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This note is based on one of the papers we are writing on the SEOBNRv5 waveform model. It summarizes the
structure of the aligned-spin Hamiltonian, and explains the construction of the multipolar waveform modes of
the SEOBNRv5HM model, including the calibration to numerical relativity. Please keep in mind, when reading
this note, that citations are not complete. The note has been written with the only scope of facilitating the review
of the SEOBNRv5 model for O4.

NOTATION

We consider a binary with masses m1 and m2, with m1 ≥m2,
and spins SSS 1 and SSS 2. We define the following combinations
of the masses:

M ≡ m1 + m2, µ ≡
m1m2

M
, ν ≡

µ

M
,

δ ≡
m1−m2

M
, q ≡

m1

m2
,

(1)

and define the dimensionless spin vectors

χχχi ≡
aaai

mi
=

SSS i

m2
i

, (2)

along with the intermediate definition for aaai, where i = 1,2.
The spin magnitudes χi vary between -1 and 1, with positive
spins being in the direction of the angular momentum. We
also define the following combinations of spins:

SSS ≡ SSS 1 + SSS 2, SSS ∗ ≡
m2

m1
SSS 1 +

m1

m2
SSS 2,

χS ≡
χ1 +χ2

2
, χA ≡

χ1−χ2

2
,

aaa± ≡
aaa1±aaa2

M
=

m1

M
χ1±

m2

M
χ2.

(3)

Note that, unlike aaai, we define aaa± to be dimensionless by di-
viding aaai by the total mass.

The relative position and momentum vectors are denoted RRR
and PPP, with

PPP2 = P2
R +

L2

R2 , PR = nnn ·PPP, LLL = RRR×PPP, (4)

where nnn = RRR/R, and LLL is the orbital angular momentum with
magnitude L. The total angular momentum JJJ = LLL + SSS 1 + SSS 2.
For precessing spins, we use the spherical-coordinates phase-
space variables (R, θ,φ,PR,Pθ,Pφ), where θ is the polar angle,
φ is the azimuthal angle, and Pφ and Pθ are their conjugate
momenta. For equatorial orbits (aligned-spins), the angular
momentum L = Pφ.

We use the rescaled dimensionless variables

t ≡
T
M
, rrr ≡

RRR
M
, u ≡

1
r
, L̄LL =

LLL
Mµ

, ppp ≡
PPP
µ
, (5)

pr ≡
PR

µ
, pθ ≡

Pθ
Mµ

, pφ ≡
Pφ
Mµ

, H̄ ≡
H
µ
, (6)

where we use a lowercase symbol to indicate the dimension-
less quantities, except for the dimensionless angular momen-
tum L̄LL and Hamiltonian H̄.

We use units in which c = G = 1.

I. THE SEOBNRV5 HAMILTONIAN

In the EOB formalism [1–5] the dynamics of the BH binary
is mapped to that of the effective problem of a test particle
in a deformed Schwarzschild or Kerr background, with the
deformation being parametrized by the symmetric mass ratio
ν. The energy map relating the effective Hamiltonian Heff and
the two-body EOB Hamiltonian HEOB is given by

HEOB = M

√
1 + 2ν

(
Heff

µ
−1

)
. (7)

The generic-spin SEOBNRv5 Hamiltonian is based on that of
a test mass in Kerr [6, 7]. By contrast the generic-spin
SEOBNRv4 [8–10] Hamiltonian was based on the one of a spin-
ning test-body in a Kerr background [11–13].

The generic-spin SEOBNRv5 Hamiltonian includes most of
the 5PN nonspinning contributions [14], together with spin-
orbit (SO) information up to the next-to-next-to-leading or-
der (NNLO), spin-spin (SS) information to NNLO, as well as
cubic- and quartic-in-spin terms at leading order (LO), corre-
sponding to all PN information up to 4PN order for precessing
spins. More details about the derivation of the generic-spin
Hamiltonian, together with the full expressions, are given in
Ref. [7]. Here we summarize the structure of the aligned-spin
Hamiltonian, highlighting where NR calibration parameters
enter the expressions.

A. Zero-spin Hamiltonian

The effective Hamiltonian in the zero-spin (point-mass)
limit can be written as

H̄eff,pm =

√
Apm

[
1 + ApmD̄pm p2

r + p2
φu2 + Qpm

]
. (8)

For the potentials A, D̄, and Q, we use the 5PN results of
Ref. [14], which are missing two quadratic-in-ν coefficients in
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A and D̄. The 5PN Taylor-expanded potential A is given by

ATay
pm (u) = 1−2u + 2νu3 + ν

(
94
3
−

41π2

32

)
u4

+

[
ν

(
2275π2

512
−

4237
60

+
128γE

5
+

256ln2
5

)
+

(
41π2

32
−

221
6

)
ν2 +

64
5
ν lnu

]
u5

+

[
νa6 +

(
−

144ν2

5
−

7004ν
105

)
lnu

]
u6, (9)

where we replaced the coefficient of u6 in A(r), except for the
log part, by the parameter a6, which is calibrated to quasi-
circular NR simulations. Note that we pull out a factor of ν
from a6 compared to the definition in Ref. [14]. Then, we
perform a (1,5) Padé resummation of ATay

pm (u), while treating
lnu as a constant, i.e., we use

Apm = P1
5[ATay

pm (u)]. (10)

For the D̄pm potential we use again 5PN results, and set the
remaining unknown coefficient dν

2

5 to zero. We then perform
a (2,3) Padé resummation of D̄Tay

pm (u)

D̄pm = P2
3[D̄Tay

pm (u)]. (11)

The 5.5PN contributions to A and D̄ are known [14]; how-
ever, since we Padé resum these potentials, we find it more
convenient to stop at 5PN.

For the Q potential, we use the full 5.5PN expansion, which
is expanded in eccentricity to O(p8

r ).
The calibration parameter a6 is a function of ν; to determine

its value in the limit ν→ 0, we use the gravitational-self-force
results of Refs. [15, 16] for the frequency shift of the inner-
most stable circular orbit (ISCO), which is

MΩ1SF
ISCO = 6−3/2(1 +CΩ/q),

CΩ = 1.25101539±4×10−8.
(12)

The ISCO can be computed from the Hamiltonian by solving
∂H/∂r = 0 = ∂2H/∂r2 for r and pφ with pr = 0. The value of
a6 that gives best agreement with Ω1SF

ISCO is

a6|ν→0 ' 39.1. (13)

B. Aligned spins Hamiltonian

For aligned spins, the effective Hamiltonian reduces to the
equatorial Kerr Hamiltonian [6, 17], and to include higher PN
information, we use the following ansatz:

H̄eff =
1

r3 + a2
+(r + 2)

[
pφ(ga+a+ +ga−δa−) + SOcalib +Ga3

]
+

A
1 + p2 + Bnp p2

r + BKerr,eq
npa

p2
φa2

+

r2 + Q



1/2

, (14)

where ga+ and ga− include the SO corrections up to 3.5PN,
SOcalib is an NR calibration term at 4.5PN of the form

SOcalib = dSO
ν

r3 pφa+, (15)

and Ga3 contains S3 corrections [7]. The nonspinning and
SS contributions are included in A, Bnp and Q, while the S4

corrections are added in A. The potential BKerr,eq
npa is kept the

same as in the Kerr Hamiltonian.
The gyro-gravitomagnetic factors ga+ and ga− in the SO

part of the Hamiltonian are often chosen to be in a gauge such
that they are functions of 1/r and p2

r only [18, 19]. How-
ever, in SEOBNRv5, we find better results when using a gauge
in which ga+ and ga− depend on 1/r and L̄2/r2, but not on p2

r .
The 4.5PN SO coupling was derived in Refs. [20–23], and can
be included in the effective Hamiltonian. However, we found
that using a calibration term at 5.5PN had a small effect on the
dynamics, and thus only included the 3.5PN information with
a 4.5PN calibration term.

