

Updates on FroSTI for use in LIGO

Huy Tuong Cao

Tyler Rosauer, Aiden Wilkin, Aidan Brooks, Jon Richardson

Front Surface Type Irradiator

- Ring heater (RH) mounted in front of test mass reflective (HR) surface
- Irradiates HR surface with infrared heating source

 \rightarrow Induces surface deformation (and thermal lens in ITM) to better correct for HR coating absorption lensing

 \rightarrow Bringing IFO back to 'cold state'

Motivation #1: Reduce Point Absorber Risk

- Address **non-uniform loss** induced by point-absorbers
- Point-absorbers scatter TEM00 mode into higher-order modes
- The 7th order mode scattering loss is resonantly enhanced due to cavity degeneracy.
 - Brooks et al. 2021 (<u>P1900287</u>)
- Loss of power from TEM_{00} to TEM_{mn}

Simulated arm cavity scan (A. Brooks, G2101232)

Mitigating the HOM7 Degeneracy in Arm Cavities

- RH on LHOx O3. ITMid = ITM07. ETMid = ETM13 Input Beam Intensity RH on - LHOy - O3, ITMid = ITM11, ETMid = ETM16 10^{2} --200 RH on - LLOx - O3, ITMid = ITM04, ETMid = ETM10 80 RH on - LLOy - O3. ITMid = ITM08. ETMid = ETM15 (um)proor 100-100 60 40 100 200 -200 0 200 X-coord(mm) Effect of Cavity power New RH applying RH1.0 10 11 10 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0 Phase
- FroSTI will actively shift the HOM7 resonances away from TEM00, suppressing g_{mn}
- Removing co-resonances will reduce arm loss
 - Richardson et al. 2021 (<u>P2100184</u>)

Effects of ring heaters on HOM resonance conditions (G2101232)

Motivation #2: Correcting High Levels of Uniform Absorption

- Post-O5 arm cavity power target: 1.5 MW
 - Report of LSC Post O5 Study group (<u>T2200287</u>)
- Residual surface deformation *after* optimal correction with barrel RH has a steep edge rise.
- Large ITM residual distortion (20 nm_{RMS}) also

Idealized residual distortion of ITM after TCS at 750 mW absorption

Self-heating: 750 mW, RH: 28.5 W, CO2: 14.6 W $\,$

Motivation #2: Correcting High Levels of Uniform Absorption

Performance of IFO with existing TCS (Ideal) $\alpha_{\text{ITM}} = 0.5 \text{ ppm}, \alpha_{\text{ETM}} = 0.3 \text{ ppm}$

• Distortion causes drop in PRG, and hence arm power

 \rightarrow Can only achieve 750 kW with an ideal TCS

- Residual thermal lens causes significant SQZ loss at high frequencies (> 400 Hz)
 - ~5% at 1 kHz
 - ~10% at 5 kHz

Optimization of FroSTI Profile

- Assume nominal aLIGO annular CO2 correction profile (<u>P1600169</u>)
- Use FEA to optimise test mass optical response to flatten out thermal lens + deformation across full aperture → green trace
- Construct optimal profile with two irradiance patterns from two FroSTI
- Inner FroSTI profile (blue trace) is sufficient to improve IFO performance

FroSTI optimised profile

Opto-thermal response of test mass

Performance with FroSTI: Shifting of HOM7

 Simulation with existing test mass coating plume and optimised at 500 mW absorption shows FroSTI can shift HOM7 by 8% of FSR (sufficient)

IFO Performance with Ideal FroSTI

Performance of IFO with TCS + FroSTI (inner profile)

- Higher likelihood to achieve 750 kW at 125 W laser injection
- Limits SQZ loss to better than 1% at 1 kHz
- *Assuming ideal correction (uncertainty in sensing + actuation are yet to be taken into account)

Generation of Target Heating Profile

- Non-imaging optics using elliptical-surface reflectors to achieve target irradiation pattern
- Results verified with COMSOL ray tracing

Conceptual Design

• Reflectors:

- Two halves machined from aluminium
- Reflective surface produced with diamond-turning, gold coated
- 340 mm ID, 520 mm OD
- 30 kg mass, but will be reduced to 15 kg in future production

• Heaters:

- 8 aluminium nitride elements
 - 2 mm x 15 mm x 162 mm
- 2 mm separation gap between each heater
- Integrated RTD to monitor temperature of each element

FroSTI Design Irradiance Uniformity

- Subtraction of mean profile shows approx. 1% of intensity fluctuation with spatial wavelengths between 8-9 mm (finite element ray tracing artifacts)
- Requires resistance of heater elements to be consistent within 8% across operating temperature range (<u>G2201732</u>)

Residual intensity after subtract mean irradiance

Displacement Noise Requirement

 FroSTI actuates on test mass HR surface → Flexure (bending) noise is the dominant displacement noise source (<u>P060043</u>, <u>T060224</u>):

$$\Delta z_{\rm F} = \left(5.21 \times 10^{-14} [\text{m}]\right) \frac{10 [\text{Hz}]}{f} \frac{P}{1 [\text{W}]} \text{RIN}$$

RIN is required to be 1e-8
[1/sqrt(Hz)] at ~ 20 Hz

RIN noise requirement for FroSTI

Status of Prototype

- **Reflectors**: Received
- Heaters: In production; expected to be received in April

Testing Plan: (1) In-Air Test; (2) Vacuum Compatibility

- In-air optical measurement of irradiance profile:
 - Using thermal camera to verify irradiance profile from FroSTI
 - Late April May 2023
- UHV compatibility testing:
 - RGA outgassing measurements using calibrated Ar/He leak
 - May June 2023

Testing Plan: (3) In-Vaccum Optical Test

Optical layout of FroSTI in-vacuum optical testing

Planned to be conducted in summer 2023 at CIT

Future Direction

• A+ delivery:

- Target to deliver FroSTI for O5
- Measure and quantify errors in FroSTI performance to provide a more accurate estimation of IFO performance improvement

• O5 and beyond:

 Develop multi-element FroSTI actuator to compensate for non-uniform absorption effects at low spatial frequencies