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1 Context and basic setup

The probability of astrophysical origin pastro, for background (noise) and fore-
ground (signal) processes described by rate densities of events RN (~κ), RS(~κ), is
given by [1]

pastro
1− pastro

≡ pastro
pterr

=
RS(~κ)

RN (~κ)
, (1)

pastro =
RS(~κ)

RS(~κ) +RN (~κ)
. (2)

These densities will vary over the parameter space of triggers ~κ produced by a
search pipeline. We would like to extract the main dependencies and implement
them in some approximation using information available within the compact
binary merger search PyCBC Live [2, 3]. Note that the densities should be
expressed over the same space of coordinates, or if in different coordinates we
need a Jacobian to transform between them.

The basic dependencies to be considered are:

• The densities of signal and noise vary over the bank parameters (binary
masses, spins) – we denote these parameters schematically as θ.

• The densities vary over the trigger ranking statistic ρc which is a ‘SNR-
like’ variable, i.e. proportional to quadrature sum of SNRs over detectors,
up to corrections due to chisq and network consistency.

We can factorize the densities into a total density of noise or signal triggers
(above some threshold in SNR or ρc) over the bank rN (θ), rS(θ), times the
relative density of noise/signal at a given position in the bank

RS,N = rS,N (θ)fS,N (ρc|θ), (3)

where fS,N (ρc|θ) are normalised PDFs (for triggers above the chosen threshold).
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2 Modelling event PDFs over ranking statistic

For the background PDF, the ranking statistic model used for O2-O3 offline
analysis [4, 5] considers exponential falloffs in the single-detector SNR-like statis-
tics

p(ρ̂D|θ) ∼ exp(−αD(θ)ρ̂D) (4)

where αD is a detector- and template-dependent fit coefficient. However, the
online analysis ranking [4] does not consider any such variation of background
distributions. Instead, it scales simply as the quadrature sum of SNR-like statis-
tics over detectors.

The simplest resulting approximate model of the background distribution of
ρc ' (ρ̂2A + ρ̂2B)1/2 for detectors A and B is

fN (ρc|θ) = p(ρc|θ) ' αc exp(−αc(ρc − ρth)) (ρc > ρth) (5)

where αc remains to be determined (e.g. it might be fit to distributions obtained
from online background estimation; see also [6]). For the case ρ̂A ' ρ̂B , we find
αc ' (αA + αB)/

√
2.

For lower-mass templates corresponding to systems of interest for followup
observations, we find αc = 6 to be a reasonable approximation. Generally, αA

decreases for higher masses, so setting αc = 6 results in a conservative (high)
estimate of fN for high-mass templates. It is to be investigated whether allowing
αc to be dependent on template parameters or on detector combination produces
a more accurate model.

We approximate the signal PDF by the ideal signal SNR distribution p(ρ) ∼
ρ−4. Applying this to the ranking statistic neglects threshold effects and other
contributions to the statistic beyond SNR, but is unlikely to be out by a large
factor. Thus, we take

fS(ρc) ' 3ρ3thρ
−4
c (ρc > ρth), (6)

independent of the template parameters.

3 Modelling template-dependent rate densities

In O3 the bank parameter space was split into 3 bins by template chirp mass [7].
This is easily implemented, but (at least for a small number of bins) possibly
not a good approximation of the actual signal distribution. We can consider
improving the bin configuration.

Due to the highly non-uniform distribution of both signals and templates/noise
events over the mass space, we consider an explicit model of these distributions
rS,N (θ). As the simplest implementation, we take a set of bins labelled by p, then
the total rate of signal or noise triggers in each bin is rS,p resp. rN,p. The rate
of signal triggers is estimated from O1-O2-O3 detections, up to a factor which
relates the sensitivity of the active detector network to O3 sensitivity. The bins
are initially taken over (template) chirp mass: an example set of boundaries is
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Figure 1: Binned template counts for a representative PyCBC Live bank.

[0.87, 1.74, 3.48, 6.96, 13.92, 27.84, 55.68, 111.36, 500.0]M�, spaced by powers of
2 except for the highest bin.