C. Hamiltonians in tortoise coordinates

The tortoise-coordinate r∗ is defined by [24, 25]

dr∗
dr

=
1
ξ(r)

, ξ(r) ≡ Apm(r)
√

D̄pm(r). (16)

The conjugate momentum to r∗ is pr∗ , which is given by the
relation

pr∗ = prξ(r). (17)

The nonspinning effective Hamiltonian (8) in terms of pr∗
takes the simpler form

H̄eff,pm =

√
p2

r∗ + A(r)
[
1 + p2

φu2 + Q(r, pr∗ )
]
, (18)

where we obtain Q(r, pr∗ ) by converting pr to pr∗ using
Eq. (17), then PN expand to 5.5PN order.

For both aligned and precessing spins, a convenient choice
for ξ is

ξ(r) =
D̄1/2

pm

(
Apm + a2

+u2
)

1 + a2
+u2

, (19)

which is similar to what was used for ξ in SEOBNRv4 [25, 26]
except for the different resummation and PN orders in Apm
and D̄pm. In the ν → 0 limit, ξ reduces to the Kerr value
(dr/dr∗)Kerr = (r2−2r + a2

+)/(r2 + a2
+).

II. THE SEOBNRV5 MULTIPOLAR WAVEFORMS

The complex linear combination of GW polarizations,
h(t) ≡ h+(t) − ih×(t) is expanded in the basis of −2 spin-
weighted spherical harmonics [27] as follows:

h(t;λλλ, ι,ϕc) =
∑
`≥2

∑
|m|≤`

−2Y`m(ι,ϕc)h`m(t;λλλ), (20)
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where λλλ denotes the intrinsic parameters of the compact bi-
nary source, such as masses (m1,2) and spins (χχχ1,2). In the
aligned-spin case there are only three parameters (q,χ1,χ2),
since the waveforms scale trivially with the total mass M. The
parameters (ι,ϕc) specify the direction of the incoming GW
radiation and are called inclination and coalescence phase, re-
spectively.

In this Section we describe the building blocks used in
the construction of the multipolar spinning, nonprecessing
waveform modes h`m. We closely follow [9], and high-
light differences compared to SEOBNRv4HM when needed. In
the EOB framework the gravitational wave modes defined
in Eq. (20) are decomposed in inspiral-plunge modes and
merger-ringdown (MR) modes. In SEOBNRv5HM we model the
(2,2) and the largest subdominant modes [9] (3,3), (2,1), (4,4),
(3,2), (5,5) and (4,3). The generic mode is written as:

h`m(t) =

hinsp-plunge
`m (t), t < t`mmatch

hmerger-RD
`m (t), t > t`mmatch

(21)

where we define t`mmatch as

t`mmatch =


t22
peak , (`,m) = (2,2), (3,3),

(2,1), (4,4),
(3,2), (4,3)

t22
peak −10M, (`,m) = (5,5),

(22)

with t22
peak being the peak of the (2,2) mode amplitude. The

choice of a different attachment point for the (5,5) mode is
motivated, as in [9], by the fact that t55

peak − t22
peak > 0, and at

late times the error in some of the NR waveforms is too large
to accurately extract the quantities of interest.

A. Inspiral-plunge h`m modes and radiation-reaction force

The inspiral-plunge EOB waveform modes can be written
as

hinsp-plunge
`m = hF

`mN`m (23)

where hF
`m is a factorized, resummed form of the PN GW

modes for aligned-spins in circular orbits [24, 28–30], while
N`m is the nonquasi-circular (NQC) correction, aimed at in-
corporating radial effects that are relevant at the end of the
inspiral. The factorized modes are written as

hF
`m = h(N,ε`m)

`m Ŝ (ε`m)
eff

T`m f`meiδtm . (24)

The first factor, h(N,εp)
`m is the leading (Newtonian) order wave-

form and its explicit expression is [29]

hN
`m =

νM
DL

n`mc`+ε`m (ν)v`+ε`mφ Y`−ε`m,−m

(
π

2
,φ

)
. (25)

Here DL is the luminosity distance, Y`m is a scalar spherical
harmonic, ε`m is the parity of the mode,

ε`m =

{
0, `+ m is even
1, `+ m is odd,

(26)

and the functions n`m and ck(ν) are given by

n`m =


8π(im)`

(2`+ 1)!!

√
(`+1)(`+2)
`(`−1) , `+ m is even

−16iπ(im)`

(2`+ 1)!!

√
(2`+1)(`+2)(`2−m2)
(2`−1)(`+1)`(`−1) , `+ m is odd,

(27)

and

ck(ν) =

(
1−
√

1−4ν
2

)k−1
+ (−1)k

(
1+
√

1−4ν
2

)k−1
. (28)

Finally, vφ in (25) is given by

vφ = MΩrΩ, (29)

where Ω is the orbital frequency and

rΩ =

(
∂HEOB

∂pφ

)−2/3
∣∣∣∣∣∣∣
pr=0

. (30)

The (dimensionless) effective source term Ŝ eff is given by ei-
ther the effective energy Eeff or the orbital angular momentum
pφ, both expressed as functions of vΩ ≡ (MΩ)1/3 =

√
x, such

that

Ŝ eff =


Eeff(vΩ)

µ , `+ m even

vΩ
pφ(vΩ)
µM , `+ m odd

, (31)

where Eeff is related to the total energy E via the EOB en-
ergy map E = M

√
1 + 2ν (Eeff/µ−1). The factor T`m resums

the infinite number of “leading logarithms” entering the tail
effects [31], and is given by

T`m =
Γ
(
`+ 1−2ik̂

)
Γ(`+ 1)

eπk̂e2ik̂ ln(2mΩr0), (32)

where Γ(...) is the Euler gamma function, k̂ ≡ mΩE and the
constant r0 takes the value 2M/

√
e to give agreement with

waveforms computed in the test-body limit [29].
The remaining part of the factorized modes is expressed

as an amplitude f`m and a phase δ`m, which are computed
such that the expansion of hF

`m agrees with the PN-expanded
modes. To improve the agreement with numerical-relativity
waveforms, f`m is further resummed as [29, 30] f`m = (ρ`m)`

to reduce the magnitude of the 1PN non-spinning coefficient,
which grows linearly with `. For spinning binaries, the non-
spinning and spin contributions are separated for the odd m
modes, such that

f`m =

{
ρ`
`m, m even

(ρNS
`m )` + f S

`m, m odd
, (33)

where ρNS
`m is the non-spinning part of ρ`m, while f S

`m is the
spin part of f`m.

