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Resumen

A pesar de haber alcanzado sensibilidades capaces de detectar la amplitud extremadamente
pequeña de las ondas gravitacionales (GWs), los datos de los detectores LIGO y Virgo contienen
frecuentes ráfagas de ruido transitorio no Gaussiano, comúnmente conocidas como “glitches”. Los
“glitches” se presentan en diversas morfologías de tiempo-frecuencia, y resultan especialmente
problemáticos cuando imitan la forma de las GWs reales. Dada la mayor tasa de eventos espera-
da en el actual periodo de observación de LIGO-Virgo (O4), la validación de los candidatos de
eventos de GWs requiere mayores niveles de automatización. Gravity Spy, una herramienta de
aprendizaje automático que clasificó con éxito tipos comunes de “glitches” de LIGO y Virgo en
observaciones anteriores, tiene el potencial de ser reestructurada como un clasificador de señales
de GWs-vs-ruido de detector para distinguir entre “glitches” y señales de GW con precisión. Un
clasificador de señales de GWs-vs-“glitches” utilizado para la automatización debe ser robusto y
compatible con una amplia gama de ruido de fondo, nuevas fuentes de “glitches” y la probable
aparición de “glitches” y GWs solapados en la misma ventana de tiempo. Presentamos GSpyNet-
Tree, el Gravity Spy Convolutional Neural Network Decision Tree: un clasificador multi-etiqueta
multi-CNN que utiliza CNNs en un árbol de decisión ordenado a través de la masa total can-
didata de una onda gravitacional. Integrado en el Informe de Calidad de Datos de LIGO-Virgo
(DQR, por sus siglas en inglés), GSpyNetTree es una de las herramientas esenciales en la eva-
luación de la necesidad de mitigación de “glitches” en O4. Esta tesis presenta el desarrollo de
GSpyNetTree, su construcción y resultados, desde su origen como un clasificador multi-clase a
su estado actual como clasificador multi-etiqueta. Por último, se evalúa su desempeño en can-
didatos de ondas gravitacionales del actual periodo de observación, O4, y se proponen técnicas
para mejorar su desempeño en futuras iteraciones.



Abstract

Despite achieving sensitivities capable of detecting the extremely small amplitude of gravita-
tional waves (GWs), LIGO and Virgo detector data contain frequent bursts of non-Gaussian
transient noise, commonly known as ‘glitches’. Glitches come in various time-frequency mor-
phologies, and they are particularly challenging when they mimic the form of real GWs. Given
the higher expected event rate in the current observing run (O4), LIGO-Virgo GW event can-
didate validation requires increased levels of automation. Gravity Spy, a machine learning tool
that successfully classified common types of LIGO and Virgo glitches in previous observing runs,
has the potential to be restructured as a signal-vs-glitch classifier to distinguish between glitches
and GW signals accurately. A signal-vs-glitch classifier used for automation must be robust
and compatible with a broad array of background noise, new sources of glitches, and the likely
occurrence of overlapping glitches and GWs. This dissertation presents GSpyNetTree, the Grav-
ity Spy Convolutional Neural Network Decision Tree: a multi-CNN multi-label classifier using
CNNs in a decision tree sorted via total GW candidate mass. Integrated into the LIGO-Virgo
Data Quality Report, GSpyNetTree is one of the essential tools in assessing the necessity of
glitch mitigation in O4. This thesis presents the development, building process, and results of
GSpyNetTree: from its origin as a multi-class classifier based on Gravity Spy, to its current
O4 status as a multi-label classifier. Finally, the performance of GSpyNetTree identifying data
quality issues in the public O4 GW candidates published in GraceDB is evaluated, and new
ways to improve the tool’s classifications are suggested.
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1 Introduction

On September 14, 2015, the two gravitational-wave (GW) detectors of the Laser Interferome-
ter Gravitational Wave Observatory (LIGO), recorded the stretching and squeezing of space-time
due to the GW generated by two coalescing binary black holes (BBHs) of 29M⊙ and 36M⊙ [1].
Besides being a further confirmation of Einstein’s theory of general relativity (GR, see chap-
ter 2) [2], LIGO started a new field of astronomy by providing a new way of discovering and
understanding the universe [2, 3]. Since the initial observation during the first observing run
(O1) [4], and following major upgrades [5], there have been dozens of detections of transient
GW signals, in the second (O2) [6] and third (O3a, O3b) [7, 8] observing runs. After major
upgrades, the fourth observing run (O4), which started on May 24th, 2023, promises even more
GW events. These GWs are generated by the asymmetric acceleration of mass distributions,
and their discovery has yielded valuable astrophysical insights on populations of neutron stars
and BBHs not previously provided by electromagnetic (EM) observations [2] (see Chapter 3).

LIGO detects GWs using interferometers whose basic mechanism is similar to Michelson-
Morley’s (see Chapter 4) and whose perpendicular arms are 4 kilometers long each. Their
considerable length makes them more sensitive to the small amplitude of GWs, which produce
length changes on the order of 10−18 m in the space-time geometry [2, 3]. This is equivalent to
measuring fluctuations to a thousandth the diameter of a proton.

The required detectors’ sensitivity is reached by mitigating several noise sources, such as
unwanted movement of the mirrors suspended at the end of the interferometer arms, thermal
noise and Brownian motion [2], and Earth’s seismic activity [9]. These noise sources dictate the
frequency range of possible GW detections (see Chapter 5), and limit LIGO’s detection range.
Using powerful lasers, massive mirrors, and isolating all sensitive LIGO components from non-
GW disturbances, help achieve the required sensitivity. Nevertheless, LIGO detectors are still
prone to non-astrophysical noise sources that disturb the detectors [10]. Identifying, character-
izing, and segregating them is crucial to achieving confident and accurate GW detections and is
part of the LIGO’s Detector Characterization group’s tasks.

Non-Gaussian, transient noise, commonly known as glitches, is particularly interesting in the
context of more sensitive Advanced LIGO (aLIGO) detectors. Glitches result from instrumen-
tal, environmental, or unknown sources [11, 12] and come in various time-frequency morpholo-
gies (see Chapter 6 ). They are particularly challenging when they mimic the form of actual
GW events, generating false-positive candidates [3], corrupting data, and biasing astrophysical
parameter estimation. Along with the vast amount of data that LIGO and Virgo generate,
developing robust tools and methods to identify and characterize these glitches is crucial for
extracting GW signals from this data.

A common tool used for glitch classification is Gravity Spy [3], which uses a Convolutional
Neural Network (CNN) image classifier to distinguish 23 different glitch classes and 1 Chirp1

class via time-frequency visualizations, also called spectrograms. After successfully classifying
1Chirps are Hardware injections that move LIGO’s mirrors to emulate real GW signals.
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glitches in previous observing runs, Gravity Spy has the potential to be used as a signal-vs-glitch
classifier. However, to do so, several changes need to be applied to the original architecture. This
thesis builds up on the recommendations put forward by Jarov et al. [13] and Alvarez-Lopez et
al. [14] to build such classifier. The classifier developed in this thesis is called GSpyNetTree, the
Gravity Spy Convolutional Neural Network Decision Tree, and is a decision tree of Convolutional
Neural Networks (CNNs) sorted via GW candidate mass, that detects glitches responsible for
or in the presence of GW candidate events.

Before explaining how GSpyNetTree works and its performance on recently detected GW
candidates in the current LIGO-Virgo-KAGRA observing run, the evolution of GSpyNetTree is
detailed, starting with the proposal of Jarov et al. [13] that sets the basis for this thesis. Fol-
lowing this review, the architecture and performance in discerning GW candidate events from
glitches of the first version (also known as the pre-O4 version) of GSpyNetTree are explained.
This pre-O4 GSpyNetTree is based on a decision tree of multi-class classifiers that leverage the
InceptionV3 [15] architecture, one of the state-of-the-art CNN architectures for image classifica-
tion [14].

After studying the performance of the first version of GSpyNetTree on expected O4 scenarios,
including the possibility of overlapping GWs and glitches, the occurrence of new types of glitches,
and a different background noise, further ways to improve the classifier are presented, giving
rise to the O4-era version of GSpyNetTree. The generation of the training set (including GW
simulation and glitch selection), as well as new Machine Learning techniques used to increase
the robustness of the tool to new glitches, a broad array of background noise, and the possibility
of glitches occurring in the proximity of GWs, are described.

Before evaluating the results of the O4-era version of GSpyNetTree, the integration of the
tool to the O4 Data Quality Report [16, 17], which is one of the most important tools in the
LIGO-Virgo event validation pipeline, is explained. At this stage, the way in which GSpyNetTree
assesses the validation of a candidate event, confirming its terrestrial or astrophysical origin, is
detailed. Finally, the results of the O4 era version are explained. This includes an overview
of GSpyNetTree’s (outstanding) classifications in a subset of the superevents that have been
registered since the start of the fourth LIGO-Virgo-KAGRA observing run. This thesis concludes
with ways to further improve GSpyNetTree’s classifications.
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2 General Relativity and gravitational-waves

With the first detection of gravitational-waves (GWs), LIGO and Virgo opened a new window
in the understanding of the Universe. It is important to study how GWs surge from Einstein’s
theory of General Relativity (GR). This chapter examines how GWs arise naturally from GR
and analyzes some of their properties relevant to interferometric detection, following Saulson’s
[18, 19], Maggiore’s [20], and Hughes’ and Flanagan’s [21] approach.

Developed by Einstein in 1915, one of the main principles of GR is that the curvature of
spacetime dictates the motion of bodies within it. As these bodies move in spacetime, its cur-
vature and geometry change. In other words, spacetime dictates how matter moves, and matter
dictates how spacetime curves [22]. By curving spacetime, matter generates a gravitational field.
From classical electromagnetism (EM), we know that EM waves (e.g. light and radio waves) are
propagating oscillations of the EM field, emitted by accelerated charged particles. In a similar
fashion, GWs are propagating oscillations of the gravitational field, generated by accelerated
masses that create these reverberations (“ripples”) in spacetime [21, 23].