For the background, assuming constant αc, the false alarm rate of the search
at a candidate ρc value is the integral of total background rate density RN above
ρc. Defining a total rate rN,tot integrated over the whole bank, the FAR at ρc is
rN,tot exp(−αc(ρc−ρth)), thus the rate density over ρc, also integrated over the
whole bank, is αc × FAR. The distribution over templates is then modelled by
taking the noise trigger rate to be proportional to the template count in each
bin ntp, thus the noise rate density in bin p is

RN,p(ρc) = αc · FAR(ρc)
ntp∑
p n

t
p

. (7)

We show in Fig. 1 a representative set of binned template counts for a PyCBC
Live template bank.

The effect of detector network sensitivity on signal rate is estimated via the
BNS inspiral horizon dh,D for detector D (approximately 2.26 times the usually
quoted “inspiral range”). Since the SNR of a signal at a physical distance dL
is proportional to dh,D (times mass-dependent and angular factors which on
average are similar over detectors), the network SNR scales as

ρ2c ∝ d−2
L

∑
D

d2h,D. (8)

The rate of signals detected above a SNR threshold ρth scales as the cube of the
distance required to obtain a given network SNR, i.e.

rS ∝

(
ρ−2
th

∑
D

d2h,D

)3/2

. (9)
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Figure 2: Binned signal counts for O1-O3 observations.

Thus, we approximate the total rate of signals above SNR threshold in bin p as

rS,p = rp,O3

(∑
D

d2h,D

)3/2(∑
D

d2h,D(O3)

)−3/2

, (10)

where the quantities labelled as ‘O3’ represent previous detection counts for sig-
nals above threshold, or O3 run representative horizon distances respectively.
Figure 2 shows previous detection counts for observations up to O3; a typical
reference network horizon distance, i.e. quadrature sum of dh,D(O3) over detec-
tors, corresponding to BNS ranges of [135, 110, 50] Mpc for LLO, LHO, Virgo
respectively, is 410 Mpc.

We then have
pastro
pterr

' 3
ρ3th
ρ4c

rS,p
∑

p n
t
p

αc · FAR(ρc)ntp
. (11)

The resulting pastro value represents any and all astrophysical compact binary
source classes, i.e. neutron star, black hole or mixed binaries; it is also of inter-
est for followup observations to estimate the relative probabilities of different
classes. In PyCBC Live, this is achieved by considering the search template
chirp mass and an initial estimate of source redshift based on trigger SNR [8].
The resulting astrophysical class relative probabilities are multiplied by pastro
to obtain the absolute class probabilities included in public alerts, along with
pterr ≡ 1− pastro [9].
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4 Implementation of rate estimates

4.1 Event types and trials factors

The discussion so far has not accounted for effects due to the presence of several
distinct event types generated by the Live search. Specifically, FAR is calcu-
lated/estimated for the event type of a given trigger, and is then multiplied by
a trials factor to account for the number of types being produced; also, different
event types are expected to see different signal rates (at a fixed SNR threshold)
depending on relative detector sensitivities.

PyCBC Live produces both two-detector coincident and single-detector events:
the background and FAR for coincident events is estimated via time-shifted
analysis of the last few hours of data, while FAR for single-detector triggers
is interpolated/extrapolated from an exponential fit to previous single trigger
sets [3] (see also [10]). Given this significant method difference, trials are ac-
counted for independently and separately for coincident vs. single triggers.

In single-detector time, only single events are produced and there is no trials
factor. In double (two-detector) time only one coincidence type is produced,
thus there is no trials factor for coincident events, but there is a trials factor
of 2 for singles. In triple (three-detector) time three types of two-detector co-
incidence and three types of single exist. In addition, for coincident events the
third detector is used in a “FAR followup” analysis which identifies the highest
SNR peak within a physical time window around the triggers and assesses its
significance relative to an off-source SNR time series [3]. This p-value for the 3rd
detector SNR peak is then combined with the 2-detector FAR obtained via time
slides to obtain a “combined” FAR. Finally, the smaller of the initial 2-detector
FAR and the 3-detector combined FAR is chosen, with a further trials factor of
2. Hence, coincidence events in triple time have a total trials factor 6 as each
2-detector coinc may have its own “followup”.