As in SEOBNRv4HM, the presence of minima in the ampli-
tude for some of the modes needs to be treated, before ap-
plying the NQC corrections, by additional calibration param-
eters. The modes for which this is needed are the (2,1), (5,5)
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and (4,3). The minima occur for q ∼ 1 and large |χA|, and can
lead to unphysical features in the amplitude after applying the
NQC corrections if they occur close to the attachment point
t ∼ tmatch. For the (2,1) mode this behavior is also found in
NR simulations, while for the (5,5) and (4,3) this is not ob-
served in the NR simulations at our disposal, and is likely an
artifact of the PN modes [9].

The calibration term takes the form c`mv
β`m
Ω

, where β`m de-
notes the first-order term at which the PN series of hPN

`m is not
known today with its complete dependence on mass ratio and
spins, and is included in f`m. The calibration parameter c`m is
evaluated to satisfy the condition:∣∣∣∣hF

`m

(
t`mmatch

)∣∣∣∣ ≡ ∣∣∣∣h(N,εp)
`m Ŝ (εp)

eff
T`meiδ`m f`m (c`m)

∣∣∣∣∣∣∣∣
t=t`mmatch

,

=
∣∣∣∣hNR
`m

(
t`mmatch

)∣∣∣∣ , for (`,m) = (2,1), (5,5), (4,3),
(34)

where |hNR
`m

(
t`mmatch

)
| is the amplitude of the NR modes at

the matching point, given by fits in parameter space in Ap-
pendix A.

The remaining N`m term in Eq. (23) is the NQC correction
and reads

N`m =

1 +
p2

r∗

(rΩ)2

ah`m
1 +

ah`m
2

r
+

ah`m
3

r3/2




× exp

ibh`m
1

pr∗

rΩ
+ bh`m

2

p3
r∗

rΩ

 .
(35)

The use of the NQC corrections guarantees that the modes’
amplitude and frequency agree with NR fits, given in Ap-
pendix A, at the matching point tmatch

`m . In particular, one fixes
the, the 5 constants (ah`m

1 , ah`m
2 , ah`m

3 , bh`m
1 , bh`m

2 ) by requiring
that [8, 9, 32]:
• The amplitude of the EOB modes is the same as that of

the NR modes at the matching point t`mmatch:∣∣∣∣hinsp-plunge
`m (t`mmatch)

∣∣∣∣ =
∣∣∣hNR
`m (t`mmatch)

∣∣∣ . (36)

We notice that this condition is different from that in
Eq. (34) because it affects hinsp-plunge

`m (t`mmatch) and not
hF
`m(t`mmatch). Because of the calibration parameter in

Eq. (34), for the modes (2,1), (5,5) and (4,3) this condi-
tion becomes simply |N`m| = 1.
• The first derivative of the amplitude of the EOB modes

is the same as that of the NR modes at the matching
point t`mmatch:

d
∣∣∣∣hinsp-plunge
`m (t)

∣∣∣∣
dt

∣∣∣∣∣∣∣∣∣
t=t`mmatch

=
d
∣∣∣hNR
`m (t)

∣∣∣
dt

∣∣∣∣∣∣∣
t=t`mmatch

; (37)

• The second derivative of the amplitude of the EOB
modes is the same as that of the NR modes at the match-
ing point t`mmatch:

d2
∣∣∣∣hinsp-plunge
`m (t)

∣∣∣∣
dt2

∣∣∣∣∣∣∣∣∣
t=t`mmatch

=
d2

∣∣∣hNR
`m (t)

∣∣∣
dt2

∣∣∣∣∣∣∣
t=t`mmatch

; (38)

• The frequency of the EOB modes is the same as that of
the NR modes at the matching point t`mmatch:

ω
insp-plunge
`m (t`mmatch) = ωNR

`m (t`mmatch); (39)

• The first derivative of the frequency of the EOB modes
is the same as that of the NR modes at the matching
point t`mmatch:

dωinsp-plunge
`m (t)

dt

∣∣∣∣∣∣∣
t=t`mmatch

=
dωNR

`m (t)

dt

∣∣∣∣∣∣∣
t=t`mmatch

. (40)

The RHS of Eqs. (36)–(40) (usually called input values), are
given as fitting formulae for every point of the parameter space
(ν,χ1,χ2) in Appendix A. These fits are produced using a cat-
alog of 442 NR and 13 BH-perturbation-theory waveforms.

In SEOBNRv5 the input values are enforced at t = t`mmatch given
in Eq. (22) as function of t22

peak. We take

t22
peak = tISCO +∆t22 (41)

where tISCO is the time at which r = rISCO, rISCO being com-
puted from the final mass and spin of the remnant [33, 34],
and ∆t22 is a calibration parameter, to be determined by com-
paring against NR simulations. In SEOBNRv4 the merger time
was given by

t22
peak = tΩpeak +∆t22

peak (42)

with tΩpeak being the peak of the orbital frequency. The purpose
of ∆t22

peak is still to introduce a time delay between the peak
of the orbital frequency and the peak of the (2,2) mode, as
observed in the test-particle limit [35–37]. However, we find
the new definition to be more robust, since it is indipendent of
features in the late dynamics, like the existence of a peak in
the orbital frequency, which is not necessarily present for all
BBH parameters when the Hamiltonian and radiation-reaction
force are not the same of SEOBNRv4.

The EOB radiation-reaction force F is obtained by sum-
ming the amplitude of the factorized GW modes

F ≡
Ω

16π
ppp
|LLL|

8∑
`=2

∑̀
m=−`

m2
∣∣∣DLhF

`m

∣∣∣2 , (43)

where Ω is the orbital frequency, and DL is the luminosity
distance of the binary to the observer. We point out that the
NQC corrections are not included in the SEOBNRv5 radiation-
reaction, as well as the c`m calibration coefficients.

Main differences compared to SEOBNRv4HM:
• The high-order PN terms from Appendix A of [9] are

now included in the RR force, and not just in the wave-
form modes.
• We add some of the terms recently derived in Ref. [38].

i) We add in ρ22 NLO spin-squared terms at 3PN and
and LO spin-cubed terms at 3.5PN (Eq. (4.11a) from
[38]). ii) We add all the known spin terms in the (3,2),
(4,3) amplitudes (Eqs. (B2a) and (B5b) from [38]).
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iii) We correct the expressions for the (2,1) mode. As
pointed out in [38], the O(v6χ2ν2) terms in the (2,1)
mode in SEOBNRv4HM [9] are not correct, as well as
the O(νv5) nonspinning part of δ21, whose coefficient
had the value −493/42 [27, 30] instead of −25/2, due
to an error in the (2,1) mode in Ref. [39], which was
later corrected in an erratum. Since Ref. [38] was pub-
lished only when the model was already close to being
finalized, we only added the terms we considered most
important, and we will add all new terms in a future up-
date of the model. We remark that adding additional
PN information in the waveform modes (except for the
phases) modifies the flux, and would require a recali-
bration of the dynamics to NR.
• 2GSF calibration coefficients from [40]. In that work

we define

ρ`m = ρ(0)
`m + νρ(1)

