
GW astronomy at UBC/TRIUMF

Jess McIver for the UBC/TRIUMF team June 27, 2023 GWANW 2023

LIGO DCC G2301233

Across the GW spectrum: UBC and TRIUMF

Ground based interferometers

- UBC LIGO group
- Cosmic Explorer/future GW detectors

Space based interferometers

• UBC-TRIUMF LISA group

Pulsar Timing Arrays

• UBC CHIME team

B-mode polarization

• Search for B-mode polarization at UBC

Not pictured: Katja Nell, Franz Herbst, Harshini Paranjape

The UBC LIGO team: astrophysics

In collaboration with Beverly Berger (Stanford LIGO), Connie Hong (Stanford LIGO), Raymond Ng (UBC DSI), Xiaoxaio Li (UBC ECE), Ruichen Yao (UBC ECE) and David Stenning (SFU)

We are hiring (soon)!

The UBC GW astro team will be looking for a research associate proficient with software development/maintence to contribute to support of git.ligo.org, as well as the collaboration's identity and authentication infrastructure.

Job ad to come soon – please get in touch with Jess if you are interested!

(UBC CHIME is also hiring a software development position soon; get in touch with Ingrid Stairs)

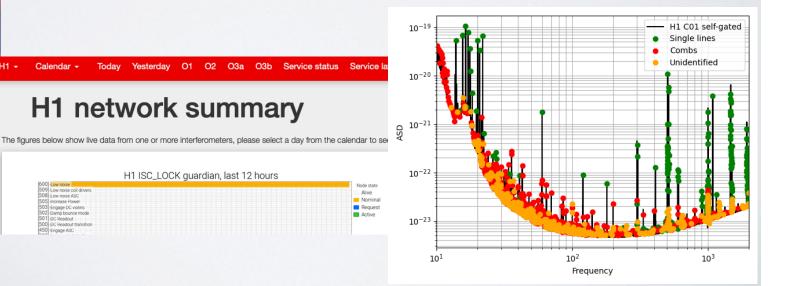
EVAN GOETZ

Research associate UBC Physics and Astronomy

5

Calendar -

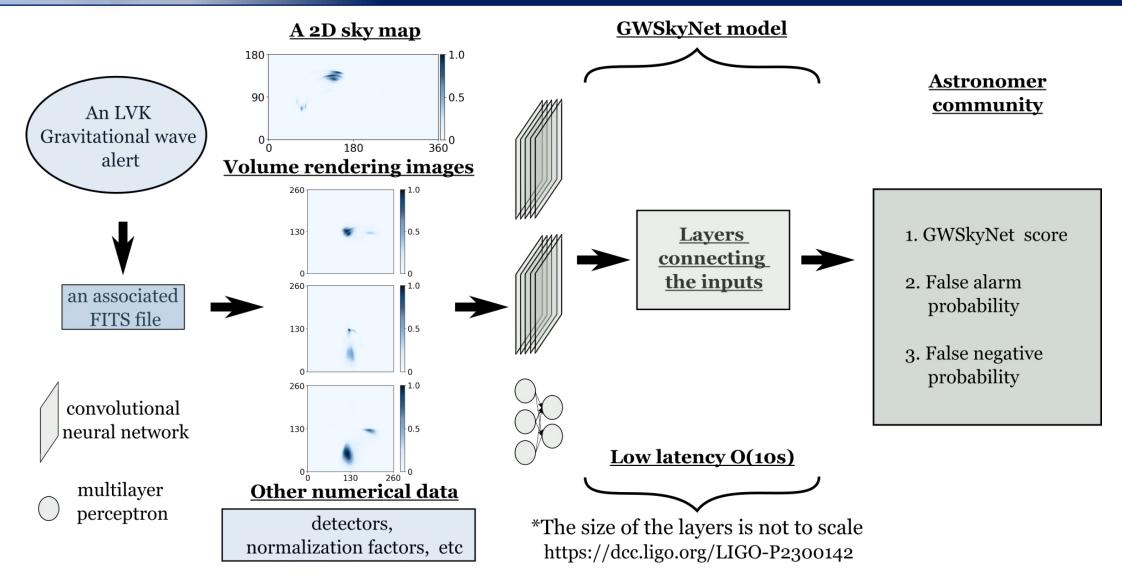
Todav

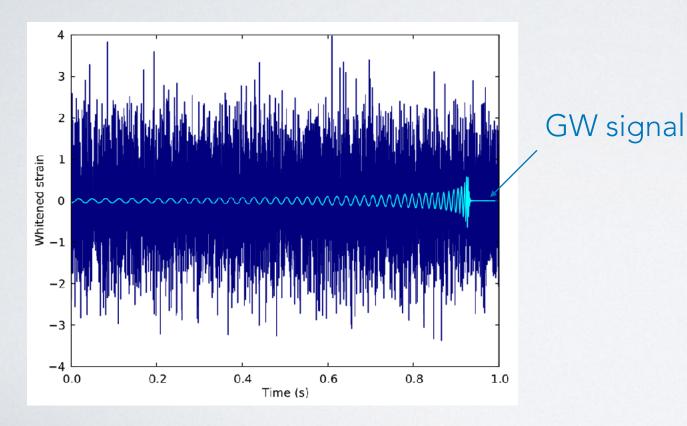

Yesterday O1 O2

H1 ISC_LOCK guardian, last 12 hours

H1 network summary

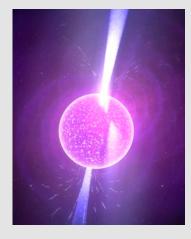
Main research topics:

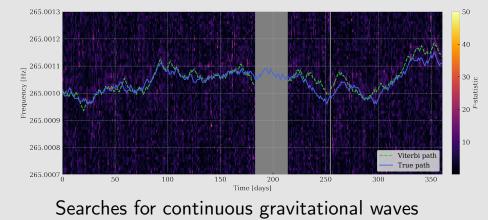

- Astrophysics with gravitational waves particularly neutron stars
- Gravitational wave detector calibration and characterization
- Precision metrology
- Developing enabling software

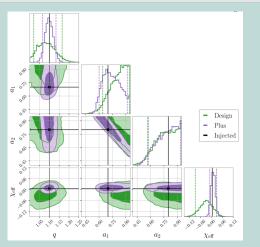


A Machine Learning Driven Low-latency Annotation Pipeline For O4 Man Leong Chan, Jess McIver et al

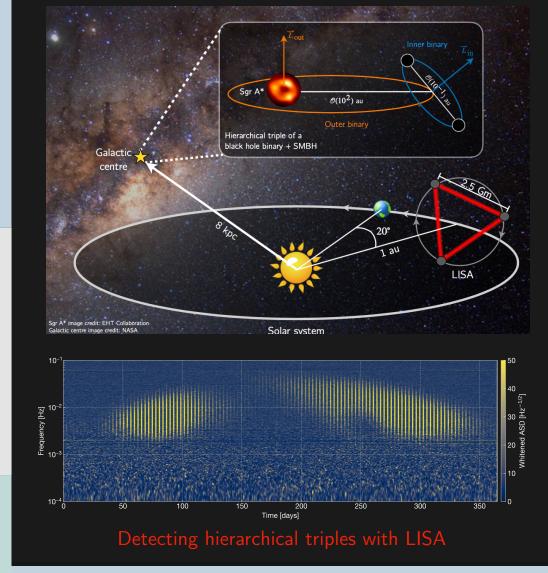
Heather Fong CITA National Fellow, University of British Columbia


Research:

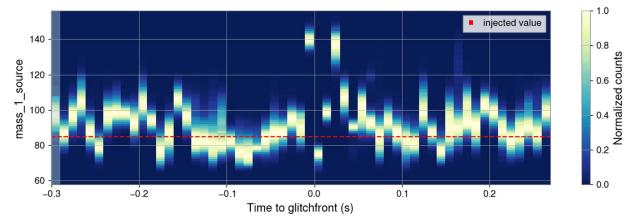

- Gravitational wave data analysis of compact binaries from LIGO, Virgo, and KAGRA (GstLAL)
- Searching for gravitationally lensed sub-threshold events using GWs
- Improving current techniques of signal vs glitch distinguishers

