z 0.2 where most events happened.

event shed a light on the study of the redshift evolution

of black hole population, yet with only one data point,it

is hard to make any conclusion. However, in the up-

coming fourth observing run (O4), with more advanced

instruments, LIGO may expect several more of these

high redshift events that can help constrain the redshift

model. Therefore, it is worth to discuss the impact of

high redshift events and a refined redshift model.

4.1. GW190805W

We use the same method of the leave-one-out test to

see the impact of GW190805W on the estimation of

the black hole population redshift evolution. Without

GW190805W, the power law index of the redshift evo-

lution is lower, but the uncertainty of the estimation

does not change significantly (Figure 11). This is rea-

sonable: the detection of one event would assure the

abundance of BBHs at higher redshift, but there is not

enough data to make a precise estimation. With more

potential observations in O4, we hope to get a much

better constraint.

4.2. Madau-Dickinson Model

Madau & Dickinson (2014) suggests that star forma-

tion rate does not grows indefinitely with redshift, but

rather peaked at z = 2 3 (the cosmological noon). The

formation of stellar black holes should obey a similar

trends with a time delay. The formation time of stellar

black holes are relatively short, as their progenitors are

massive stars with short lifespans. However, the in spiral

time for BBHs can be very long can cause a significant

time delay between the cosmology noon and the peak of

BBHs mergers. Fishbach & Kalogera (2021) discusses

this issue in great details. In practice, this time-delayed

Figure 12. The plot shows BBHs rate evolution with red-
shift estimated with both simple power law and a broken
power law motivated by cosmic stellar formation rate. The
shaded area marks the 90% confidence interval. The blue re-
gion is predicted with a simple power law. The orange region
is predicted by a broken power law with almost no constrain
on peak position (at z between 0 to 10.) The uncertainty
is slightly higher compare to the blue one due to more pa-
rameters presents in the broken power law model. The green
region is also predicted by a broken power law, but with a
more informative peak position (at z between 0 and 2.) We
can see under this scenario, the rate may began to fall at
higher redshift where observation is still technically possible.

Madau-Dickenson model is describe by the broken power

law, where the merger rate first goes up then drop down

with growing redshift.

We run the population inference with all 69 events un-

der three different model: first, a simple power law that

does not have a turn; second, a broken power law with

no constrain on the redshift of the ”turning point” (In

easier calculation purpose, we allow the turning point

to be between z = 0 and z = 10. This is fine as z = 10

is way beyond the possible turning point.); and third,

an adjusted broken power law that the turning point is

only allowed to be happen later than the cosmological

noon.(Between z = 0 and z = 2.) The result in Fig-

ure 12 shows that when their is no constrain, the power

law and the Madau-Dickinson model have similar per-

formance. However, if we only allow the turning point

to be closer than z = 2, the distribution is more differ-

ent than the default model: There would be much less

events predicted at higher redshift.

5. POSTERIOR PREDICTIVE CHECKS

Under a predefined population model, population in-

ference tell us the range of hyper-parameters that best

describe the observations. However, the process lack a

absolute measurement of how well the results describe

the observation. We also cannot directly compare results

that are based on different population model directly in

the population inference.
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Here, we use posterior predictive checks as a absolute

measurement that characterize the agreement between

the observation and the population posteriors. This al-

low us to compare different models, and potentially im-

prove them.

5.1. Methods: Sample Re-weighting

Recall for single event parameter estimation, the pa-

rameters are estimated as follows:

p(θ|d) = L(d|θ)π(θ)
Pdet(θ)

(8)

Here, π(θ) describes our understanding of the probabil-

ity of θ prior to the Bayesian inference. As we currently

do not know much about the probability distribution of

event parameters, uninformative priors are used during

parameter estimation. This often means that all θ values

in a certain range is assumed to have equal probability.

Recall that the posteriors from population inference

describe the probability density function of the event

parameter. These posteriors is now our ”understanding

of the probability of θ” and can substitute the uninfor-

mative priors. For instance, instead of assume that the

mass of a black hole is evenly likely to be at anywhere

between 2M⊙ to 100M⊙, we can say that its probability

density follows a parameterized PP model, where the

probability of having a smaller mass is larger than hav-

ing a higher mass:

pre(θ|d) =
p(θ|d)p(θ|Λ)

π(θ)
(9)

p(θ|Λ) = pm.pz.pmag.pori (10)

Here, p(θ|d) is the posterior probability of event param-

eters from the original event parameter inference, and

pre(θ|d) is the re-weighted posterior probability. p(θ|Λ)
is the parameters’ probability given a certain popula-

tion model characterized by hyper-parameter Λ. It can

be calculated as the product of the probability of the

mass, the redshift, the spin magnitude, and the spin

orientation.