`m +O
(
ν2

)
(44)

and augment the ρ(1),EOB
`m by adding an additional poly-

nomial ∆ρ(1)
`m in v2

Ω
starting at the lowest order in v2

Ω
not

already included. The ∆ρ(1)
`m are determined by fitting to

the numerical ρ(1),GSF
`m results. The results of the fits are

the following expressions:

∆ρ(1)
22 = 21.2v8

Ω−411v10
Ω (45)

∆ρ(1)
21 = 1.65v6

Ω + 26.5v8
Ω + 80v10

Ω (46)

∆ρ(1)
33 = 12v8

Ω−215v10
Ω (47)

∆ρ(1)
32 = 0.333v6

Ω−6.5v8
Ω + 98v10

Ω (48)

∆ρ(1)
44 = −3.56v6

Ω + 15.6v8
Ω−216v10

Ω (49)

∆ρ(1)
43 = −0.654v4

Ω−3.69v6
Ω + 18.5v8

Ω (50)

∆ρ(1)
55 = −2.61v4

Ω + 1.25v6
Ω−35.7v8

Ω (51)

In [40] we also find it beneficial to include additional
terms in the (3,2) and (4,3) mode obtained by matching
to the PN expansions of the test particle flux.

∆ρ(1),TPL
32 =

1
ν

(
−

1312549797426453052
176264081083715625

+
18778864
12629925

eulerlog(2, vΩ)
)
v10
Ω (52)

∆ρ(1),TPL
43 =

1
ν

(
−

2465107182496333
460490801971200

+
174381
67760

eulerlog(3, vΩ)
)
v8
Ω (53)

where we define

eulerlog (m, vΩ) ≡ γ+ log(2mvΩ) (54)

in which γ is the Euler constant.
• We correct the coefficient of the O(v5δχAν) term in ρ22,

whose value is 19/42, but was mistakenly replaced in
the SEOBNRv4 code by 196/42.

The equations of motion for aligned spins, in terms of pr∗ ,
are given by Eqs. (10) of Ref. [27], and read

ṙ = ξ
∂H
∂pr∗

∣∣∣∣∣∣
r
, φ̇ =

∂H
∂pφ

,

ṗr∗ = −ξ
∂H
∂r

∣∣∣∣∣
pr∗

+
pr∗

pφ
Fφ, ṗφ = Fφ.

(55)

Quasicircular initial conditions are taken from [5]. One can
then integrate numerically Eq. (55), to solve for the binary’s
dynamics.

In SEOBNRv5 one can also employ the post-adiabatic (PA)
approximation for the inspiral dynamics, which allows to
speed up the evaluation of the model, especially for very long
waveforms [41–43]. The implementation of the PA dynamics
closely follows that of Ref. [43] to which we refer for further
details.

B. Merger-ringdown h`m modes

The merger-ringdown modes are constructed with a phe-
nomenological ansatz, using information from numerical rel-
ativity (NR) simulations and test-particle limit (TPL) wave-
forms. The ansatz we employ for the modes (2,2), (3,3),
(2,1), (4,4), (5,5), which show monotonic amplitude and fre-
quency evolution, is the same as the one implemented in [8, 9]
and reads:

hmerger-RD
`m (t) = νÃ`m(t)eiφ̃`m(t)e−iσ`m0

(
t−t`mmatch

)
(56)

where σ`m0 = σR
`m − iσI

`m is the complex frequency of the
least-damped QNM of the remnant BH. The QNM frequen-
cies are obtained for each (`,m) mode as a function of the
BH’s final mass and spin using the qnm python package [44].
The BH’s mass and spin are in turn computed using the fitting
formulas of [33] and [34] respectively. The ansätze for the
two functions Ã`m φ̃`m in Eq. (56) are the following [8, 9]

Ã`m(t) = c`m1,c tanh
[
c`m1, f

(
t− t`mmatch

)
+ c`m2, f

]
+ c`m2,c, (57)

φ̃`m(t) = φ`mmatch −d`m1,c log

1 + d`m2, f e−d`m1, f

(
t−t`mmatch

)
1 + d`m2, f

 , (58)

where φ`mmatch is the phase of the inspiral-plunge mode (`,m)
at t = t`mmatch . The coefficients d`m1,c and c`mi,c (i = 1,2) are
constrained by the requirement that Ã`m(t) and φ̃`m(t) in
Eqs. (57), (58) are of class C1 at t = t`mmatch , and can

be written in terms of c`m1, f , c`m2, f , σR
`m,

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣,
∂t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣, as follows

c`m1,c =
1

c`m1, f ν

[
∂t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣
−σR

`m

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣]cosh2
(
c`m2, f

) (59)
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c`m2,c =

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣
ν

−
1

c`m1, f ν

[
∂t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣
−σR

`m

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣]cosh
(
c`m2, f

)
sinh

(
c`m2, f

)
,

(60)
or in terms of d`m1, f ,d

`m
2, f ,σ

I
`m,ω

insp-plunge
`m

(
t`mmatch

)
for d`m1,c

d`m1,c =
[
ω

insp-plunge
`m

(
t`mmatch

)
−σI

`m

] 1 + d`m2, f

d`m1, f d`m2, f

(61)

The NQC corrections in the inspiral-plunge modes
make sure that the quantities

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣,
∂t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣, ∂2
t

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣,
ω

insp-plunge
`m

(
t`mmatch

)
, ∂tω

insp-plunge
`m

(
t`mmatch

)
coincide with the

NR input values. The remaining parameters in Eqs. (57), (58)
are the ”free coefficients” c`mi, f and d`mi, f , i = 1,2. Using the
NQCs allows to fit the free coefficients directly to NR,
and makes the merger-ringdown modes indipendent of the
EOB inspiral modes, allowing for a decoupled calibration
of the two. To obtain these, we first extract them from
each NR and TPL waveform by least-square fits, and then
interpolate the values obtained across parameter space using
polynomial fits in ν and χ. While in [9] the same polynomial
was used for most of the free coefficients, in this work we
used a recursive-feature-elimination (RFE) algorithm with
polynomial features of third and fourth order, depending
on the values to fit. Applying a log transformation to some
of the coefficients was also found to be beneficial, both to
improve the quality of the fits and to ensure positivity of those
quantities when extrapolating outside of the region where NR
data is available. A similar RFE strategy was also applied
to most of the fits for the input values, the only exceptions
being the fits of the amplitude of the odd-m modes (and their
derivatives). The odd m modes vanish in the equal-mass and
equal-spin limit, since they need to satisfy the symmetry
under rotation φ0 → φ0 + π, therefore the corresponding
amplitudes are better captured by ad-hoc non-linear ansätze
that enforce this limit by construction (see also Appendix B).

C. Mode mixing in the (3,2) and (4,3) modes

The merger-ringdown (3,2), (4,3) modes show post-merger
oscillations [45, 46], mostly related to the mismatch between
the spherical harmonic basis used for extraction in NR simu-
lations, and the spheroidal harmonics adapted to the perturba-
tion theory of Kerr BHs. Because of this, it is not possible to
use the same ansatz of Eqs. (56), (57), (58) straightforwardly.