To study the way in which GWs surge from GR, we start with the standard, flat Minkowski
spacetime metric in a vacuum, ηµν , which is given in Cartesian coordinates by:

ηµν = diag(−1, 1, 1, 1) =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.1)

Throughout this chapter, I will use the Greek alphabet for spacetime indices (ranging from 0
to 3 (or t, x, y, z, respectively)), and the Latin alphabet for spatial components only. We now
consider a small perturbation to this metric, hµν , such that ||hµν || ≪ 1. The new, perturbed
metric is given by:

gµν = ηµν + hµν . (2.2)

The condition imposed on the perturbation implies that the gravitational field must be weak
and that the coordinate system is constrained to be approximately Cartesian [21]; and, thus,
linear. This is why it is often stated that GWs surge as solutions to linearized versions of the
Einstein equations in the weak-field limit [19]. Using an appropriate gauge choice, known as the
transverse traceless gauge (TT gauge), Einstein’s field equation becomes a wave equation. To
build the TT gauge, it is useful to consider a change in notation by introducing the trace-reversed
perturbation1, instead of hµν , which is given by:

h̄µν = hµν −
1

2
ηµνh

µ
µ, (2.3)

where hµµ is the trace of the metric perturbation. As in EM, we start by applying the Lorentz
1The trace-reversed metric simplifies the calculation of the Riemann tensor in the field equations, however

this is out of the scope of this dissertation. These calculations can be found in Hughes and Flanagan [21].
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gauge condition (commonly used in radiation studies) to the trace-reversed metric, such that:

∂µh̄µν = 0. (2.4)

Note the similarity with the EM Lorentz gauge, ∂µAµ = 0, where Aµ is the vector potential.
We can now further specialize this gauge such that the perturbation is merely spatial

h00 = h0i = 0, i ∈ {1, 2, 3}, (2.5)

and traceless
hii = 0. (2.6)

These leaves us only with the spatial components, for which the Lorentz gauge now reads

∂jhij = 0, (2.7)

such that the spatial metric perturbation is transverse. These three conditions define the TT
gauge, in which Einstein’s equations simplify to a wave equation:

□ h̄µν = 0. (2.8)

Note that, under the TT gauge, the metric perturbation becomes traceless and, thus, h̄µν = hµν .
In this way, we can rewrite equation 2.8 as:

□hµν =

(
∇2 − 1

c2
∂2t

)
hµν = 0. (2.9)

There are two major insights that we can get from this equation. First, GWs travel at the
speed of light, c. This means that gravity is causal: all changes that affect gravitating sources
are communicated to distant observers at the speed of light [20, 21]. Second, just as in EM,
equation 2.9 has plane wave solutions,

hij(x) = Re ϵij(k) e
ikµxµ

, (2.10)

where xµ = (x0,x) = (ct,x), kµ = (−2πf/c,k) = (−|k|,k) is the 4-vector wave-vector and
ϵij(k) is the polarization tensor [20]. One of the best features of the TT gauge is that it shows
the fact that GWs have two polarization components.

To visualize this, suppose a single plane wave propagating in the ẑ direction. The Lorentz
condition implies that h3j = 0. Further applying the spatial condition (equation 2.5), we get
that the only non-zero components of hij are h11, h12, h21 and h22. By symmetry,

h12 = h21 ≡ h×, (2.11)

and because of the traceless condition (equation 2.6),

h11 = −h22 ≡ h+, (2.12)
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where h+ and h× are the amplitudes of the “plus” and “cross” orthogonal polarizations of the
wave. In this way,

hµν(t, z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 cos
[
2πf

(
t− z

c

)]
= (h+ϵ

+
µν+h×ϵ

×
µν) cos

[
2πf

(
t− z

c

)]
, (2.13)

with

ϵ+µν =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 and ϵ×µν =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 , (2.14)

a basis of the polarization tensor. A GW might have an arbitrary polarization given by a linear
combination of the “plus” and “cross” polarizations. However, it is important to consider the
case of perfectly “plus” and “cross” polarized waves.

A perfectly “plus” polarized wave will have an equal and opposite effect along the x̂ and ŷ

axes,

h+µν(t, z) =


0 0 0 0

0 h+ 0 0

0 0 −h+ 0

0 0 0 0

 cos
[
2πf

(
t− z

c

)]
, (2.15)

whereas “cross” polarized waves simultaneously affect both directions,

h×µν(t, z) =


0 0 0 0

0 0 h× 0

0 h× 0 0

0 0 0 0

 cos
[
2πf

(
t− z

c

)]
. (2.16)

These polarizations receive the names of “plus” and “cross” because of the way in which polarized
GWs interact with matter and the shape of the force fields that they produce [23]. If a wave
is plus-polarized, such that it is described by equation 2.15, it will produce the strain effect on
matter shown in the top panel of Figure 2.1. Namely, the GW will first stretch spacetime in
the x̂ direction and compress it in the ŷ direction. After returning to its original shape, the
GW will now stretch spacetime in the ŷ direction and compress it in the x̂ direction. The GW
will finally return to its original shape to complete a period. As the wave propagates, spacetime
will be alternately stretched and compressed in each direction. On the other hand, a cross-
polarized wave (equation 2.16) interacting with matter will simultaneously affect both the x̂ and
ŷ directions, as shown in the bottom panel of Figure 2.1.

With the h+ and h× amplitudes we can calculate the strain produced by a GW, or the
fractional change in distance in a given direction due to the stretching/compression of space.
This strain is one of the fundamental measurable quantities in GW detectors (such as LIGO,
Virgo, and KAGRA). In fact, it is the interaction of GWs with matter that motivates their
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Figure 2.1: Effect of “plus” (top) and “cross” (bottom) polarized GWs, propagating in the ẑ
direction, on a circular ring of matter during one GW period. The lighter circles represent
the original positions of the test particles and the arrows show the stretching/compression of
spacetime in the x̂ and ŷ directions. Note how spacetime stretches and compresses in the x̂ and
ŷ directions differently, depending on the polarization of the GW.

interferometric design. Chapter 4 describes these detectors and their GW detection mechanism.

2.1. How are gravitational-waves generated?

Up until now, we have studied how the solutions to the linearized version of Einstein’s
equations in a vacuum (described in equations (2.15) and (2.16)) result in the propagation of
GWs. We now study how this gravitational radiation is generated. Just as in EM, the emission
of GWs can be expressed in terms of a retarded potential [22]. However, for situations in which
the size of the source is very small compared to the wavelength (rsource/λ ≪ 1), the multipole
expansion is a more convenient approximation.

Recall that in EM, charge conservation forbids monopole radiation. The conservation of
energy plays an analogous role for gravitational radiation, such that there is no monopole term
either [18]. In EM, the dominant contribution to the radiated field E comes from the second
time derivative of the electric dipole moment, p, such that

E =
1

rc2
[̂r× (r̂× p̈)], (2.17)

where c is the speed of light in vacuum, r is the distance from the source to the field point, and
p is defined by:

p ≡
∫

r′ρ(r′) d3r′, (2.18)

where ρ(r′) is the charge density, and the primed coordinates are associated to the position of
the source, following Griffiths’ convention [24].

In contrast to EM, there is no dipole contribution for gravitational radiation. A changing
dipole moment results from the motion of the center of density - charge density for EM radiation,
energy density in the case of gravitation. While the center of charge of an object is free to
oscillate, the oscillation of the center of mass of an isolated system violates conservation of
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momentum [25]. Thus, the laws of conservation of momentum require the time derivative of the
dipole moment to remain constant for any isolated system.

It is with higher moments of mass distributions that GWs are generated. For situations
where the source’s gravitational field is small (i.e., the motion of the source is slow compared
with the speed of light), the leading contribution to the generation of GWs is given by the
quadrupole moment, Iµν . The gravitational analog of equation (2.17) allows us to understand
the amplitude (or strain, hµν) of the GWs generated at the source, such that:

hij =
2G

rc4
Ï TT
ij (tr), (2.19)

where hij is the spatial part of the perturbation metric (i.e. the GW), G the gravitational
constant, c the speed of light in vacuum, r the distance to the source, tr = t− r/c the retarded
time2, and Ï TT

µν the second time derivative of the quadrupole moment of the source in the TT
gauge. The specific components of this tensor depend on the properties of the source [20].

Additionally, just as their EM counterpart, GWs also carry energy and momentum in the
direction of propagation. Due to conservation laws, these are dictated by the gravitational
luminosity of the source, or the energy emitted per unit of time:

L =
dE

dt
=

G

5c5

∑
i,j

∂3ITij
∂t3

2

, (2.20)

where ITij corresponds to the traceless quadrupole moment. Note that it is no longer transverse
as the total luminosity is not related to a specific direction of propagation. This simplification
allows the introduction of the reduced quadrupole moment,

ITij =

∫
ρ(x)

(
xixj −

1

3
x2δij

)
d3x, (2.21)

in which x is a position vector within the source, ρ(x) the density of the source, and δij the
Kronecker delta.

In order to have Ïµν ̸= 0, it is necessary to have an asymmetric mass distribution. Spherically
and axially symmetric systems have Ïµν = 0; and, therefore, do not emit GWs [2]. Some
examples of sources of gravitational radiation include compact objects orbiting each other, or
rotating neutron stars with asymmetries on their surfaces. A more detailed description of these
and other sources of GWs is given in Chapter 3.

2Just as in EM, this means that the current configuration of the system depends on its configuration at a time
r/c in the past.
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3 Types and sources of gravitational-waves

Sources of GWs are large, fast-rotating (usually moving at relativistic speeds), and asym-
metric mass distributions. From equation (2.19), it is required that the second derivative of the
quadrupole moment is large enough to compensate for the constant G/c4 ≈ 10−45 s kg−1m−1

and the distant location of GW sources (recall that hij ∝ 1/r) [2]. Therefore, sources need to
be massive, and usually relativistic, in order to be detected. This means that detectable sources
are namely astrophysical, and they cannot be generated on Earth.

There are several sources of GWs (some of which have already been detected with LIGO and
Virgo, such as Compact Binary Coalescenses - CBCs). However, the first solid evidence for the
existence of GWs was the Hulse-Taylor binary pulsar, PSR1913+16 [26], discovered in 1974 by
Hulse and Taylor using the Arecibo telescope in Puerto Rico. Pulsars are rotating neutron stars
that emit bursts of radio waves once or twice in every rotation period [18].