We would like to “reverse out” the FAR trials factor to obtain the noise
trigger rate restricted to the event type of the candidate. Thus, in place of
FAR(ρc) which includes a trials factor, we use FAR(ρc)/Ntr,i where Ntr,i is the
factor for event type i in the current observing time.

We also require some approximation of the relative signal rates between
different event types. A hard-coded formula is used to estimate the relative
signal rates, which can be checked against actual MDC injection recovery. The
current formula for assigning relative signal rates is as follows:

1. In single-detector time, no correction is applied: the previous signal rate
calculation is taken over.

2. For single triggers in multi-detector time, the ‘horizon volume’ for the
triggered detector is compared to the sum of volumes over all detectors,
plus a suppression factor

√
2 intended to represent fewer total signals found

as singles than coincs. The total signal rate is multiplied by a factor

gsingle,D =
(dh,D/

√
2)3∑

D d
3
h,D

. (12)
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3. For double coincs in multi-detector time, the “horizon volume” is deter-
mined by the less sensitive triggered ifo and we apply a factor

gdouble =
d3h,<
d3h,2

, (13)

where dh,< is the smaller horizon distance of the triggered ifos and dh,2 is
the second largest horizon distance out of all observing ifos, i.e. the largest
possible dh,<. This factor is always 1 in double time but may be < 1 in
triple time for ‘less sensitive’ pairs of detectors.

4.2 FAR saturation

Consulting Eq. (11), we see that pastro decreases with increasing signal SNR
if the FAR is constant. This will occur for multi-detector events in the limit
of signals which are ranked higher than all background samples, and thus are
assigned a limiting FAR of 1 per background time, which for triple time is
modified by the FAR followup and trials factors as above. As a result, loud
signals may be assigned relatively low pastro, not reflecting their likely origin.
We aim to avoid this by “freezing” the ρ−4

c and FAR(ρc)
−1 factors for coincident

events which are at or beyond FARlim and have SNR above a chosen value
ρc,lim typical of signals that saturate the FAR estimate. Thus, for an event with
ρc > ρc,lim and FAR ≤ FARlim, we replace the corresponding factors in (11) by
ρ−4
c,lim and FAR−1

lim. A similar procedure was followed for the O3 approximate
online pastro [11].

References

[1] B. P. Abbott et al. [LIGO Scientific and Virgo], “The Rate of Binary
Black Hole Mergers Inferred from Advanced LIGO Observations Surround-
ing GW150914,” Astrophys. J. Lett. 833 (2016), L1 doi:10.3847/2041-
8205/833/1/L1 [arXiv:1602.03842]; B. P. Abbott et al. [LIGO Scien-
tific and Virgo], “Supplement: The Rate of Binary Black Hole Merg-
ers Inferred from Advanced LIGO Observations Surrounding GW150914,”
Astrophys. J. Suppl. 227 (2016), 14, doi:10.3847/0067-0049/227/2/14
[arXiv:1606.03939].

[2] A. H. Nitz, T. Dal Canton, D. Davis and S. Reyes, “Rapid detec-
tion of gravitational waves from compact binary mergers with PyCBC
Live,” Phys. Rev. D 98 (2018), 024050, doi:10.1103/PhysRevD.98.024050
[arXiv:1805.11174].

[3] T. Dal Canton, A. H. Nitz, B. Gadre, G. S. Cabourn Davies, V. Villa-
Ortega, T. Dent, I. Harry and L. Xiao, “Real-time Search for Compact
Binary Mergers in Advanced LIGO and Virgo’s Third Observing Run
Using PyCBC Live,” Astrophys. J. 923 (2021), 254, doi:10.3847/1538-
4357/ac2f9a [arXiv:2008.07494].

6



[4] A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst and D. A. Brown, “De-
tecting binary compact-object mergers with gravitational waves: Under-
standing and Improving the sensitivity of the PyCBC search,” Astrophys.
J. 849 (2017), 118, doi:10.3847/1538-4357/aa8f50 [arXiv:1705.01513].
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