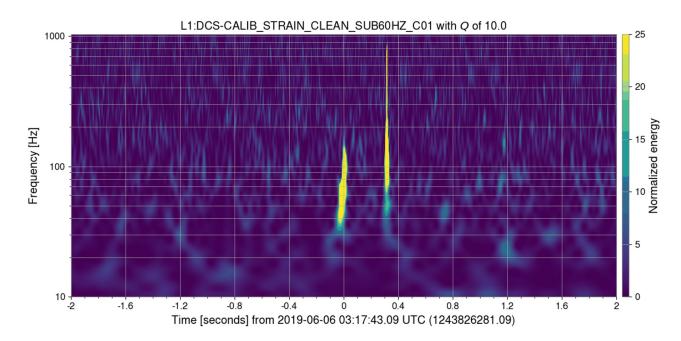


Alan Knee


PhD Candidate in Astronomy Department of Physics & Astronomy University of British Columbia

Bayesian parameter estimation for coalescing binary systems

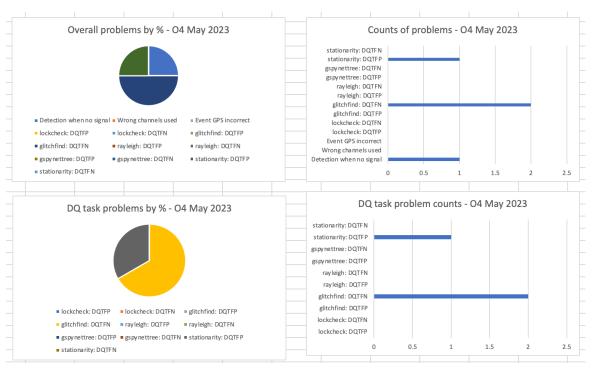




THE UNIVERSITY OF BRITISH COLUMBIA

Parameter Estimation of GW in the Presence of Detector Glitches - Niko Lecoeuche

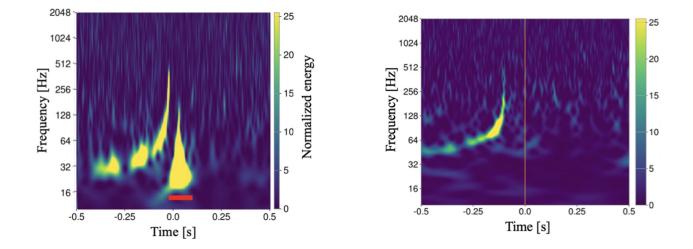
- Three GW signals and three glitch classes chosen
- Simulated GW signal injected at different points in time relative to LLO glitch
- Parameter estimation run for signal at each injection point
- Posterior distributions compared to determine which parameters affected most, what constitutes a "safe" time separation between signal and glitch


Data analysis of DQRs during ER15 + O4

Caitlin Rawcliffe – Mitacs GRI @ UBC summer 2023

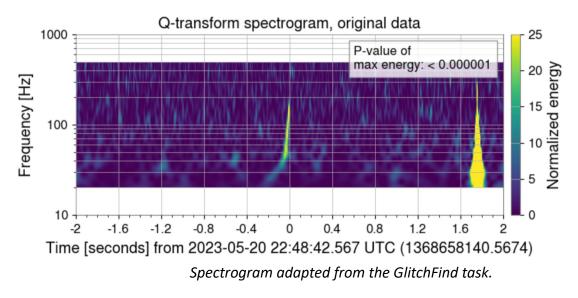
- Finding and reporting discrepancies between automated DQR results compared to visual intuition on candidate events during O4 and available data from ER15 for further investigation and mitigation in the future
- ✤ Identifying trends between DQRs reporting false positives/negatives for further investigation
- Event validation shadowing and shifts during O4 (June to July 2023)
- ✤ DQ shift shadowing (July 2023)