Examining the evolution of the orbit, Hulse and Taylor noted a gradual decrease in the
time for one full 7.75-hour orbit [2]. This increase in the system orbiting rate resulted from the
neutron stars getting closer to each other, which in turn was caused by the loss of orbital energy
from the system. Hulse and Taylor noted that the rate at which this system was losing energy
was the same rate GR predicted for the emission of GWs. The reduction of the period of the
orbit was a direct consequence of the source generating GWs. Figure 3.1 shows the decrease of
the orbital period for 30 years of observations. Even though the reduction is small (40 s), it
has been very well measured to agree with GR. This observation is regarded as the first indirect
proof of the existence of GWs.

We now know that many processes and objects in the Universe generate different types
of GWs, namely: Continuous Gravitational-waves (CWs), Stochastic GWs, Burst GWs, and
Compact Binary Coalescences (CBCs). The latter are the only types of signals that we have
discovered with aLIGO and AdVirgo up to date. The following subsections describe the afore-
mentioned types of GWs and the sources that generate them, focusing on CBCs - the ones used
for the simulations in this thesis.

3.1. Compact Binary Coalescences

Compact Binary Coalescenses (CBCs) are the prototypical aLIGO and AdVirgo GW signal
sources [2], and they are generated by a variety of astrophysical objects, such as black holes,
binary neutron stars, and binary white dwarfs. As a matter of fact, the first GW signal ever
discovered, GW150914, was a CBC of two stellar-mass black holes [1]. Just as the Hulse-Taylor
pulsar showed, a pair of compact, coalescing astrophysical bodies (i.e., orbiting each other)
radiate energy in the form of GWs. The energy loss of the system results in the shrinkage of
the orbital period, which reduces the distance between the two orbiting compact objects and
increases their speed. This process is known as the inspiral phase of a CBC. When they are
very close together, the two objects combine into a single one during the merger phase. The

13



Figure 3.1: Orbital decay caused by the loss of energy by gravitational radiation which results in
the emission of GWs by the Hulse-Taylor binary pulsar, PSR1913+16. (Reproduced from [27]).

following sections briefly describe these stages, as well as the sources that generate these GWs.

3.1.1. Inspiral Phase

The inspiral phase of a CBC begins with two compact objects far apart, orbiting each other
in a Keplerian orbit, as shown at t = −2 s in Figure 3.2 for a pair of coalescing black holes. The
inspiral phase of a binary neutron star system is similar, and is shown in Figure 3.8 of subsection
3.1.4.

If we model our sources as point masses m1 and m2, the strain of the system will evolve
as [29]:

h+(t) = 2h(t)
1 + cos2 (i)

2
cos (Φ + ϕc), (3.1)

for a plus-polarized GW, and

h×(t) = 4h(t) cos (i) sin (Φ + ϕc), (3.2)

for a cross-polarized GW. In equations (3.1) and (3.2), i is the inclination angle of the orbital
angular momentum of the source with respect to the observer, Φ the phase of the gravitational-
wave, ϕc the phase of the GW at the time of coalescence tc, and h(t) is the amplitude of the
GW, given by:

h(t) =
1

r
M5/3(πfGW)2/3. (3.3)
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Figure 3.2: Gravitational waveform of the last two seconds of a simulated CBC signal for a
system of binary black holes (BBH), along with diagrams of the two compact objects showing
the evolution of the system. A pair of coalescing binary black holes (BBH) get closer to each
other, as a result of a reduction in their orbital period due to the emission of gravitational
radiation during the inspiral phase. The amplitude modulation that occurs in this phase is due
to spin-induced precession of the orbital plane. The two compact objects finally merge together
at t = 0 s. The resulting black hole enters a ringdown phase, in which it emits GWs until
reaching equilibrium. (Adapted from [28]).

Here, r is the distance to the source and fGW is the frequency of the gravitational radiation
(which is twice the frequency of the orbital system). We have introduced M, the ‘chirp’ mass,

M =
(m1m2)

3/5

(m1 +m2)1/5
, (3.4)

named after the evolution of the signal as it ‘chirps’ or increases in frequency during the inspiral
phase [2]. This ‘chirping’ is shown in Figures 3.4 and 3.9 for GW150914 and GW170817, the first
ever recorded Binary Black Hole (BBH) and Binary Neutron Star (BNS) GW events, respectively.
Note that signals with bigger M have larger amplitudes. This is why a pair of coalescing black
holes emit stronger gravitational radiation than a system of binary neutron stars.

During the early inspiral, the phase Φ and frequency fGW of the GW evolve as [29]:

ΦGW = −2

(
tc − t

5M

)5/8

, (3.5)

fGW =
1

2π

∂Φ

∂t
=

1

πM

(
5

256

M
tc − t

)3/8

. (3.6)

In time, as the objects get closer to each other due to the shrinkage of the system’s orbit
caused by the emission of gravitational radiation, the GW frequency (3.6) and amplitude (3.3)
increase. Note that systems with higher ‘chirp’ mass result in lower frequencies, which is one of
the main motivations for discriminating signals by the mass of the sources that originated them
in GSpyNetTree.

Before merging but very advanced in the inspiral phase, the binary system enters a post-
Newtonian (PN) regime, for which the previous approximations no longer hold. This happens
between t = −0.5 s and nearly before t = 0 s for the binary black hole system shown in Figure 3.2.
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The PN approximation provides corrections to the late inspiral phase that effectively describe
the nearly-relativistic binary system at this stage1 [30].

3.1.2. Merger Phase

When the two compact objects coalesce, the system becomes relativistic and highly dynam-
ical, such that the approximations used for the inspiral phase are no longer valid. In this case,
numerical relativity (NR) is needed to understand how the system merges2. Merger occurs at
t = 0 s both for the BBH system shown in Figure 3.2 and for the BNS system in Figure 3.8.

Following the merger phase, the state of the system depends on the CBC sources. If these
were a pair of black holes, the merged object will now start to radiate gravitational radiation
during the ringdown phase, until reaching equilibrium. The frequency and damping time of
the radiation are determined by the black holes’ mass and spin. Figure 3.3 shows the state of a
BBH system ±10 ms around the merger time.

Figure 3.3: Gravitational waveform of the simulated CBC signal of Figure 3.2, 10 ms around
the merger time at t = 0 s. The two objects are very close to each other before t = 0 s and they
finally merge into a single, bigger object at t = 0 s, as shown in the two diagrams on top of the
waveform. Following the merger, the new black hole rings down emitting GWs until reaching a
state of equilibrium. (Adapted from [28]).

If the system was a BNS (Binary Neutron Star system) or BHNS (Black Hole - Neutron Star
system), the resulting merged object depends on the masses of the original sources, as explained
in subsections 3.1.4 and 3.1.5, respectively. The following subsections describe the most relevant
types of CBCs, namely stellar remnants such as systems of binary black holes (BBH), binary
neutron stars (BNS), binary systems of a neutron star and a black hole (NSBH), and white
dwarfs (for lower frequency GWs).

3.1.3. Binary Black Hole Systems

Up to date, binary black hole (BBH) signals are the most common GW events in all LIGO-
Virgo observing runs [4, 6–8]. This is because of their small radii and large masses, which make
their strain |h| ∼ 10−21 detectable by our current GW interferometers [1]. Even though BBHs

1The post-Newtonian approximation is out of the scope of this thesis. In their review, Blanchet [30] provides
a description of these corrections for the late inspiral phase.

2The NR treatment can be followed in Baker et al. [31].
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are not visible in the electromagnetic spectrum, they are interesting sources of gravitational
radiation because they are some of the fastest and most dense objects in our Universe. Indeed,
black holes are the most compact objects known, and they are the expected remnant of a Main
Sequence star of mass m > 25M⊙ [32].

Figure 3.4: Time-frequency visualizations of GW150914, as detected in the Hanford (left) and
Livingston (right) observatories. Note how the signal ‘chirps’ up in frequency near the merger
time. (Adapted from [1]).

The most famous BBH event is GW150914, the first ever recorder signal of GWs [1]. Figure
3.5 shows the strain h(t) recorded by the LIGO Hanford (H1) and LIGO Livingston (L1) detec-
tors, along with waveform reconstructions and Numerical Relativity predictions consistent with
the parameters recovered from the event.

Using parameter estimation and other techniques, it was determined that this signal had a
chirp mass of M ≈ 30 M⊙, with m1 = 35+5

−3 M⊙ and m2 = 30+3
−4 M⊙ (in the source frame),

resulting in a merger of M = 62+4
−3 M⊙ [33]. It was determined that this system was a BBH

because of its calculated mass and orbital frequency (75 Hz). While a pair of neutron stars are
compact enough, they could not possibly have had the mass calculated for GW150914. Similarly,
a black hole-neutron star binary would have had a larger total mass than that calculated for
GW150914, and would thus have merged at a much lower frequency [1]. Moreover, the decay of
the waveform after the merger time is consistent with the damped oscillations of a black hole
during the ringdown phase, confirming GW150914 as the gravitational radiation produced by a
BBH coalescence.

Besides the strain h(t) shown in Figure 3.5, a very useful way of visualizing gravitational-
wave data is via time-frequency visualizations, also called spectrograms. Figure 3.4 shows these
representations for GW150914 in the Hanford and Livingston observatories. Note how the
signal ‘chirps’ up in frequency during the inspiral phase and approaching the merger time.
Spectrograms are the types of visualizations used to generate the samples of GSpyNetTree.

Following GW150914, LIGO and Virgo have detected several GWs from BBH systems. Hav-
ing a plethora of different astrophysical parameters (e.g., sky location and mass), these signals
are morphologically different from each other. A remarkable case is GW190521: the most mas-
sive BBH merger detected up to date. With component masses of 85+21

−14 M⊙ and 66+17
−18 M⊙, its

remnant mass was calculated to be 142+28
−16 M⊙ [34].

The more massive a merger is, the shorter the signal and the lower its frequency. Figure
3.6 shows the spectrogram visualizations of GW190521 in the LIGO Hanford, LIGO Livingston,
and Virgo observatories. Note how this signal differs considerably in morphology compared
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Figure 3.5: First row: Time series showing the measured strain for the gravitational-wave
event GW150914 observed by the LIGO Hanford (left column) and LIGO Livingston (right
column) observatories. Second row: A concordant NR waveform (in red) for a system with
parameters consistent with those recovered from GW150914, along with 90% credible regions
for two independent waveform reconstructions from the signal, shaded in gray. Note how the
measured data is concordant with the NR simulations and waveform reconstructions, though the
early inspiral phase is noisier in the time series data due to instrumental and noise constraints
that do not allow the reconstruction of the early inspiral. Third row: Residuals after subtracting
the measured time series from the NR simulation, demonstrating the significance of the event.
(Adapted from [1]).

to GW150914, shown in Figure 3.5. This is a result of the latter being a lower mass merger.
Considering these differences in GW morphology is not only fundamental for their searches;
but also makes some signals more similar to particular kinds of transient noise (i.e., glitches,
explained in Chapter 6) than others. For this reason, GSpyNetTree considers different mass
ranges for GWs, along morphologically similar glitches, for each of its classifiers.