Eq. (20) can be formulated in terms of −2 spin-weighted
spheroidal harmonics as:

h(t;θθθ, ι,ϕc) =
∑
`′≥2

∑
|m|≤`′

∑
n≥0
−2S `′mn(ι,ϕc) S h`mn(t, θθθ), (62)

where S `mn ≡ S `m(a fσ`mn) are the −2 spin-weighted
spheroidal harmonics associated with the QNM frequencies

σ`mn, and with a f M f being the spin angular momentum of
the final BH of mass M f [47]. The superscript S denotes that
the S h`mn modes are expanded in the spheroidal harmonics
basis.

One can switch from the spherical harmonic basis to
spheroidal harmonic basis via:

S −2
`′mn =

∑
`≥|m|

µ∗m``′nY−2
`m , (63)

where µm``′n are mode mixing coefficients, which we com-
pute using fits provided by Berti and Klein [48] (more com-
plicated fits can be found in [49]), and the star denotes the
usual complex conjugation. Inserting Eq. (63) in Eq. (62) for
the spheroidal harmonics we get,

h(t; ι,ϕc) =
∑
`′≥2

∑
|m|≤`′

∑
n≥0

∑
`≥|m|

µ∗m``′nY−2
`m (ι,ϕc) S h`mn(t), (64)

where we have removed the θθθ parameter from the expression
to ease the notation. Comparing Eq. (64) with Eq. (20), we
obtain the following relation between spherical and spheroidal
modes,

h`m(t) =
∑
`′≥|m|

∑
n≥0

S h`′mn(t)µ∗m``′n. (65)

Starting from Eq. (65), we can model the mode-mixing be-
havior [50] in such a way to obtain monotonic functions that
can be fitted by the ansatz already used for the other modes.
Practically, it is not feasible to sum over all the spheroidal
modes to get each spherical mode, so we make a few plausible
approximations: first, we neglect the overtone (n > 0) contri-
butions in the right hand side of Eq. (65), because their decay
times are & 3 smaller than the dominant overtone n = 0. Sec-
ond, for a given (`,m) mode, we neglect the contributions from
the spheroidal modes with `′ > ` since their amplitudes are
subdominant commpared to the (`,m,0) mode, and the cor-
responding mode mixing coefficients are also smaller. With
these approximations, we can rewrite the Eq. (65) as

h`m(t) '
∑
`′≤`

S h`′m0(t)µ∗m``′0. (66)

Writing it explicitly for the modes of interests,

h22(t) ' µ∗2220
S h220(t), (67)

h33(t) ' µ∗3330
S h330(t), (68)

h32(t) ' µ∗2320
S h220(t) +µ∗2330

S h320(t), (69)

h43(t) ' µ∗3430
S h330(t) +µ∗3440

S h430(t). (70)

From these equations, we can solve for the S h`m0 modes to
obtain

S h320(t) '
h32(t)−h22(t)µ∗2320/µ

∗
2220

µ∗2330
, (71)

S h430(t) '
h43(t)−h33(t)µ∗3430/µ

∗
3330

µ∗3440
. (72)
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The h32 mode shows oscillations in its amplitudes and fre-
quency, while the S h320 mode obtained from Eq.( 71) has a
nearly monotonic behavior. Most importantly, the frequency
of the S h320 mode oscillates around the QNM frequency pre-
dicted in BH perturbation theory for the spheroidal (3,2,0)
mode.

From this reasoning it follows that we can model the
spheroidal S hlm0 modes using the ansatz of Eq. (56), where
in Eq. (58) φmatch

`m is replaced by S φmatch
`m0 , the phase of S hlm0

at t = tmatch
`m , in Eq. (59), (60) h`m is replaced by S hlm0, and in

Eq. (61) ω`m by Sω`m0. Once we have a model for S h320 and
S h430, it is straightforward to obtain the (3,2) and (4,3) modes
by combining them with the (2,2) and (3,3) ones previously
obtained by inverting Eqs. (71), (72).

The NQC corrections for the inspiral-plunge h`m modes re-
quire the values at tmatch

`m for the spherical NR modes hNR
`m , and

those are the quantities that we fit and interpolate across pa-
rameter space. However, we need the input values of S hlm0 in
order to fix the coefficients c`mi,c and d`mi,c . They can be derived
from the Eqs. (71) and (72) starting from the h`m input values.
First, we introduce the following quantities,

ρ = |µm``′0|
|hmatch
`′m |

|µm`′`′0||hmatch
`m |

(73)

δφ = φ`
′m

match−φ
`m
match− arg(µm``′0) + arg(µm`′`′0) (74)

F =

√
(1−ρcos(δφ))2 +ρ2 sin2(δφ) (75)

α = arctan
(
−ρsin(δφ)

1−ρcos(δφ)

)
(76)

ρ̇ = |µm``′0|

(
∂t |hmatch

`′m |

|hmatch
`m |

−
|hmatch
`′m |

|hmatch
`m |2

∂t |hmatch
`m |

)
(77)

δφ̇ = ∂tφ
`′m
match−∂tφ

`m
match (78)

Ḟ = (ρρ̇+ρsin(δφ)δφ̇− ρ̇cos(δφ))/F (79)

α̇ = (ρ2δφ̇−ρcos(δφ)δφ̇− ρ̇sin(φ))/F2 (80)

Where |hmatch
`m | ≡

∣∣∣∣hinsp-plunge
`m

(
t`mmatch

)∣∣∣∣. Then,

|S hmatch
`m0 | =

|hmatch
`m |F

|µm``0|
(81)

S φ`m0
match = φ`mmatch + arg(µm``0) +α (82)

∂t |
S hmatch

`m0 | =
(∂t |hmatch

`m |F + |hmatch
`m |Ḟ)

|µm``0|
(83)

Sωmatch
`m0 = ωmatch

`m + α̇ (84)

where for (3,2) mode m = 2, ` = 3, `′ = 2 and for (4,3) mode
m = 3, ` = 4, `′ = 3.

III. CALIBRATION TO NUMERICAL RELATIVITY

The inspiral-plunge modes described in Sec. II A are func-
tions of the physical parameters (q,χ1,χ2), of the initial or-
bital frequency ω0 at which the evolution is started, and of a
set calibration parameters, that are determined as a function
of (q,χ1,χ2) in order to maximize the agreement between the
model and NR simulations. In SEOBNRv5 we employ the foll-
wing calibration parameters:
• a6, a 5PN, linear in ν, parameter that enters the nonspin-

ning Apm(u) potential of Eqs. (9), (10).
• dSO, a 4.5PN spin-orbit parameter, that enters the

odd-in-spin part of the effective Hamiltonian (see
Eqs. (14), (15)).
• ∆t22 a parameter that determines the time shift between

the Kerr ISCO, computed from the final mass and spin
of the remnant [33] [34], and the peak of the (2,2) mode
amplitude (see Eq. (41)). We remark that this quan-
tity is different from ∆t22

peak used in SEOBNRv4, where it
corresponded to the time difference between the peak
of the orbital frequency and the peak of the (2,2) mode
amplitude.