		Date	Candidate	GPS start	GPS end	logged?	LHO notes	LLO notes	V1 notes	agreement?	Conclusion	C2 (if needed)	DQ test conclusion	Own notes	
our code:		230426	а	1366502541.45-0.1	1366502541.45+0.05	N	Not observing, a	O3 inj - NO, gl	t Not observing	1	Wrong channels used			Channel for GSpyNetTree L1 was inc	orrect
0	All fine		aa	1366509523.78-0.5	1366509523.78+0.5	N	NO, loud noise l	NO, excess no	s NO	2	Wrong channels used		glitchfind: DQTFN	No injection - set off by H1 noise, G	pyNe
1	Minor error		ac	1366509988.67-0.1	1366509988.67+0.1	N	NO, loud noise a	03 inj - NO, no	NO	1	Wrong channels used				
2	DQ tasks diff		ad	1366510695.14-0.1	1366510695.14+0.05	N	NO	03 inj - NO, G	NO	1	Wrong channels used			Channels for Rayleigh, for glitchfind	and f
			ae	1366510775.96-10	0 1366510775.96+0.1	N	NO	03 inj - NO, w	NO	1	Wrong channels used			Why is GSpyNetTree predicting chir	os wit
int:			af	1366510771.78-50	1366510771.78+4.5	N	NO, error on sta	O3 ini - NO, pe	a NO, error on sta	2	Event GPS incorrect	Wrong channel	gspynettree: DQTFP	Peak of L1 ini isn't the identified GP	5 time
0	5		ai	1366512081.28-0.1	1366512081.28+0.1	N	NO. DO GSNT I	03 ini - NO, G	NO, rayleigh DQ	2	Wrong channels used		gspynettree: DQTFN	Channels incorrect for L1, GSpyNetT	ree D
1	53		ak	136651248	1366512485	N	NO, loud noise a		NO. excess back		Detection when no signal			No signal detected from any detected	
2	35		am		1366514136.52+0.1				NO, rayleigh DQ		Wrong channels used			Probably a glitch and not an inj, inco	
			ao	1366515820.66-0.1	1366515820.66+0.1	N			NO, rayleigh DQ		Wrong channels used			L1 wrong channels	
al:	93		au	1366517869.78-0.1	1366517869.78+0.05	N			NO, rayleigh DQ		Wrong channels used			L1 wrong channels	
			ax	1366519468.82	1366519468.82	N			NO, loud noise a		Wrong channels used		glitchfind: DQTFN	H1 glitchfind false DQ issue	
entages			ba	1366520568.71-1.2	1366520568.71+0.1	N	NO	03 inj - NO, w	NO, small blips t	fe 1	Wrong channels used		-	L1 wrong channels	
0	5%		bf	1366521955.65+0.	2 1366521955.65+0.6	N	Noise blip at +0	NO	NO	0	Wrong channels used			Falsely notified, signal from H1 show	vn the
1	57%		bh	1366522936.52-3.0	1366522936.52+6.0	N	NO, DQ task err	O3 inj - NO, ev	NO, DQ task erro	2	Event GPS incorrect	Wrong channel	s used	Peak of L1 inj isn't the identified GP	5 tim
2	38%		bi	1366522941.82-6.0	1366522941.82+0.4	N	NO, stationarity	03 inj - NO, lo	NO, rayleigh DQ	1	Wrong channels used			No glitch detected overlapping the e	went
			bj	1366522981.7	5 1366522981.75	N	NO, glitchfind io	NO, excess no	s NO? (Lockcheck	ç 2	Wrong channels used		lockcheck: DQTFP	Lockcheck DQ test passes in V1 (!) F	alsely
	means inj		bl	1366524100.8	3 1366524100.88	N	NO, GSNT finds	NO, loud blip f	o NO, excess back	g 2	Detection when no signal	Wrong channel	glitchfind: DQTFN	Excess noise from V1 glitchfind, no	ignal
	means OBS		bm	1366524248.78-0.1	1366524248.78+0.1	N	NO, glitchfind io	O3 inj- NO, fal	NO, DQ issues: r	a 2	Wrong channels used		glitchfind: DQTFN	L1: glitchfind false, GSNT false pred	iction
	mean not OBS		bq	1366524793.50-0.1	1366524793.50+0.1	N	NO, Koi fish pre	O3 inj (SNR <)	3, NO, rayleigh DQ	1	Wrong channels used			L1 wrong channels	
			br		8 1366525413.04+0.1		NO, glitchfind D		NO, all DQ tasks		Detection when no signal	Wrong channel	glitchfind: DQTFP	Falsely notified, due to L1 glitch sign	
			bt	1366525548.66-0.3			NO, DQ issues:		NO, DQ errors: r		Wrong channels used			Falsely notified, signal from H1 show	vn th
			bv		1366526439.63+0.1			O3 inj- NO	NO, rayleigh DQ		Wrong channels used			L1 wrong channels	
			bx		1366527482.24+4.0		NO, blip of SNR		NO, DQ issues: g		Wrong channels used			Falsely notified, due to H1 glitch sig	
			bz	1366527774.10-0.1	1366527774.10+0.1	N	NO	O3 inj? - NO, r	c NO, rayleigh DQ	1	Wrong channels used			Cannot analyse properly due to L1 w	rong
			c	1366503099.22-0.5	3366503099.22+0.1	N	NO, DQ errors: I	NO, low freq b	li NO, rayleigh DQ	(0	Wrong channels used			Low freq blip at L1 on CLEAN channe	el, fals
			ca	1366528038.16-7.0	1366528038.16-6.0	N	NO	NO, small nois	e NO, excess noise	2	Detection when no signal	Wrong channel	glitchfind: DQTFP	Low freq blip in L1 omegascan, V1 g	litchf
			cf	1366528955.77-0.1	1366528955.77+0.1	N	NO	03 ini - NO, G	NO, rayleigh DQ	1 1	Wrong channels used			Wrong channels for L1	