Figure 3.6: Time-frequency visualizations of GW190521, the most massive gravitational-wave
event detected up to date. Compared to lower mass events, like GW150914, it is a shorter, and
lower-frequency event. This is characteristic of higher mass GW events. (Adapted from [34]).
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GW190521 was the first intermediate mass black hole (IMBH) ever detected by LIGO and
Virgo [34]. An IMBH is a class of black hole with mass 100 M⊙ ≤ M ≤ 104 M⊙; much
less massive than stellar black holes, with masses ranging from 5 M⊙ to several tens of solar
masses [23, 35]. More massive black holes - Supermassive black holes (SMBHs), with masses
above 105 M⊙, are usually found in the centers of galaxies, like Sagittarius A∗ in the Milky Way.
Because of their mass, binaries of SMBHs have much lower frequencies and larger amplitudes
than IMBHs and stellar black holes, and cannot be detected with ground-based detectors. This
is where space-based interferometers, like LISA (explained in Subsection 5.2.2), will comple-
ment our understanding of the Universe by detecting sources with frequencies in the order of
milliHertz [2].

Figure 3.7: Catalog of gravitational-wave events observed in the first, second, and third Ob-
serving Runs of LIGO-Virgo, alongside neutron stars and black holes from electromagnetic
observations. The arrows that connect pairs of black holes, neutron stars, and a black hole and
a neutron star, represent binary mergers of each type of these types observed by LIGO and
Virgo. (Reproduced from [34]).

Most of the BBH GW events detected by LIGO-Virgo until now, like GW150914, are stellar
mass black hole binaries. The catalog of all GW events detected up until the third Observing Run
with LIGO-Virgo, along with black holes and neutron stars from electromagnetic observations, is
shown in Figure 3.7. Note how most of the detected signals are, indeed, stellar mass black holes,
with just a few (including GW190521) above 100 M⊙. This Figure also shows the population
of neutron star binaries (explained in the following Subsection) and black hole - neutron star
systems (explained in Subsection 3.1.5) detected up to date.

3.1.4. Binary Neutron Star Systems

After black holes, neutron stars are the most compact objects in the Universe. They are
also stellar remnants, and are the collapsed cores of massive supergiant stars, which had a total
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mass between 10M⊙ and 25M⊙ when they were on the Main Sequence [32]. Neutron stars get
their name from the fact that they are mainly composed of neutrons, and are held up primarily
by neutron degeneracy pressure and repulsive nuclear forces.

Unlike black holes, neutron star binaries have been previously observed via electromagnetic
methods, as explained before for the Hulse-Taylor binary pulsar. Therefore, many of their
parameters are well known. Their mass, for instance, is expected to be around 1.4 M⊙. Their
radius, though estimated to be around 10 km, is less well measured. This is because it depends
on the equation of state of matter at densities above that of the nucleus of an atom, which is
not known yet, and has many theoretical difficulties associated with its derivation.

Figure 3.8: Gravitational waveform of the 30 milliseconds around merger time for a binary
neutron star (BNS) system, along with simulations of the two compact objects showing the
evolution of the system. The color of the objects corresponds to the density of the material,
from low (blue) to high (dark red). A pair of coalescing binary neutron stars get closer to each
other, as a result of a reduction in their orbital period due to the emission of gravitational
radiation during the late inspiral phase. In this phase, they are tidally disrupted, after being
initially tidally deformed. After merging, the new object continues emitting high-frequency
GWs, and a disk of matter is formed around the new object (Adapted from [28]).

Neutron stars are often found in binary systems. Since the discovery of the Hulse-Taylor
binary pulsar, radio pulsar surveys have found several BNS systems in the Milky Way [36].
Just as black holes, they are gravitationally attracted toward each other. In this process, their
orbit starts to shrink due to the emission of gravitational radiation, as shown in Figure 3.8.
This happens during the inspiral phase. When the two objects are very close together, they
merge [32]. The resulting object will be a more massive neutron star, or a black hole, depending
on whether the mass of the remnant surpasses the Tolman-Oppenheimer-Volkoff limit (i.e., the
new, compact object will be a black hole if its mass is above 2.01 - 2.17 M⊙ [37]).

As BNS systems are comprised of matter, electromagnetic emission is expected to occur
alongside the merger. This makes them fundamentally different from BBH mergers, and provides
a window for multi-messenger astronomy studies. The first neutron star merger detected with
LIGO-Virgo up until now, GW170817, shows this feature [38].

GW170817 was observed on 17 August 2017, and it was the result of a BNS merger orig-
inated in NGC4993 [39], a lenticular galaxy located in the Hydra cluster. The spectrogram
visualizations for this event, as observed in the LIGO Hanford, LIGO Livingston, and Virgo
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observatories, are shown in Figure 3.9. Note how the signal ‘chirps’ up in frequency as the
system approaches the merger time, as seen in both LIGO detectors, but not in Virgo. When
GW170817 was discovered, the detector horizon (maximum distance at which a detector is able
to detect a BNS system with a signal-to-noise ratio of 8 (SNR=8) [38]), was 218 Mpc for LIGO-
Livingston, 107 Mpc for LIGO Hanford, and 58 Mpc for Virgo [40]. The low BNS horizon for
Virgo and the direction of the source with respect to the detector’s antenna pattern3 are the
main reasons why the signal is not visible in the Virgo detector [38].

Figure 3.9: Time-frequency visualizations (spectrograms) of the binary neutron star merger
GW170817, as observed in the LIGO Hanford (left), LIGO Livingston (center), and Virgo (right)
observatories. The amplitude scale is normalized to each detector’s noise amplitude spectral
density [38]. The signal is clearly visible in both LIGO observatories, but not in Virgo, as
explained in the text. Note how the BNS signal (especially in the Livingston observatory) can
be traced back 30 s before the merger time at t = 0 s. This is a unique feature of these systems,
compared to most BBH binaries, which are usually shorter in nature (as seen in Figure 3.4).
(Adapted from [38]).

The BNS system that generated GW170817 had a chirp mass of M = 1.188+0.004
−0.002 M⊙

and a total mass 2.73M⊙ ≤M ≤ 3.29M⊙, with individual components between 0.86M⊙ and
2.26M⊙ [38]. Aside from the EM observations that confirmed GW170817 as a BNS system, these
measures further support the system’s origin. Not only known neutron star binaries have total
masses between 2.57 M⊙ and 2.88 M⊙ with components between 1.17 M⊙ and 1.6 M⊙ [41];
but also, BBH systems in our galaxy have masses substantially greater than the ones measured
for GW170817. This ruled out a binary black hole system as the source of GW170817.

One of the most spectacular outcomes of GW170817 is the electromagnetic follow-up cam-
paign that succeeded the detection. The first EM signal detected was GRB 170817A, a 2−second
gamma-ray burst observed 1.74± 0.05 s after the merger time [42]. Over the following days and
weeks after the LIGO-Virgo detection, several telescopes detected the event in other wavelengths,
ranging from X-ray to radio, within the 28 deg2 sky region to which LIGO and Virgo constrained
the event. The EM observations showed that the source, which was located at 40+8

−14 pc from
Earth, generated a fast-moving and rapidly cooling neutron-rich cloud, similar to the one de-
picted in the top-right of Figure 3.8. This is the expected remnant of a neutron star merger in
its post merger phase.

Another remarkable feature of GW170817 is that it could be traced back in time further
than most BBH events. Note that Figure 3.9 shows a time-scale almost 70 times larger (up
until 30 s before merger) than the one in Figure 3.4, which traces the signal 0.45 s back in
time. Lower mass signals cover a wider time and frequency range, which is why GWs detected
from BNS systems with current detectors usually produce longer, higher-frequency signals than

3A description of the antenna pattern of a detector is given in Chapter 4.
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those generated by BBHs. Notably, mass plays a substantial role in the morphology of a signal,
which is one of the key considerations that GSpyNetTree takes into account. It is important
to highlight, however, that during the early inspiral phase, both of these types of CBC systems
emit gravitational radiation in the form of continuous waves (CWs)4. These GWs have not
been detected yet, but as LIGO and Virgo get upgraded and other detectors (both ground and
space-based) join the network, new types of GWs are expected to be detected.

3.1.5. Black Hole-Neutron Star Systems

Black Hole-Neutron Star (BHNS) systems are the last kind of events that LIGO and Virgo
have detected [43]. Unlike BBH and BNS systems, BHNS binaries result from the coalescence
of two different types of compact objects. Nevertheless, as they are CBCs, they share some
evolutionary phases with the former.

Just as BBHs and BNSs, BHNS systems follow an inspiral phase in which their orbits shrink
due to the emission of gravitational radiation in the form of GWs. When the two compact
objects are very close together, they merge. The debris of the event in the post-merger phase
depends on several parameters. If the black hole is very massive or if it has low spin, the neutron
star is entirely swallowed by the black hole and no matter (hence, no light) is expelled. However,
it is also possible that the neutron star is tidally disrupted by the black hole. In these cases,
similar to BNS mergers, there is a post merger phase in which more matter is ejected or accreted
into the black hole [44], as shown in Figure 3.10. These events are multi-messenger astronomy
prospects, as they can be observed in different wavelengths.

Figure 3.10: Merger and post merger phases of a tidally disrupted Black Hole-Neutron Star
system. (a) Mass from the neutron star starts to be accreted onto the black hole. (b) Mass
is transferred from the neutron star to the black hole in an unstable fashion. (c) The mass
transferred from the neutron star forms a tidal tail. (d) The tail evolves into an accretion disk
around the black hole. (Adapted from [44].)