As in SEOBNRv4, in SEOBNRv5 we find it convenient to
do the calibration in a hierarchical way, starting from non-
spinning and then moving to aligned-spins. First, we calibrate
to non-spinning configuration using as calibration parameters

θθθns ≡ {a6,∆tns
22}. (85)

We then fix a6(ν), ∆tns
22(ν) by the respective fits and calibrate to

the remaining spin-aligned configurations using as calibration
parameters

θθθs ≡ {dSO,∆ts
22}, (86)

where

∆t22 = ∆tns
22 +∆ts

22, (87)

and ∆ts
22 is assumed to vanish in the non-spinning limit.

These are the calibration parameter fits that we obtain:

a6 = 329523.262ν4−169019.14ν3 + 33414.4394ν2−3021.93382ν+ 41.787788 (88)

∆tns
22 = ν10.051322ν−1/5 ·

(
55565.2392ν3−9793.17619ν2−1056.87385ν−59.62318

)
(89)

∆ts
22 =ν−1/5

(
−6.789139a4

+ + 5.399623a3
+ + 6.389756a2

+a−−132.224951a2
+ν+ 49.801644a2

+
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+ 8.392389a+a2
−+ 179.569825a+a−ν−40.606365a+a−+ 384.201019a+ν

2−141.253182a+ν

+17.571013a+−16.905686a2
−ν+ 7.234106a2

−+ 144.253396a−ν2−90.192914a−ν+ 14.22031a−
)

(90)

dSO =−7.584581a3
+−10.522544a2

+a−−42.760113a2
+ν+ 18.178344a2

+−17.229468a+a2
−

+ 362.767393a+a−ν−85.803634a+a−−201.905934a+ν
2−90.579008a+ν+ 49.629918a+

−7.712512a3
−−238.430383a2

−ν+ 69.546167a2
−−1254.668459a−ν2 + 472.431938a−ν

−39.742317a−+ 478.546231ν3 + 679.52177ν2−177.334832ν−37.689778. (91)

Appendix A: Fits of nonquasicircular input values

In this appendix we provide fits for the nonquasicir-
cular (NQC) input values,

∣∣∣∣h`m (
t`mmatch

)∣∣∣∣, ∂t

∣∣∣∣h`m (
t`mmatch

)∣∣∣∣,
∂2

t

∣∣∣∣h`m (
t`mmatch

)∣∣∣∣, ω`m (
t`mmatch

)
, ∂tω`m

(
t`mmatch

)
. To produce the

fits we used NR simulations with the highest level of resolu-
tion available and extrapolation order N = 2. Depending on
the mode, we excluded from the fits a different number of NR
waveforms where numerical errors prevented us to fit them
accurately. As in [9] we define the following combinations of
m1, m2, χ1, χ2 to be used in the fits.

δ =
(m1−m2)
(m1 + m2

), (A1)

χ33 = χS δ+χA (A2)

χ21A =
χS

1−1.3ν
δ+χA (A3)

χ44A = (1−5ν)χS +χAδ (A4)

χ21D =
χS

1−2ν
δ+χA (A5)

χ44D = (1−7ν)χS +χAδ (A6)

χ = χS +χA
δ

1−2ν
(A7)

The variables χ33, χ21A, χ21D vanish by construction for
equal-mass equal-spin configurations, and are used to enforce
that the odd-m modes also vanish in the same limit as required
by symmetry.

1. Amplitude’s fits

|hNR
22 (tmatch

22 )|
ν

=|0.430147χ3ν−0.084939χ3 + 0.619889χ2ν2−0.020826χ2−13.357614χν3

+ 7.194264χν2−1.743135χν+ 0.18694χ+ 71.979698ν4−46.87586ν3

+ 12.440405ν2−0.868289ν+ 1.467097| (A8)

|hNR
33 (tmatch

33 )|

ν
=| −0.088371χ2

33δν+ 0.036258χ2
33δ+ 1.057731χ33ν

2−0.466709χ33ν

+ 0.099543χ33 + 1.96267δν2 + 0.027833δν+ 0.558808δ| (A9)

|hNR
21 (tmatch

21 )|
ν

=| −0.033175χ3
21Aδ+ 0.086356χ2

21Aδν−0.049897χ2
21Aδ+ 0.012706χ21Aδ

+ 0.168668χ21Aν−0.285597χ21A + 1.067921δν2−0.189346δν+ 0.431426δ| (A10)

|hNR
44 (tmatch

44 )|
ν

=|0.031483χ2
44A−0.180165χ44Aν+ 0.063931χ44A + 6.239418ν3−1.947473ν2

−0.615307ν+ 0.262533| (A11)

|hNR
55 (tmatch

55 )|

ν
=| −7.402839χ33ν

3 + 3.965852χ33ν
2−0.762776χ33ν+ 0.062757χ33

+ 1.093812δν2−0.462142δν+ 0.125468δ| (A12)

|hNR
32 (tmatch

32 )|

ν
=|0.022598χ2 + 0.307803χν−0.020771χ+ 8.917771ν3−2.194506ν2

−0.387911ν+ 0.155446| (A13)
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|hNR
43 (tmatch

43 )|

ν
=| −0.071554χ2

33δν+ 0.021932χ2
33δ−1.738079χ33ν

2 + 0.436576χ33ν

−0.020081χ33 + 0.809615δν2−0.273364δν+ 0.07442δ| (A14)

2. Amplitude-first-derivative’s fits

1
ν

d|hNR
22 (t)|
dt

∣∣∣∣∣
t=tmatch

22

≡0 (A15)

1
ν

d|hNR
33 (t)|

dt

∣∣∣∣∣
t=tmatch

33

=χ2
33δ (0.004941ν−0.002094)

+ 0.001781
∣∣∣χ2

33 +χ33δ (39.247538ν−2.986889) +δ2 (85.173306ν+ 4.637906)
∣∣∣1/2 (A16)

1
ν

d|hNR
21 (t)|
dt

∣∣∣∣∣
t=tmatch

21

=χ21Dδ (0.023534ν−0.008064) +δ (0.006743−0.0297ν)

+ 0.008256
∣∣∣∣χ21D−δ

(
5.471011ν2 + 1.235589ν+ 0.815482

)∣∣∣∣ (A17)

1
ν

d|hNR
44 (t)|
dt

∣∣∣∣∣
t=tmatch

44

=−0.001251χ3
44D + 0.006387χ2

44Dν−0.001223χ2
44D−0.034308χ44Dν

2

+ 0.014373χ44Dν−0.000681χ44D + 1.134679ν3−0.417056ν2

+ 0.024004ν+ 0.003498 (A18)

1
ν

d|hNR
55 (t)|

dt

∣∣∣∣∣
t=tmatch

55

=χ2
33δ (0.008568ν−0.00155) +χ33δ (0.002705ν−0.001015)

+δ (0.002563−0.010891ν) + 0.000284 |χ33 +δ (32.459725ν+ 0.165336)| (A19)

1
ν

d|hNR
32 (t)|

dt

∣∣∣∣∣
t=tmatch

32

=−0.000806χ3−0.011027χ2ν+ 0.002999χ2−0.14087χν2 + 0.063211χν

−0.006783χ+ 1.693423ν3−0.510999ν2 + 0.020607ν+ 0.003674 (A20)