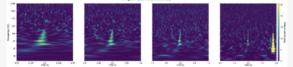

Gravity Spy Convolutional Neural Network Decision Tree

UBC

Sofía Álvarez-López, Dhatri Raghunathan, Ben Scully.


A decision tree sorted via total GW candidate mass, made up of three GW signal vs glitch classifiers.

- Three multi-label CNN classifiers that leverage the InceptionV3 architecture, trained with simulated GWs, and morphologically similar glitches.
- Also includes most common LIGO glitches during O3.
- One of the tasks of the LIGO-Virgo Data Quality Report, used for GW candidate event validation.
- Robust to a broad array of background noise.
- Robust to GWs and glitches occurring in close proximity (happened in O3 with 24% of candidate events).
- Robust to candidate events with merger times shifted ± 0.5 seconds.
- More than 95% accuracy in the total mass range 5 $M \odot$ to 350 $M \odot$

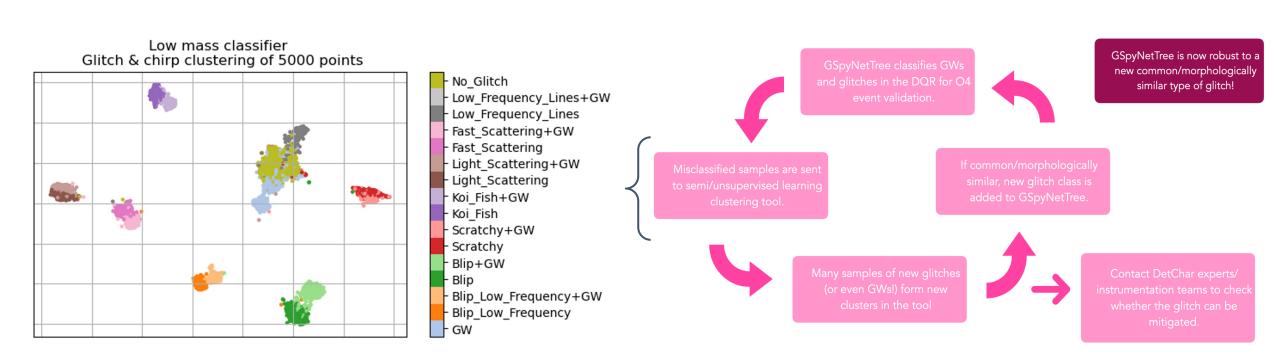


Results on candidate event S230520ae

- One of the significant events of ER15.
- A glitch occurred in close proximity of the GW event.
- Shows full potential of GSpyNetTree on identifying glitches in the proximity of GWs.

(S230520ae) GSpyNetTree predictior at time 1368658140.57

L1 gspynettree



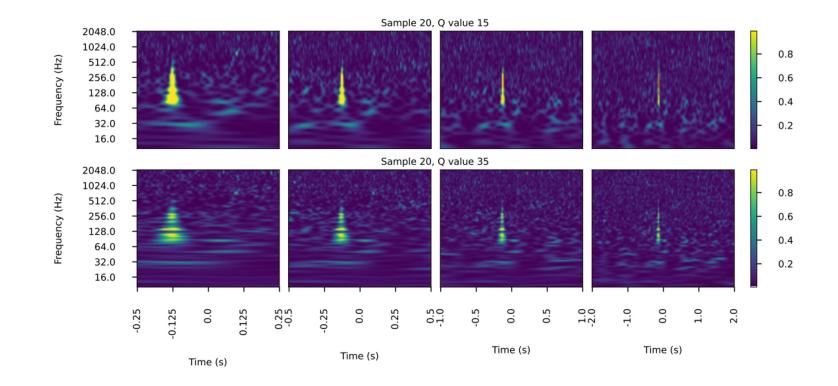
Sofía Álvarez-López

No data quality issues were identified with GSpyNetTree. The p-value is 0.1125, which is above the threshold of 0.05. No glitches were identified, and no additional action is required based on the results of this task.