Two confirmed BHNS events, GW200105 and GW200115, occurred only 10 days apart from
each other. The first event, observed by LIGO Livingston and Virgo, had component masses
8.9+1.2

−1.5 M⊙ (for the black hole) and 1.9+0.3
−0.2 M⊙ (for the neutron star). For GW200115, ob-

served by both LIGO detectors, the black hole and neutron star had masses of 5.7+1.8
−2.1 M⊙ and

1.5+0.7
−0.3 M⊙ respectively. All of these masses are within the 90% credible region [43]. These two

events were classified as BHNS systems because, while the heavier objects in each binary have
masses only known to black holes, the lighter have masses lower than those of any known black
holes (and characteristic of neutron stars).

4Continuous waves are introduced in Section 3.2.
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While it is possible that these two events emitted light, the electromagnetic follow-up cam-
paign did not detect any [43]. This could be a result of the neutron star being entirely swallowed
by the black hole. However, as the location of the events was rather uncertain (they were local-
ized within a credible sky region of 7200 deg2 and 600 deg2 at 280+110

−110 Mpc and 300+150
−100 Mpc

for GW200105 and GW200115, respectively [43]), it is also possible that the telescopes that
followed-up the systems did not find any light, as it could have faded away before it was de-
tected.

GW detections of BHNS signals help us understand the formation and evolution of these
systems. Up until now, two main known possibilities exist. The first corresponds to isolated
binary evolution systems, in which two compact objects already orbiting each other in a binary
system explode into supernovae. While one star leaves a black hole as its remnant, the other
leaves a neutron star. In this case, it is expected that the neutron star orbits in the equatorial
plane of the black hole (i.e., the spin of the black hole should be aligned with the binary orbit).
The other possibility corresponds to dynamical interaction, which is most likely to occur in
stellar dense environments such as globular clusters. In these processes, the neutron star and
black hole come from separate, non-interacting stars (and, therefore, supernova explosions) and
only find and attract each other gravitationally when they are already remnants. As they were
not a binary system since their formation, the neutron star could have any orientation with
respect to the black hole. Hence, there is no preferred spin direction [44]. As a matter of fact,
for GW200115, the spin of its black hole was opposite to the direction of the binary orbit [43],
which suggests it formed via the dynamical interaction process.

BHNS events are less common than BBH signals; however, we expect that the next ob-
serving run (O4) comes with more BHNS system detections, that can hopefully be followed-up
electromagnetically. Further understanding of BHNSs will enrich our knowledge of CBC systems
detectable with ground-based detectors. In the following subsection, we will discuss a type of
CBC systems that, due to their low frequencies, cannot be detected with aLIGO and AdVirgo.
These are white dwarf binaries.

3.1.6. White Dwarf Systems

White dwarfs are the stellar remnants of Main Sequence stars with masses below 10 M⊙,
including our Sun [32]. The closest white dwarf known is Sirius B, the smaller component of
the Sirius binary star system, located 8.6 light years from Earth. These stellar remnants are
the cores left after the stars consume their hydrogen and helium shells. Compared to Main
Sequence stars, they are more compact. However, they are much larger than black holes and
neutron stars. In fact, the typical white dwarf radii is 1000 times bigger than that of neutron
stars [2]. White dwarfs are primarily held by electron degeneracy pressure. As they decrease in
radius, their mass increases until they reach the Chandrasekhar limit at 1.4 M⊙ and implode
into supernovae, generating a neutron star [45].

White dwarfs can be found in binaries, and several electromagnetic surveys have cataloged a
wide variety of these systems [46, 47]. Nevertheless, these sources cannot be detected by aLIGO
detectors, as their sensitivity (approximately 10-20000 Hz [2], as explained in Chapter 4) is
almost 100 times larger than the frequency of the GWs generated by white dwarf systems. To
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observe these signals, space-based observatories such as LISA [48] (see Subsection 5.2.2), which
will be sensitive to the mHz frequency band [2], are needed. Besides detecting the merger of
these systems, LISA will be able to observe them for several years before they coalesce. This
will allow LISA to detect the continuous gravitational-wave radiation (CWs) they emit during
the inspiral phase. CWs are explained in the following subsection.

3.2. Continuous waves

Continuous gravitational-waves (CWs) are generated by systems with a well-defined fre-
quency. Different from CBCs, they do not ‘chirp’ up in frequency with time. Some types of
CWs are the gravitational radiation emitted by BBH, BNS, and BHNS systems long before
merger during the early inspiral phase, or an off-axis mass asymmetry in a neutron star that
creates a time-dependent quadrupole moment [2]. Temperature variations in neutron stars can
lead to asymmetric deformations in their crusts that generate GWs when the star spins [49].

LIGO aims to detect CWs from neutron stars in the Milky Way. However, tracking these
signals is not easy, as they are smaller in amplitude compared to the GWs that our detectors are
currently able to observe (the strain of CWs is |h| ∼ 10−24 [50]). In short periods of time, a CW
from a rotating neutron star would have nearly constant frequency and amplitude. However,
over a longer interval, the signal will evolve reducing its frequency due to the relative motions
of Earth and the neutron star, in addition to the reduction in the spin of the latter as it loses
energy via electromagnetic and gravitational radiation [50]. Figure 3.11, shows the frequency
evolution of a CW in different time scales. Note that, even though the frequency reduces over
time, it only diminishes around 0.04 Hz in 2000 days. This is why they are called Continuous
gravitational-waves: their strain and amplitude can be approximated as constant (i.e., with very
small changes) over large periods of time.

3.3. Bursts

Advanced LIGO is expected to be sensitive enough to detect short GW signals, or bursts.
These may come from core-collapse supernovae (CCSN) within the Milky Way [2, 51], but may
also include bursts from Magnetars5 [52] or brehmstrahlung radiation emitted from parabolic
encounters of black holes in globular clusters [53].

CCSNs, or Type II Supernovae, are the best candidates for GW bursts. However, few
simulations of these systems exist, as emulating them involves complex and computationally
expensive interactions, like electromagnetism, fluid dynamics, general relativity, and particle
physics. As a result, as opposed to CBCs, a set of confident waveforms for these kind of
events is still to be generated. Moreover, these rapid and violent explosions of massive stars are
extremely rare in our galaxy; with only one event per century [2]. In order to be able to observe
these signals, future generation ground-based detectors (like the Cosmic Explorer [54] and the
Einstein Telescope, [55] explained in Subsection 5.2.1) are needed. With 10 times greater reach,
bringing the M81 galaxy into range, they have twice the chances of registering a CCSN [2, 56].

5Magnetars are neutron stars with very high magnetic fields.
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Figure 3.11: Frequency evolution of a simulated continuous gravitational-wave (CW) signal in
different time-scales. The top panel shows, in the span of two days, the reduction in frequency
due to Earth’s rotation. The middle panel shows the frequency changing due to Earth’s orbit
around the Sun in one year. The bottom panel shows, over a broader time scale, the reduction
in frequency as the spin of the neutron star decreases with time. (Adapted from [50].)

3.4. Stochastic gravitational-wave signals

Stochastic GW signals vary significantly from transient GW signals (CBCs and burst events)
and CWs. While these signals come from specific locations in the sky, a stochastic background
comes from all directions [57]. Stochastic GWs are expected to give us information about the
early evolution of our Universe. Similar to the Cosmic Micro-wave Background (CMB), the left-
over EM signals from the Big Bang, these GWs would have generated a cosmic gravitational-wave
background, formed by the combination of a large number of random, independent events [50].

LIGO and Virgo have not detected stochastic GW signals yet. In fact, with current tech-
nologies, these GWs would appear as just noise in a single gravitational-wave detector [57]. For
this reason, detecting these signals requires data analysis methods highly different from those
used for CBC GWs, which are the gravitational-wave sources used to simulate GSpyNetTree’s
signals.
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4 Gravitational-wave detectors

Following Einstein’s discovery in 1918 that a linearized version of his equations (that is, in
the weak-field limit) admits wave solutions [58, 59], as shown in Chapter 2, major theoretical
concerns on the existence and detectability of GWs arose [60]. It was not until 1956 when these
were solved by Pirani; who, in 1957, proposed that GWs should carry energy - and thus could
be detected [2].

The first notion of a GW detector, developed by Joseph Weber in the 1960’s, consisted of
aluminum cylinders, with piezoelectric crystals attached on their surface. An incoming GW
signal perpendicular to the axis of these resonant bar detectors would generate a longitudinal
excitation in the metal which, in turn, would stress the piezoelectric crystals and, thus, generate
a voltage [61]. The higher the voltage, the greater the strength of the detected signal, and
near-simultaneous excitation of widely separated cylinders would confirm that a real signal had
been detected [2]. Even though subsequent efforts (up until the 1990’s) increased the sensitivity
of these detectors by cooling the bars to temperatures approaching 0 K, no astrophysical signals
were detected with this approach [62].

The idea of using optical interferometry to detect GWs was seen independently by various
scientists as a promising alternative [63, 64]. Rainer Weiss noted that a Michelson interferometer
would be highly effective for sensing the transverse traceless nature of GWs [65]. This Chapter
discusses the design and operation mechanism of these detectors, with further descriptions of
aLIGO and AdVirgo as the relevant interferometers for this thesis.

4.1. Detection mechanism: the Michelson interferometer

The detection mechanism pictured by Weiss involved a Michelson interferometer, like the
one shown in Figure 4.1. Even though aLIGO and AdVirgo are more complex detectors because
they need to measure the small amplitude of GWs, a simple Michelson interferometer suffices
to understand the detection mechanism of a GW interferometer. These instruments measure
the relative time that light beams take to complete a round trip in each of its perpendicular
arms [18]. Incoming light from a coherent laser source enters the interferometer and is split by
a beam splitter, where half of the light is sent through each arm exactly in phase. If both arms
have the same length, L, and they are not perturbed by any external forces, the light will reflect
in the mirrors at the end of each arm and will return to the beam splitter exactly in phase.
At the beam splitter, the incoming light from each arm is split again, such that half is sent
back to the input, and the other half is sent to the output photodetector, where light is finally
recombined. If the incoming beams from both arms are in phase, a constructive interference
occurs.

