

IGO Scientific Collaboration

Calibrating the global network of gravitational wave observatories via laser power calibration at NIST and PTB

Dripta Bhattacharjee - Kenyon College

with

R. Savage, S. Karki, A. Sanchez, F. Llamas, J. Betzwieser - LIGO Collaboration J. Lehman, M. Spidell, M. Stephens - National Institute of Standards and Technology S. Kück, H. Lecher, M. López - Physikalisch-Technische Bundesanstalt

- L. Rolland, P. Lagabbe Virgo Collaboration
- D. Chen, R. Bajpai, S. Fujii KAGRA Collaboration

September 14, 2015 - GW150914

B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. **116**, 061102

- 410 Mpc (1.34 billion light years) away
- Two black holes (BHs)
 - 36 M_{\odot} and 29 M_{\odot}
- Formed a 62 M_{\odot} BH
- $3 M_{\odot}$ of energy radiated as gravitational waves (GWs)

Distortion of spacetime due to coalescing binaries

Laser interferometer is an "ideal" instrument for detecting GWs

Science enabled by accurate calibration

GW170817

Artist's depiction of two merging neutron stars

Credit: NSF/LIGO/Sonoma State University/ A. Simonnet

Accurate calibration improves distance and sky localization estimates

LIGO-G2300653-v8

DECam images of NGC4993 galaxy

https://www.ligo.org/science/Publication-GW170817BNS/

Independent measurement of the Hubble parameter using GWs

Abbott, B et al. Nature 551 85 (2017)

Global network of gravitational wave (GW) detectors

Calibration of the detected GW signals

LIGO-G2300653-v8

Accurate calibration ($\leq 1 \%$) is required to optimally extract astrophysical information from GW signals

Photon calibrators - for absolute displacement calibration

Photon Calibrators (Pcals) - radiation pressure based systems to generate fiducial length variations

Power reflected from the test mass inside the vacuum chamber

NMI radiant power calibration

S. Kück, 2009, EUROMET Comparison, Project No. 156, EUROMET.PR-S2 Metrologia **47** 02003

LIGO-G2300653-v8

GW (Gravitational Wave) Metrology Workshop March 14, 15, 2019 NIST, Boulder, Colorado, USA

2020 NIST/PTB bilateral comparison using LIGO transfer standard

New global calibration scheme for the ongoing O4 observing run

2023 NIST/PTB bilateral comparison

New PARRoT detector at NIST

A. Vaskuri et al. Opt. Express **29** (2021) 22533-52

Transferring the calibration to the end station sensors

LIGO-G2300653-v8

$$\rho_{Rx} = \frac{\rho_{Rx}}{\rho_{WS}} \frac{\rho_{WS}}{\rho_{GS}} \frac{\rho_{GS}}{\rho_{TS}} \rho_{TS}$$

 ρ : Responsivity of the power sensor

TS: Transfer standard

GS: Gold standard

WS: Working standard

Rx: Receiver module sensor

Transfer of calibration between power sensors

LIGO-G2300653-v8

Histogram of a long resp. ratio meas

Responsivity of the Rx sensor at the end station

Unintended rotation of the mirrors

Unintended rotation can be caused by :

- Beam power imbalance
- Beam spot displacements

 $x(\omega) \simeq -\frac{2\cos\theta}{Mc\,\omega^2}H$

Pcal and ifo beam position offset

$$P(\omega)\left[1 + \frac{M}{I}(\overrightarrow{a} \cdot \overrightarrow{b})\right]$$

• Ifo. beam offsets at LHO10x larger than design estimate due to point absorbers

Pcal-induced calibrated displacement fiducials

Global calibration scheme - status and next step

LIGO-G2300653-v8

Credit: P. Lagabbe (Virgo)

Transferring the calibration to the end station sensors

Comparison of Pcal calibrations at the two end stations

Interferometers respond equally to length variations of either arm (at 1 ppm level)

- Use this feature to compare the calibrations at the two end stations
- Further reduces uncertainty due to factors not common to the two end stations.

The Pcal calibration at the two end stations are stable

Overall interferometer calibration

Current overall calibration systematic error is < 2% in the sensitive frequency band region.

LIGO-G2300653-v8

Pcal-induced displacement fiducials are used to characterize the interferometer response functions

J. Kissel

L. Sun et.al Class. Quantum Grav. 37 225008 (2020)

Overall calibration systematic error is not limited by the Pcal uncertainty

It is sufficiently small for astrophysical parameter estimation

Vitale et. al arXiv:2009.10192 (2020). Payne et. al Phys Rev D. 102.12 (2020): 122004

Detected gravitational wave signals

Virgo Pcal

LIGO-G2300653-v8

LIGO Hanford Pcal

Photo credit: J. Lewis

KAGRA Pcal

Photo credit: R. Savage