We can perform similar sample re-weighting to an in-

jected data set. We can test our population posterior

by comparing the re-weighted observation event pos-

teriors and the re-weighted injected event parameters.

The population posterior is reasonable if the observa-

tion and the injected data set agrees with each other,

and the underlying population model can describe the

astrophysical results.

We compare the two data sets by comparing the

re-weighted event parameters’ cumulative distribution

function(CDF). It is worth noting that generating CDFs

for all event posterior samples is very computational

costly. We also notice that the result change very lit-

tle once the sample size is large enough. Thus, we only

used a weight-selected sub-sample in our comparison.

In practice, we re-weighted all event posteriors based

on a population posterior (a set of hyper-parameters.)

We use the re-weighted probability as the weight to ran-

domly select 10 posterior samples for each event, and

690 samples in total is selected. For the injection data

set, we use the same false alarm rate and signal-to-noise

threshold that are used for the observation signals. The

injection events are then re-weighted, and 690 samples

are selected from the entire injection set to match the

sample size of the observation data. For all event pa-

rameter, a CDF is generated for each of the 690 samples.

Then both the observation and the injection set is re-

weighted based on a different population posterior, and

two new CDFs are generated. Loop through all popula-

tion posteriors, we obtained roughly 3000 CDFs for each

parameters in both data sets. The 90% credible range

is then plotted and compared.

5.2. Result

As shown in Figure 13 The observation and the injec-

tion data set agree with each other very well under the

PP model. The 90% credible interval of the observation

set completely overlap with the injection set. One thing

to note is that there is a small peak around 15 M⊙ that

appears in the observation set. This peak is not statis-

tically significant as it still overlaps with the injection

set, but it might worth future investigations.

Figure 13. This figure shows the result of the posterior
predictive check of the PP model. The 90% credible interval
of the black hole mass CDF is shown. The narrow pink
band is from the re-weighted observation samples, and the
wide grey band represent the re-weighted injection sample.
The Gaussian peak is well captured in this model and the
two sets agree.
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Figure 14. This figure shows the result of the posterior
predictive check of the TRUNCATED model model. The
90% credible interval of the black hole mass CDF is shown.
The narrow pink band is from the re-weighted observation
samples, and the wide grey band represent the re-weighted
injection sample. It is obvious that the simple power law does
not capture the details that appeared in the observations.

A similar comparison is done by using the TRUN-

CATED model. This model is just a simple power law

with no additional features and sharp cutoff at the min-

imum and maximum mass. As shown in Figure 13,

the observation set does not agree with the injection

set. This suggest that the TRUNCATED model can-

not fully captures the astrophysical population of black

holes. With many more observations expected in O4,

other detailed features of the mass population may be

revealed. (For instance, we may confirm the existence

of the second peak at 15 M⊙.) This method can be

used to test new or improved models that describe such

features.

6. CONCLUSION

This project aims to test the current model that de-

scribe the binary black hole population observed by

LIGO.

We first conduct leave-one-out test to identify poten-

tial outliers that may represent different populations.

We did not find any new statistically significant outliers.

However, several events have special features that may

bear further investigation. In particular, GW190924 has

a very low secondary mass; GW190521 has a very high

primary mass; and GW190412 is a very unbalanced pair

and has very well defined spin measurements.

We also examine the effect of adding redshift evolu-

tion of black hole binary populations into the population

model. We currently only have one event, GW190805W,

that ha2 a redshift of roughly 1. However, more high

redshift events are anticipated in the upcoming observa-

tions. We believe even a few number of these events can

significantly help us better constrain the redshift model.

We also suggest that the time-delayed Madau-Dickinson

model can be use to better describe black hole popula-

tion at higher redshift.

We finally conduct posterior predictive checks to ab-

solute measurement of how well our population model

describe the observations. The result shows that under

PP model, the observed and inferred population agree.
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