Suppose an incoming GW, propagating in the ẑ direction, such that it stretches and com-
presses space-time perpendicular to its propagation (that is, in the x̂ and ŷ directions). When
reaching the interferometer, the passing of the GW causes one arm of the interferometer to
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Figure 4.1: Schematic layout of a Michelson interferometer, which consists of a laser, a beam
splitter, a series of mirrors, and a photodetector. A relative change in length between the arms
of the interferometer is sensed as a relative change in the phase of the light, which is manifested
as an interference pattern in the output photodetector.

elongate whilst the other shortens, then vice-versa, back and forth until the GW passes com-
pletely through the interferometer. This differential arm motion permits the measurement of
the stretching and squeezing of space-time due to a GW, or strain h(t), as the difference ∆L(t)

in length L between the two orthogonal directions [2],

h(t) = ∆L(t)/L. (4.1)

The time it takes the light to make a round trip through the perpendicular arms of the
interferometer changes with the passing of a GW. Along with the elongation/shortening of
the interferometer’s arms, the effective travel time of light through each perpendicular arm
will change accordingly, and the light will return to the beam splitter out of phase. This
relative phase difference in the x̂ and ŷ directions is then recombined and measured by the
output photodiode, generating a particular interference pattern. The behavior, parameters,
and dynamics of astrophysical GW sources, like the ones described in Chapter 3, can then be
analyzed from the space-time perturbation generated by the GW and manifested in this phase
shift, measured as strain.

To understand how this relative phase difference works, we take the input light from the
laser, as shown in Figure 4.1, such that its electric field is given by:

Einput = E0 e
i(2πft−kx), (4.2)
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where E0 is the amplitude of the electric field, k is the wave number, f is the frequency of
the light beam, and t and x are varying time and position [18]. When encountering the beam
splitter, 50% of the light is transmitted to the x−arm of the interferometer, with transmission
coefficient T = i/

√
2, and 50% is reflected towards the y−arm of the detector, with reflection

coefficient R = 1/
√
2. In this way, the electric field of the light in the x−arm has the form,

Ex =
i√
2
E0 e

i(2πft−kxx), (4.3)

while the electric field of the light reflected in the y−arm is,

Ey =
1√
2
E0 e

i(2πft−kyy). (4.4)

The wave numbers kx, ky depend on the effective travel time of light in the x̂ and ŷ directions,
respectively. The beams are then reflected in the mirrors at the end of each arm, which in the
context of aLIGO have nearly 100% reflectivity for the laser it uses, and they finally return to the
50/50 beam splitter. The light that is finally recombined and read by the output photodetector
will have two components: a reflected component from the x−arm and a transmitted component
from the y−arm, where R = 1/

√
2 and T = i/

√
2 as before. The light will have also traveled

in its round trip a distance of 2Lx in the x−arm and 2Ly in the y−arm, where Lx and Ly are
the lengths of the perpendicular arms of the interferometers. Note that, if the interferometer is
perturbed by an external event (say, a GW, or a terrestrial source), Lx ̸= Ly. The total electric
field at the output after combining the beams is,

Eoutput =
i

2
E0 e

i(2πft−2kxLx) +
i

2
E0 e

i(2πft−2kyLy) =
i

2
E0 e

i(2πft−2kxLx−2kyLy),

= E0 ie
i(2πft−2kxLx−2kyLy) cos (kxLx − kyLy). (4.5)

The argument kxLx−kyLy = ∆ϕ is the difference in phase that results from the light completing
a roundtrip in both arms of the detector. In case both beams are in phase (i.e. ∆ϕ = 0), light
with electric field of amplitude E0 will get to the output photodetector. If, however, ∆ϕ = nπ/2

with n ∈ Z, no light will reach the photodetector. However, it is not the electric field what is
measured at this point, but the power. Assuming the laser light has power Pinput and given that
the power of a beam of light is given by E2,

Poutput = E2
0 cos

2(∆ϕ) = Pinput cos
2(∆ϕ) =

1

2
Pinput[1 + cos (2∆ϕ)]. (4.6)

In this way, variations in the length of any arm of the interferometer result in a variation in
the power measured at the photodetector. Generally speaking, the longer the detector arms,
the greater the induced phase difference; and the higher the laser power (i.e. Pinput), the more
intense the signal [2]. However, in practice, the detectors must be more robust, due to the small
amplitude of gravitational-wave signals, the stiffness of space-time, and the noise sources that
affect GW detections.
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4.1.1. How do interferometers measure gravitational-waves?

Having studied the mechanism of Michelson interferometers to measure the difference in
phase using interfered laser light, we turn to study how they are used by aLIGO and AdVirgo to
detect GWs and measure GW strain. Picturing the same interferometer as in Figure 4.1, we use a
coordinate system compatible with the TT gauge chosen in Chapter 2. In this gauge, coordinates
are marked by the world lines of free-falling test masses [18]. Even when a GW passes, the
coordinates of freely falling objects do not change [20]. We may choose the interferometer
mirrors to be these test masses. Even though it is true that, in Earth-based detectors like
LIGO, Virgo, and KAGRA, mirrors are not freely falling (in fact, gravity is compensated by the
suspensions), the forces they are subject to are static compared to the frequency of GWs. It is
important to highlight that non-static forces due to the coupling with the environment (such as
thermal noise) may affect the mirrors. They will be the cause of background noise and glitches,
as described in Chapters 5 and 6.

We may set the origin of our coordinate system at the beam splitter, such that the position
of the x arm mirror of length L is at (Lx, 0) and the one of the y arm mirror, at (0, Ly). We start
our study by understanding the interaction of a “plus” polarized GW with the interferometer,
incoming in the ẑ direction. The interaction of GWs with arbitrary direction and polarization
will follow.

The physical effect of a GW passing through an interferometer is that it affects the propa-
gation of light between the fixed points defined by the mirrors at the ends of each perpendicular
arm. This is a consequence of GWs being transverse traceless waves. A wave traveling in the ẑ
direction causes measurable relative motion in the x̂ and ŷ directions between sets of neighboring
free masses. The motions in these perpendicular directions are equal and opposite [19].

In the z = 0 plane of the detector, our GW has the form of equation (2.15), h+(t) =

h0 cos (ωGWt), with ωGW = 2πfGW. The spacetime interval in the TT-gauge is given by,

ds2 = (ηµν + hµν)dx
µdxν = −c2dt2 + [1 + h+(t)]dx

2 + [1− h+(t)]dy
2 + dz2. (4.7)

Being massless particles, photons travel along null geodesics (i.e. ds2 = 0). In this way, to
first order in h0, the light in the x−arm follows:

dx = ±c dt
[
1− 1

2
h+(t)

]
, (4.8)

where the plus sign holds for the travel from the beam-splitter to the mirror, and the minus sign
for the trip back to the beam-splitter [20]. Consider a photon that departs at a time t = t0 from
the beam-splitter towards the x−arm. When it reaches the mirror, at x = Lx, at t = t1, we get:

Lx = c(t1 − t0)−
c

2

∫ t1

t0

dt′h+(t
′), (4.9)

where we have integrated using the plus sign. The photon travels back through the x−arm until
it reaches the beam-splitter again, at t = t2. Integrating equation (4.8) with the negative sign
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between x = Lx and x = 0,

Lx = c(t2 − t1)−
c

2

∫ t2

t1

dt′h+(t
′) (4.10)

Adding equations (4.9) and (4.10),

t2 − t0 =
2Lx

c
+

1

2

∫ t2

t1

dt′h+(t
′), (4.11)

which means that the time of arrival t2 of light after a round trip through the x−arm of the
interferometer is given by t0 + 2Lx/c, plus a correction of order h0. We can replace the upper
limit of the integral for t2 = t0+2Lx/c, as the integrand is already O(h0) and we are neglecting
terms O(h2) or higher [20]. This gives us1:

τx ≡ t2 − t0 =
2Lx

c
+
Lxh0
c

sinc(ωGWLx/c) cos

[
ωGW

(
t0 +

Lx

c

)]
, (4.12)

for the x−arm and,

τy ≡ t2 − t0 =
2Ly

c
− Lyh0

c
sinc(ωGWLy/c) cos

[
ωGW

(
t0 +

Ly

c

)]
, (4.13)

for the y−arm where

sinc(ωGWLα/c) ≡
sin(ωGWLα/c)

ωGWLα/c
, (4.14)

with α = x, y. One difference between equations (4.12) and (4.13) is the negative sign for the
second term of τy, which comes from equation (4.7). However, these equations also implicitly
consider Lx ̸= Ly. In a GW interferometer, these two perpendicular arms measure almost the
same (they only differ slightly because of the Schnupp asymmetry, a small asymmetry between
the arms [20]), and we can replace Lx and Ly with L ≡ (Lx + Ly)/2.

Using L instead of Lx and Ly in equations (4.12) and (4.13), we get that the travel time
difference of the light between the two perpendicular arms, ∆τ ≡ τx − τy, is given by:

∆τ =
2Lh0
c

sinc(ωGWL/c) cos

[
ωGW

(
t0 +

L

c

)]
. (4.15)

This time difference between the perpendicular arms induces a phase shift that is measured
by GW interferometers. We can calculate this phase shift using the travel time difference, ∆τ ,
and the period of oscillation of the light,

∆ϕ =
2πc

λL
∆τ = ωL∆τ, (4.16)

with ωL the frequency of the light traveling through the detector’s arms of length L, and λL its
wavelength. In the case of LIGO, λL = 1064 nm. Using equation (4.15), the total phase induced

1The full derivation is given by Maggiore [20].
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by GWs in the Michelson interferometer is,

∆ϕ =
2Lh0ωL

c
sinc(ωGWL/c) cos

[
ωGW

(
t0 +

L

c

)]
. (4.17)

It is important to highlight that, in the case of LIGO and Virgo, L ≪ λGW; that is, the
length of the arms of the interferometer is much shorter than the wavelength of the GW. In this
way,

ωGWL

c
≪ 1. (4.18)

With this approximation, sinc(ωGWL/c) → 1, and the time difference between the two perpen-
dicular arms,

∆τapprox ≈ 2Lh0
c

cos

[
ωGW

(
t0 +

L

c

)]
. (4.19)

Similarly, the phase shift induced by ∆τapprox is now,

∆ϕapprox ≈ 2Lh0ωL

c
cos

[
ωGW

(
t0 +

L

c

)]
. (4.20)

Using equation (2.15), ∆ϕapprox can be rewritten as

∆ϕapprox ≈ 2LωL

c
h

(
t− L

c

)
. (4.21)

Up until now, we have described the response of the detector to a plus-polarized GW prop-
agating in ẑ. To understand the response of the detectors to GWs coming in an arbitrary
direction, we use the antenna pattern, which describes the relative sensitivity of the detectors in
different directions [66]. The antenna pattern is given in terms of the antenna pattern functions,
F+ and F×, instead of ∆ϕ. This is done to avoid the confusion between the induced phase in
the interferometers and the direction of propagation of GWs with respect to the detector, given
in terms of the azimuthal angle ϕ, polar angle θ, and polarization angle ψ, as seen in Figure 4.2.