Probabilities per label

Class	Result	Probability
Tomte		88.75%
GW		81.62%
Koi_Fish		2.32%
Blip		1.13%
No_Glitch		0.04%
Blip_Low_Frequen	псу	0.03%
Low_Frequency_L	ines	0.01%
Fast_Scattering		0.00%
Light_Scattering		0.00%

- Extract second to last layer from CNN
- Use PCA and TSNE to project characteristic vector down to two dimensions

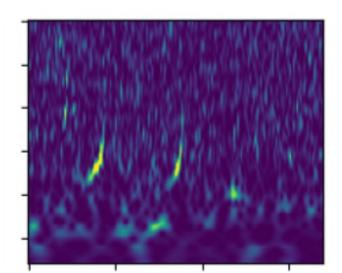

• See how misidentified signals cluster with existing signals

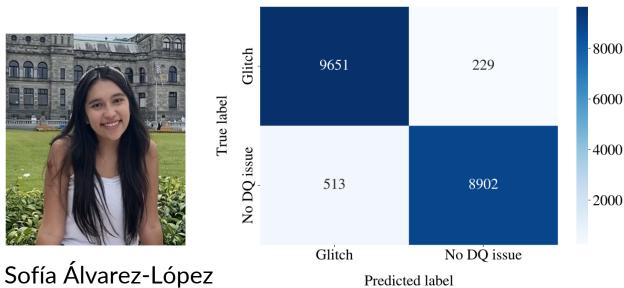
Dream architecture - semi/unsupervised clustering tool

Ben Scully

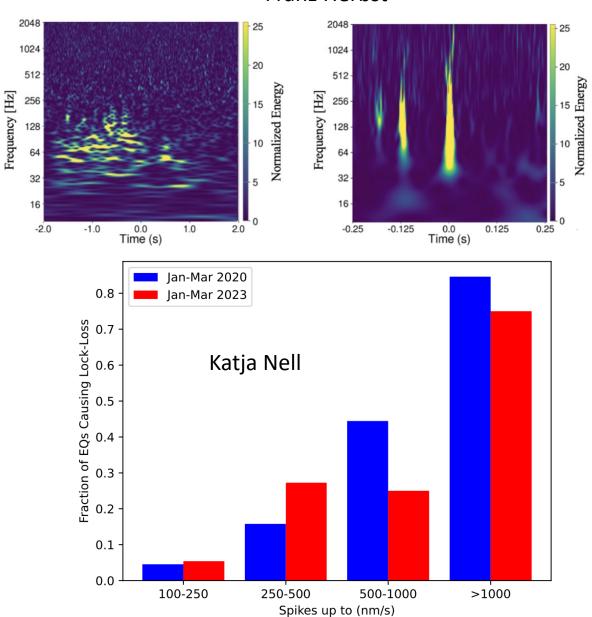
Optimize the feature set (multi-duration images of time-frequency spectrograms)

- Experiment with different Q-values to optimize time-frequency spectrograms to best capture power in the data for each class in the context of each classifier.
- Aim to find a recommended set of Qvalues for each class and classifier, retrain the model to be deployed for the rest of O4.