1
ν

d|hNR
43 (t)|

dt

∣∣∣∣∣
t=tmatch

43

=χ2
33δ (0.001773−0.012159ν) +χ33δ (0.022249ν−0.004295)

+δ (0.012043ν−0.001067) + 0.00082 |χ33 +δ (3.880171−20.015436ν)| (A21)

3. Amplitude-second-derivative’s fits

1
ν

d2|hNR
22 (t)|

dt2

∣∣∣∣∣
t=tmatch

22

=0.000386χ2 + 0.003589χν+ 0.001326χ−0.003353ν2−0.005615ν−0.002457 (A22)

1
ν

d2|hNR
33 (t)|

dt2

∣∣∣∣∣
t=tmatch

33

=χ33δ (0.000552ν+ 0.001029)−0.000218

·

∣∣∣∣χ33 +δ
(
−2188.340923ν4 + 1331.981345ν3−289.772357ν2 + 32.212775ν+ 3.396168

)∣∣∣∣ (A23)

1
ν

d2|hNR
21 (t)|

dt2

∣∣∣∣∣
t=tmatch

21

=0.00015δ−
∣∣∣∣0.000316χ3

21D−χ
2
21Dδ

(
−0.043291ν2 + 0.005682ν+ 0.000502

)
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+0.000372χ21Dδ−δ
(
0.003643ν+ 2.8 ·10−5

)∣∣∣∣ (A24)

1
ν

d2|hNR
44 (t)|

dt2

∣∣∣∣∣
t=tmatch

44

=−0.000591χ2ν+ 0.000174χ2−0.000501χν+ 0.000318χ+ 0.138496ν3

−0.047008ν2 + 0.003899ν−0.000451 (A25)

1
ν

d2|hNR
55 (t)|

dt2

∣∣∣∣∣
t=tmatch

55

=χ2
33 ·

(
0.000278ν−5.6 ·10−5

)
+χ33δ

(
0.000246ν−6.8 ·10−5

)
+δ

(
0.000118−5.9 ·10−5ν

)
(A26)

1
ν

d2|hNR
32 (t)|

dt2

∣∣∣∣∣
t=tmatch

32

=−0.002882χ2ν+ 0.000707χ2−0.027461χν2 + 0.008481χν−0.000691χ

+ 0.20836ν3−0.053191ν2 + 0.001604ν−5.6 ·10−5 (A27)

1
ν

d2|hNR
43 (t)|

dt2

∣∣∣∣∣
t=tmatch

43

=χ33δ (0.00291ν−0.000348)−5.0 ·10−6

·

∣∣∣∣χ33 +δ
(
−25646.358742ν4 + 12647.805787ν3 + 291.751053ν2−531.965263ν+ 23.849357

)∣∣∣∣ (A28)

4. Frequency and frequency-derivative fits

ωNR
22 (tmatch

22 ) =−0.015259χ4 + 0.241948χ3ν−0.066927χ3−0.971409χ2ν2 + 0.518014χ2ν

−0.087152χ2 + 3.751456χν3−1.697343χν2 + 0.250965χν−0.091339χ

+ 5.893523ν4−3.349305ν3 + 0.285392ν2−0.317096ν−0.268541 (A29)

ωNR
33 (tmatch

33 ) =−0.045141χ3 + 0.346675χ2ν−0.119419χ2−0.745924χν2 + 0.478915χν

−0.17467χ+ 8.887163ν3−4.226831ν2−0.427167 (A30)

ωNR
21 (tmatch

21 ) =−0.01009χ3 + 0.077343χ2ν−0.02411χ2−0.168854χν2 + 0.159382χν

−0.047635χ−1.965157ν3 + 0.53085ν2−0.237904ν−0.176526 (A31)

ωNR
44 (tmatch

44 ) =−0.042529χ3 + 0.415864χ2ν−0.155222χ2−0.768712χν2 + 0.592568χν

−0.244508χ+ 13.651335ν3−5.490329ν2−0.574041 (A32)

ωNR
55 (tmatch

55 ) =−0.091629χ3 + 0.802759χ2ν−0.246646χ2−3.04576χν2 + 1.43471χν

−0.329591χ+ 13.81386ν3−6.61611ν2 + 0.472474ν−0.589341 (A33)

ωNR
32 (tmatch

32 ) =−0.045647χ2−2.758635χν2 + 0.811353χν−0.112477χ−2.346024ν3

+ 1.57986ν2−0.317756ν−0.331141 (A34)

ωNR
43 (tmatch

43 ) =−0.037919χ3 + 0.226903χ2ν−0.087288χ2−0.905919χν2 + 0.291092χν

−0.1198χ−55.534105ν3 + 23.913277ν2−3.487986ν−0.34306 (A35)

ω̇NR
22 (tmatch

22 ) =0.000614χ3−0.008393χ2ν+ 0.001948χ2 + 0.07799χν2−0.028772χν

+ 0.001705χ−0.237126ν3 + 0.092215ν2−0.03104ν−0.005484 (A36)

ω̇NR
33 (tmatch

33 ) =0.001697χ3−0.016231χ2ν+ 0.003985χ2 + 0.154378χν2−0.050618χν

+ 0.002721χ+ 0.255402ν3−0.08663ν2−0.027405ν−0.009736 (A37)

ω̇NR
21 (tmatch

21 ) =0.00149χ3−0.008965χ2ν+ 0.002739χ2 + 0.033831χν2−0.005752χν

+ 0.002003χ−0.204368ν3 + 0.120705ν2−0.035144ν−0.006579 (A38)

ω̇NR
44 (tmatch

44 ) =0.001812χ3−0.024687χ2ν+ 0.00568χ2 + 0.162693χν2−0.061205χν

+ 0.003623χ+ 0.536664ν3−0.094797ν2−0.045406ν−0.013038 (A39)
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ω̇NR
55 (tmatch

55 ) =0.001509χ3−0.01547χ2ν+ 0.002802χ2 + 0.164011χν2−0.056516χν

+ 0.002072χ+ 0.043963ν3 + 0.048045ν2−0.045197ν−0.008688 (A40)

ω̇NR
32 (tmatch

32 ) =−0.036711χ2ν+ 0.005532χ2 + 0.09192χν2−0.030713χν+ 0.005927χ

−2.494788ν3 + 0.995116ν2−0.10163ν−0.010763 (A41)

ω̇NR
43 (tmatch

43 ) =0.000537χ3−0.009876χ2ν+ 0.003279χ2 + 0.13296χν2−0.060884χν

+ 0.008513χ−5.160613ν3 + 2.180781ν2−0.292607ν−0.005308 (A42)

Appendix B: Fits for amplitude and phase of merger-ringdown
model

In this appendix we provide fits across parameter space for
the free coefficients in the merger-ringdown anstaz given by

Eqs. (57), (58). To produce the fits we used NR simulations
with the highest level of resolution available and extrapolation
order N = 2.