Using the antenna pattern functions, the strain induced into an interferometer by a GW
coming from an arbitrary direction is given by a linear combination of F+ and F× multiplied by
the respective possible GW polarization, plus and cross:

h(t) = F+(θ, ϕ, ψ)h+(t) + F×(θ, ϕ, ψ)h×(t), (4.22)

where
F+ =

1

2

(
1 + cos2 θ

)
cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ, (4.23)

and
F× =

1

2

(
1 + cos2 θ

)
cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ. (4.24)

These functions are defined for GWs with polarization angle ψ, coming from some arbitrary
direction relative to the detector’s axes described by the spherical coordinates θ and ϕ [23]. Note
that the antenna pattern functions relate the sky position of the source (i.e., the direction of
gravitational-wave propagation in (θ, ϕ) with respect to the detector frame), and the polarization

31



Figure 4.2: Schematic of the coordinates θ, ϕ, and ψ that describe the position and orientation
of the gravitational-wave source in the plane of the sky relative to the frame of the detector.
The perpendicular arms of the detector are defined as usual, oriented along the x̂ and ŷ axes.
The GW, coming from an arbitrary direction (θ, ϕ) with respect to the detector, is rotated by
the polarization angle, ϕ. This angle defines the orientation of the gravitational-wave source
relative to the projection of the detector plane into the sky plane, along vector N̂ . (Adapted
from [67]).

of the GW (given by the angle ψ, defined by the rotation of the coordinate frame of the source
relative to the detector axes) [66].

As the strain h(t) from equation (4.22) is a linear combination of the plus and cross polar-
izations of GWs that depends on the geometry of the interferometer and the direction of the
source, a single detector cannot measure both polarizations at the same time. Moreover, as the
polarization angle depends on the internal orientations of the source, its direction of arrival is
usually unrelated to its polarization. For this reason, it is useful to average over the polarization
angle ψ [23]. The rms response function (or antenna pattern) of the interferometer is given by:

F
2
(θ, ϕ) =

∫ (
F 2
+ + F 2

×
)
dψ =

1

4

(
1 + cos2 θ

)2
cos2 2ϕ+ cos2 θ sin2 2ϕ. (4.25)

Figure 4.3 shows the rms antenna pattern for an interferometric detector, with the detector
in the plane z = 0 (i.e. at θ = π/2) and its arms oriented along the x and y axes.

The sensitivity is strongest when incoming GWs are perpendicular to the plane of the detec-
tor, and there is a significant nonzero response for most directions. The only ‘blind’ regions for
the GW detectors are along the bisector between the two perpendicular arms at z = 0 [18] (that
is, at ϕ = π/4 and directions differing from this by multiples of π/2) [23]. In these directions,
the changes in the length of the two arms of the interferometer are always equal, and no strain
is measured (i.e., from equation (4.1), ∆L = 0, and h(t) = 0).

As we cannot assure that all GWs are coming perpendicular to the detectors, it is important

32



Figure 4.3: Antenna pattern (equation (4.25)) of a gravitational-wave interferometer, averaged
over the polarization angle ψ, showing its sensitivity to incoming GWs from different directions
in the sky. The arms of the interferometer are oriented along the x and y axes in the plane
z = 0. The response of the detector, F (θ, ϕ), for incoming waves from a particular direction in
the sky is proportional to the distance to the point on the antenna pattern in that direction [23].
Sensitivity is strongest for GWs incoming in the ẑ direction, and is zero in the z = 0 plane, at
ϕ = π/4 and its π/2 multiples.

to make our searches robust to GWs from different locations and orientations in the sky. The
O4-era version of GSpyNetTree, described in Chapter 12, includes simulations of GWs coming
from all directions.

Note that due to its broad sky range and significant sensitivity towards most directions of
the sky, it is very unlikely that a GW event is missed, due to the direction of propagation of
GWs relative to each interferometer in the global network. However, different from conventional
telescopes, localizing an event in the sky in such a broad region is very challenging, which is why
various interferometers (in different locations of the planet) are needed. The following section
describes the GW interferometers that will be operating in the upcoming Observing Run, O4.

4.2. The global interferometer network

The global interferometer network for the upcoming Observing Run (O4), which will start in
late May 2023, will have four operating interferometers, located in different parts of the world,
as shown in Figure 4.4. These are LIGO Hanford, LIGO Livingston, Virgo, and KAGRA. In the
past, GEO600 was part of the global network. LIGO-India, the Cosmic Explorer (in the US),
and the Einstein Telescope (in Europe) will join the current GW detector network in the future.

LIGO stands for Laser Interferometer Gravitational-wave Observatory. There are two LIGO
interferometers in the United States, each with two perpendicular 4-km long arms. These are
located in Hanford, Washington, and Livingston, Louisiana. An in-depth description of the
aLIGO interferometers is given in Section 4.3. Virgo is a French-Italian Observatory located
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Figure 4.4: Global ground-based gravitational-wave detector network for the fourth LIGO-Virgo-
KAGRA Observing Run. This network is comprised of the two US LIGO sites (located in
Hanford, Washington, and Livingston, Louisiana), Virgo (in Italy), and KAGRA in Japan.
(Locations of the detectors obtained from [68]).

near Pisa, Italy. Different from LIGO, it has 3-km long perpendicular arms, but with very
similar instrumentation to that of LIGO, as described in Section 4.4. Unlike its three sister
observatories, KAGRA, the Kamioka Gravitational-wave Detector, is an underground cryogenic
interferometer located in the tunnels of the Kamioka mine in Japan. A brief description of
KAGRA is given in Section 4.4.

4.3. The Advanced LIGO (aLIGO) detectors

As explained in the previous section, the aLIGO detectors are, in their most simplified
version, Michelson-Morley interferometers. However, sophisticated instrumentation is needed
to convert them into stable, reliable, and sensitive detectors capable of detecting gravitational-
waves. This section describes the components and instrumentation of the current version of the
more realistic, aLIGO detectors shown in Figure 4.5, based on [2]. A more detailed discussion
of these components and subsystems is given in [69].

One of the most important components of aLIGO is the Pre-Stabilized Laser (PSL),
displayed in the box at the top-left of Figure 4.5. The detectors use an Nd:YAG 1064 nm

infrared laser, a neodymium-doped yttrium aluminum garnet solid-state laser crystal that is
capable of emitting a beam of ∼ 100 W power [2]. This is done to reduce the quantum photon
shot noise, described in Subsection 5.1.1. Thanks to a pre-mode cleaner cavity, a 10 cm-diameter
Gaussian beam (TEM00) is used2. Keeping the beam size small is crucial for mirror fabrication
purposes.

It is important to highlight that the intensity of the laser needs to be kept as constant as
possible. Small fluctuations in the pressure on the mirrors vary the power read at the output

2The Transverse Electromagnetic Mode (TEM) is the mode of a waveguide that has no electric and magnetic
fields in the direction of propagation. TEM00 is the lowest order mode.
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Figure 4.5: Realistic schematic layout of the aLIGO detectors. The main optical components
are shown in gray, while the path of the light beam is shown in red. Note that the path of the
beam is thicker within the Fabry-Perot cavities; this is a result of the increased intensity of the
light in the interferometer’s arms. Several components from the basic Michelson interferometer,
such as the input laser, the mirrors at the end of the arms, the beam splitter, and the Output
Photodiode are shown in the image, with additional instrumentation that increases aLIGO’s
sensitivity significantly. (Adapted from [2]).

photodiode and may mask GW signals. For this reason, a series of advanced sensors within the
PSL are used to maintain laser stability.

Just after the laser beam exits the PSL, it encounters the Input Optics, a collection of
three curved mirrors (displayed in gold in Figure 4.5) that aim to focus the beam so that it
propagates through the 4 km arms without spreading out. These mirrors are also called Input
Mode Cleaners (IMC). Besides stabilizing the beam, the IMC removes higher-order modes in
the input beam [70] and reduces noise due to variations in the beam’s wavelength. It is crucial
that the frequency of the laser beam is correctly matched to the natural frequency of the x and
y arm cavities.

Once the laser beam passes the Input Optics, it goes to the 50/50 Beam Splitter, where half
of the beam goes to the x arm and the other half, to the y arm. These arm cavities are made
up of two mirrors, one near the beam splitter and the other at the end of each arm, which form
a Fabry-Perot cavity. These optical systems are resonant for light of a particular wavelength,
which is why it is important that the frequency of the laser beam is matched to that of the
cavities. When this happens, the resonance of the cavity is excited, and the power of the light
inside the cavity is approximately 100 times larger than that of the original beam [2]. This is
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the reason why the red beam in both Fabry-Perot cavities of Figure 4.5 is thicker than in other
parts of the interferometer.

The mirrors of aLIGO are one of its fundamental parts, and they are engineered to mitigate
several noise sources (e.g., thermal noise)3. LIGO mirrors are made of fused silica, with low
hydroxide content, to mitigate infrared absorption which would otherwise heat up the mirrors
and affect their morphology [71]. They also have several layers of optical coatings which make
the detector more sensitive. As an example, the mirrors at the ends of the arms are almost
perfectly reflective - they only absorb one out of 3.3 million photons [71]. The aLIGO mirrors
are 34 cm in diameter, 20 cm thick, and weigh approximately 40 kg. They are usually called test
masses, as they respond to the gravity of other bodies (i.e., the GWs) while having negligible
gravity of their own [2]. These mirrors are supported by sophisticated pendulums, made up of
fused-silica suspension fibers, as described in Subsection 5.1.2.

After resonating in the Fabry-Perot cavities, the light goes back to the beam splitter. Some
of it is sent to the output photodiode, and another part will return to the input port. In order
to benefit from this unused light and increase the intensity of the light that arrives at the beam
splitter, aLIGO uses a Power Recycling Mirror, which forms a new cavity that is resonant to
the wavelength of the beam [72]. This way, the light that is not sent to the Output Photodiode
is recycled in the interferometer, increasing the detector sensitivity [2].