Dhatri Raghunathan


MitJCS

Honours Theses and MSc projects 2023



Steven Hsueh

Predicted label

Franz Herbst

Highlighted short-authorlist papers from the past year

Preprints:

- GSpyNetTree: A signal-vs-glitch classifier for gravitational-wave event candidates. S. Alvarez-Lopez, A. Liyanage, J. Ding, R. Ng, J. McIver. arXiv 2304.09977 (2023)
- Waves in a Forest: A Random Forest Classifier to Distinguish between Gravitational Waves and Detector Glitches. N. Shah, A. M. Knee, D. Stenning, J. McIver. arXiv 2306.13787 (2023)

Published:

- A Rosetta Stone for Eccentric Gravitational Waveform Models. A. Knee, I. M. Romero-Shaw, P. D. Lasky, J. McIver, E. Thrane. <u>ApJ 936, 2</u> (2022)
- Prospects for reconstructing the gravitational-wave signals from core-collapse supernovae with Advanced LIGO-Virgo and the BayesWave algorithm. N. Raza, J.McIver, G. Dalya, P. Raffai. Phys. <u>Rev. D.106, 063014</u> (2022)
- Impact of noise transients on low latency gravitational-wave event localization. R. Macas, J. Pooley, L. K. Nuttall, D. Davis, M. J. Dyer, Y. Lecoeuche, J. D. Lyman, J. McIver, K. Rink. <u>Phys Rev D 105, 103031</u> (2022)
- Parameterised population models of transient non-Gaussian noise in the LIGO gravitational-wave detectors. G. Ashton, S. Thiele, Y. Lecoeuche, J. McIver, and L.K. Nuttall. <u>Class. Quant. Grav. 39, 175004</u> (2022)
- UniMAP: Model-free detection of unclassified noise transients in LIGO-Virgo data using the Temporal Outlier Factor. J. Ding, R. Ng, J. McIver. <u>Class. Quant. Grav. 39, 135011</u> (2022)

Not GWs, but also:

- Supporting students' self-regulated learning in an introductory physics course. Georg Rieger, Jess McIver, Silvia Mazabel, Eric W. Burkholder. <u>The Physics Teacher, 61, 1</u> (2023)
- Getting more out of midterm assessments. G. W. Rieger, J. McIver, et al. The Physics Teacher, 61, 207 (2023)

UBC LIGO team: GW detector coatings

Tomorrow! A talk by Jeff Young highlighting recent efforts at the Stuart Blusson Quantum Matter Institute at UBC

Please also welcome Henry Mullock, a co-op student and one of the newest members of the UBC coatings team (and Steven Blaber, a new postdoc, currently in Vancouver)

UBC-TRIUMF LISA group

Alan Knee, Evan Goetz, Jess McIver, David Morrissey, Scott Oser

Gravitational Waves at LISA and Big Science Questions

- LISA will address some of the major science drivers of the Canadian Astronomy (CASCA) and <u>Subatomic Physics</u> (SAP) Long Range Plans:
 - How did the Universe begin and what is it made of? (CASCA LRP)
 - What are the extreme conditions of the Universe? (CASCA LRP)
 - How have stars and galaxies changed over cosmic time? (CASCA LRP)
 - What are the fundamental building blocks of matter and what is the fundamental nature of space and time? (SAP LRP)
- These questions connect to theoretical research at UBC and TRIUMF:
 - Nature, cosmological formation, and signals of dark matter
 - GW emission from new physics such as cosmological phase transitions and cosmic strings
 - Testing the history and evolution of the pre-CMB cosmos with GW standard candles.
 - Multimessenger astronomy for determining to origins of the elements and the nature of stars.
 - See for example <u>https://arxiv.org/abs/1912.08832</u> and <u>https://arxiv.org/abs/1808.08968</u> for TRIUMF theory contributions.

The UBC CHIME team

Tune in Thursday June 29th at 10am Pacific for an exciting announcement! – Ingrid Stairs

(UBC team: we'll join the NANOGrav watch party in Hennings 309!)

The search for B-modes at UBC

Recent UBC grad, now Caltech postdoctoral fellow, Sofia Fatigoni at the South Pole installing electronics she built for the Bicep Array to get 12,000 bolometers on the sky in a B-mode search.

A similar number will be deployed this season.

-Mark Halpern

The ground screen for CGEM at the Dominion Radio Astrophysical Observatory. The pointing system, reflector and this ground screen are all at the DRAO and the radiometer is under construction at UBC.

The system measures polarized foregrounds at 9 GHz to help clean contamination by Galactic synchrotron from direct B-mode searches made at 150 GHz.

-Mark Halpern

CGEM: the Canadian Galactic Emission Mapper

Photo by Mark Halpern DRAO, BC

SACNAS 2023 is in the PNW!

There will be at least one GW session and booth.