c22
1, f =−0.001777χ4 + 0.062842χ3ν−0.018908χ3 + 0.013161χ2ν2 + 0.049388χ2ν

−0.019314χ2 + 1.867978χν3−0.702488χν2 + 0.033885χν−0.011612χ

−4.238246ν4 + 2.043712ν3−0.406992ν2 + 0.053589ν+ 0.086254 (B1)

c22
2, f =1.021875χ3ν−0.20348χ3−3.556173χ2ν2 + 1.970082χ2ν−0.264297χ2

+ 2.002947χν3−5.585851χν2 + 1.837724χν−0.27076χ−63.286459ν4

+ 44.331389ν3−9.529573ν2 + 1.155695ν−0.528763 (B2)

d22
1, f =−0.013321χ4 + 0.047305χ3ν−0.024203χ3 + 1.033352χ2ν2−0.254351χ2ν

−0.007847χ2 + 4.113463χν3−1.652924χν2 + 0.090834χν−28.423701ν4

+ 20.719874ν3−6.075679ν2 + 0.780093ν+ 0.135758 (B3)

d22
2, f =exp(−0.163113χ4−3.398858χ3ν+ 0.728816χ3 + 23.975132χ2ν2−10.064954χ2ν

+ 1.2115χ2 + 9.057306χν3−5.268296χν2 + 0.464553χν+ 0.56269χ

−352.249383ν4 + 275.843499ν3−81.483314ν2 + 11.184576ν+ 0.03571) (B4)

c33
1, f =−0.00956χ3 + 0.029459χ2ν−0.020264χ2−0.494524χν2 + 0.169463χν

−0.026285χ−5.847417ν3 + 1.957462ν2−0.171682ν+ 0.093539 (B5)

c33
2, f =−0.057346χ3 + 0.237107χ2ν−0.094285χ2−4.250609χν2 + 1.763105χν

−0.315826χ+ 14.801916ν3−7.060581ν2 + 1.158627ν−0.646888 (B6)

d33
1, f =−0.016524χ3 + 0.221466χ2ν−0.066323χ2 + 0.678442χν2−0.261264χν

+ 0.006664χ+ 2.316434ν3−2.192227ν2 + 0.424582ν+ 0.161577 (B7)

d33
2, f =exp(0.275999χ3−1.830695χ2ν+ 0.512734χ2 + 29.072515χν2−10.581319χν

+ 1.310643χ+ 324.310223ν3−124.681881ν2 + 13.200426ν+ 0.410855) (B8)

c21
1, f =0.173462χ2ν−0.028873χ2 + 0.197467χν2−0.026139χ−2.934735ν3

+ 1.009106ν2−0.112721ν+ 0.099889 (B9)

c21
2, f =0.183489χ3 + 0.10573χ2−20.792825χν2 + 6.867746χν−0.484948χ

−54.917585ν3 + 16.466312ν2 + 0.426316ν−0.92208 (B10)

d21
1, f =0.018467χ4 + 0.398621χ3ν−0.050499χ3−0.877201χ2ν2 + 0.414553χ2ν

−0.068277χ2−10.648526χν3 + 4.104918χν2−0.723576χν+ 0.039227χ



12

+ 42.715534ν4−18.280603ν3 + 2.236592ν2−0.048094ν+ 0.16335 (B11)

d21
2, f =exp(0.814085χ3−1.197363χ2ν+ 0.560622χ2 + 6.44667χν2−5.630563χν

+ 0.949586χ+ 91.269183ν3−27.329751ν2 + 1.101262ν+ 1.040761) (B12)

c44
1, f =4.519504χν2−1.489036χν+ 0.068403χ−1656.065439ν4 + 817.835726ν3

−127.055379ν2 + 6.921968ν+ 0.009386 (B13)

c44
2, f =0.964861χ3ν−0.185226χ3−12.647814χ2ν2 + 5.264969χ2ν−0.539721χ2

−254.719552χν3 + 105.698791χν2−12.107281χν+ 0.2244χ−393.727702ν4

+ 145.32788ν3−15.556222ν2 + 1.592449ν−0.677664 (B14)

d44
1, f =−0.020644χ3 + 0.494221χ2ν−0.127074χ2 + 4.297985χν2−1.284386χν

+ 0.062684χ−44.280815ν3 + 11.021482ν2−0.162943ν+ 0.166018 (B15)

d44
2, f =exp(37.735116χν2−12.516669χν+ 1.309868χ−528.368915ν3 + 155.115196ν2

−6.612448ν+ 0.787726) (B16)

c55
1, f =−0.009957χ3 + 0.059748χ2ν−0.02146χ2−0.206811χν2 + 0.055078χν

−0.014528χ−5.966891ν3 + 1.76928ν2−0.055272ν+ 0.080368 (B17)

c55
2, f =0.119703χ4 + 1.638345χ2ν2−0.064725χ2−28.499278χν3 + 3.73034χν2

+ 1.853723χν−0.225283χ−1887.591102ν4 + 794.134711ν3−107.010824ν2

+ 6.32117ν−1.507483 (B18)

d55
1, f =−0.021537χ3 + 0.168071χ2ν−0.050263χ2 + 0.871799χν2−0.230057χν

+ 9.018546ν3−5.009488ν2 + 0.606313ν+ 0.150622 (B19)

d55
2, f =exp(28.839035χν2−9.726025χν+ 0.901423χ+ 143.745208ν3−64.478227ν2

+ 6.223833ν+ 2.058139) (B20)

c32
1, f =−0.133035χ3 + 0.641681χ2ν−0.111865χ2 + 8.987763χν2−1.582259χν

+ 0.095604χ−26.991806ν3 + 13.716801ν2−1.63083ν+ 0.157543 (B21)

c32
2, f =0.121608χ3−1.590623χ2ν+ 0.167231χ2−25.544931χν2 + 10.127968χν

−0.999062χ−51.469773ν3 + 46.209833ν2−6.484571ν−0.716883 (B22)

d32
1, f =exp(−0.764015χ3−8.684722χ2ν+ 0.691946χ2−0.518291χν2−1.407934χν

+ 0.236427χ+ 81.222175ν3−18.040529ν2 + 2.216406ν−1.879455) (B23)

d32
2, f =exp(−1.819822χ3−24.501503χ2ν+ 3.287882χ2−39.324579χν2 + 14.379901χν

−215.372399ν3 + 136.20936ν2−16.842816ν+ 1.463485) (B24)

c43
1, f =0.041585χ3 + 4.188908χν2−1.365732χν+ 0.058908χ+ 44.311948ν3

−22.114177ν2 + 3.386082ν−0.035315 (B25)

c43
2, f =0.125764χ3 + 0.337235χ2ν+ 0.146202χ2−9.803187χν2 + 3.995199χν

−0.240976χ−57.968821ν3 + 7.820929ν2 + 3.364741ν−1.121716 (B26)

d43
1, f =exp(−0.888286χ3 + 3.97869χ2ν−1.047181χ2−14.823391χν2 + 6.940856χν

−0.367801χ+ 366.645645ν3−161.732513ν2 + 19.564699ν−2.29578) (B27)

d43
2, f =exp(−0.950676χ3−0.31428χ2 + 39.21796χν2−10.651167χν+ 1.339732χ

+ 730.42296ν3−312.960598ν2 + 37.402567ν−0.061894) (B28)
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