The light that goes toward the Output Photodiode arrives at a Single Recycling Mirror,
which works as another resonant cavity (but now for GW information that is ‘carried by’ the
laser beam that arrives at the Output port). This cavity boosts the intensity of the measured
GW signal in a desired frequency range, increasing the detector sensitivity [2]. Before arriving
at the Photodiode, the beam passes through the Output Mode Cleaner where higher order
modes of the beam resulting from misalignment of the optic systems are removed. This is done
with a cavity only resonant to the TEM00 mode. If these modes were not removed, excess power
would be read at the Output Photodiode, masking true GW signals [72]. Once there, the
signal is finally read, and the changes in laser beam power in time are converted to strain h(t),
as shown in the bottom left of Figure 4.5.

It is important to highlight that aLIGO has many more calibrators, sensors, and mechanisms
(e.g., suspensions) to mitigate noise sources and improve detector sensitivity. Their usage and
importance are discussed in Chapter 5.

4.4. The Advanced Virgo (AdVirgo) and KAGRA detectors

As aLIGO and AdVirgo have had very similar commissioning, their instrumentation and
detection mechanics are alike. Virgo’s arms are also Fabry-Perot cavities, an Input Cleaner
Mode is used to select a Gaussian mode, and a Power Recycling Mirror increases the intensity
of the laser beam. Compared to aLIGO, there are a few key differences, such as the length
of its arms (3 km) and 2 kg heavier mirrors. Before O4, just as in aLIGO, Virgo aims to
implement signal recycling. In addition to that, Virgo also aims to implement the usage of

3A deeper description of the types of noise sources of LIGO, as well as the ways to mitigate them, is given in
Chapter 5
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frequency-dependent squeezing and a new fiber laser (an upgrade from the O3 master-slave
Nd:YAG-Nd:YOV4 system4) [68].

KAGRA, on the other hand, differs highly from aLIGO and AdVirgo in a few aspects. In
order to minimize seismic noise, KAGRA is located 200 m underground (whilst its three sister
observatories are all at the ground level). Additionally, KAGRA uses sapphire mirrors as test
masses. These operate at cryogenic temperatures (i.e, T ∼ 20 K), reducing thermal noise [68].

Apart from these notable differences, KAGRA uses Fabry-Perot cavities in its 3 km perpen-
dicular arms, Power and Signal Recycling Cavities, and Input and Output Mode Cleaners just
as aLIGO. After two Engineering Runs (ER) and commissioning efforts, KAGRA joined the
global interferometer network in 2020 [68]. The next section explains the advantages of having
several detectors in a global interferometer network.

4.5. The benefits of a global interferometer network

Having several GW detectors in different locations and with different orientations is crucial
to determine the sky position of a given GW event. Even though the four detectors have different
sensitivities due to their instrumental differences, they complement each other to detect GW
events at varying distances in our Universe. One way to measure the sensitivity of a detector is
using the BNS range5, which is the distance at which a typical binary of two 1.4 M⊙ neutron
stars could be detected when averaging over all directions [69]. Figure 4.6 shows the BNS
ranges for a single-detector signal-to-noise ratio (SNR) threshold of 8 for LIGO, Virgo, and
KAGRA during the Observing Runs 1, 2, and 3 (O1, O2, and O3) and the expected BNS range
for Observing Run 4 (O4). Note that, even though LIGO has the highest BNS range, having
Virgo and KAGRA in the network is fundamental to make confident predictions and increase
sensitivity.

With only the LIGO and Virgo detectors, it is already possible to constrain the likely sky
location of GW events. Take GW170817, for instance. As explained in Section 3.1.4 the event
was constrained to a 28 deg2 sky region using the three detectors. At design sensitivity, LIGO
and Virgo are expected to resolve the sky position of a BNS GW event with a network SNR of
12 (more on this in the next Section) to a 5 deg2 region for 8% of all events [73]. This statistic
improves considerably with the inclusion of KAGRA in the global interferometer network, as
well as the planned IndIGO (LIGO-India) detector. It is also important to highlight that, as
interferometers have a higher BNS range, more events become detectable. This increases the
amount of GW events. As a matter of fact, the expected detection rate of O4 is approximately
one GW candidate per day [74]. This higher event rate requires increased levels of automation
for candidate event validation, which is where tools like GSpyNetTree are fundamental.

4.6. Searching for gravitational-waves

Up until now, we have studied how interferometers measure strain h(t) and the sophisticated
instrumentation used for these measurements. It is now time to understand how GW signals

4The Nd:YOV4 laser stands for Neodymium-doped yttrium orthovanadate.
5The BNS range as a measure of sensitivity is more thoroughly explained in Chapter 5.
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Figure 4.6: BNS range, in Mpc, for the LIGO, Virgo, and KAGRA detectors for the first four
observing runs. As mentioned in the previous section, KAGRA joined the global interferometer
network in 2020 during O3. While LIGO has the highest BNS range, having Virgo and KAGRA
in the global interferometer network is fundamental to have more confident predictions, to lo-
calize GW events in the sky map within a small credible region, and to be sensitive to a broader
distance range. (Adapted from [73]).

are found in the vast amount of (noisy) data that the interferometers generate.
GW signals interact very weakly with the interstellar medium before arriving to Earth, as

opposed to the light from EM signals. This gives the possibility of using matched filtering to
look for GWs in the data. Using this technique, the waveforms predicted from General Relativity
can be confronted with the measurements performed by the interferometer [2]. Matched filtering
allows the recovery of a known signal (the GR waveform, or template) that is embedded in the
background noise. By comparing the data from the detector, s(f), with the waveform template,
h(f), (with f the frequency) we can calculate the signal-to-noise ratio (SNR), ρ, as [75]:

ρ2 =
||⟨s, h⟩||2

⟨h, h⟩
, (4.26)

where the inner product is given by:

⟨a, b⟩ = 4 Re

(∫ ∞

0

a(f)b∗(f)

Sn(f)
e2πift df

)
. (4.27)

Note that the product of a(f) and b∗(f) is normalized to the power spectral density (PSD,
view Chapter 5) of the noise Sn(f), and is integrated over all frequencies. Using the Fourier
transform, the calculation can be translated to the time domain.

In case a GW is detected, we would get a value of ρ ≳ 8 that could not otherwise result
from Gaussian noise fluctuation (LIGO’s noise is mainly Gaussian; however, there might be
non-Gaussian fluctuations, known as glitches, which might mask true GW signals as described
in Chapter 6). CBC searches use this matched filtering technique to find signals ranging from
1M⊙ to 100M⊙.

An additional benefit of the global interferometer network is that it further permits the
confirmation of a true GW event. All detectors should detect the same GW event almost
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simultaneously, only differing by a small difference in time of detection due to the propagation
velocity of GWs, c, if the event is within their SNR range. If an event was detected by a single
interferometer, it is possible that the triggered GW candidate was not astrophysical in origin,
but terrestrial. This is why using the network SNR6, ρnet, for n detectors [2],

ρnet =
√
ρ21 + ρ22 + · · ·+ ρ2n, (4.28)

is fundamental to evaluate the significance of the trigger. Comparing the network’s SNR to the
rate at which noise sources produce similar triggers, gives the False Alarm Rate (FAR) [2].

It is important to note that, while aLIGO and AdVirgo also perform searches for bursts
(using wavelets), CWs (also with matched filtering), and stochastic gravitational-wave signals
(using coherence methods), these methods differ considerably from CBC searches, and are out
of the scope of this thesis.

The next chapter discusses how data quality is measured (and assured) in aLIGO, and which
noise sources affect GW searches, along with a description of the mitigation of many of them.

6Section 6.1 discusses a redefinition of this metric to reduce false triggers due to glitches.
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5 Assuring LIGO-Virgo data quality and sensitivity:

noise sources and mitigation

In order to confidently predict gravitational-waves, aLIGO needs to be very sensitive. The
sensitivity of the aLIGO and Virgo detectors is measured in two ways. The BNS range, as
explained before, dictates how far away a binary neutron star merger with 1.4 M⊙ component
masses can be detected, averaging over all sky locations and orientations [2, 69]. Figure 4.6
shows the previous (O1, O2, and O3) and expected (O4) BNS ranges for all detectors in the
current global interferometer network. This BNS range is calculated from the Power Spectral
Density, PSD, which is also used to characterize the detectors. Transforming the strain data
h(t) (shown in Figure 3.5 and in the bottom-left inset of Figure 4.5) from the time domain to
the frequency domain via the Fourier transform, the power spectrum characterizes the behavior
of the detector for different frequencies [2]. A plot of the ASD (Amplitude Spectral Density,
the square-root of the PSD) of the LIGO and Virgo detectors during the first half of the third
Observing Run (O3a) is shown in Figure 5.1.

Figure 5.1: Amplitude Spectral Density (ASD), given in units of 1/
√
Hz, of LIGO Hanford (in

red), LIGO Livingston (in blue), and Virgo (in violet), during the first half of O3 (O3a). Note
that the most sensitive detector is LIGO Livingston, followed by LIGO Hanford. Many of the
peaks in the ASD at particular frequencies are associated to certain noise sources, as described
in the text. (Reproduced from [7]).

Note that there are several peaks at determined frequencies in the ASD data for the three
detectors. At such frequencies, there is a high amplitude sinusoidal component of the noise;
and most of these peaks have a known origin. For instance, the lines at 500 Hz and harmonics
correspond to mechanical resonances of the fused silica fibers used to suspend the mirrors in the
arms of the detectors [2]. The lines at 60 Hz and harmonics (for LIGO, 50 Hz for Virgo), appear
due to the AC power grid in the US and Italy, respectively. During the previous observing
runs, these lines were removed in high-latency searches, while it is expected that a non-linear
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subtraction of these power artifacts occurs for aLIGO in low-latency for O41. GSpyNetTree is
robust to background noise with and without such lines.

Besides the ones described above, LIGO is subject to a plethora of other noise sources that
limit detector sensitivity. The next section describes the most common noise sources in aLIGO
and how they are mitigated.

5.1. Principal noise sources and mitigation

Due to the sensitivity that GW detectors are designed to have, several sources of broadband
noise impact the interferometers and limit their sensitivity to astrophysical events. Many of the
sources do not vary in time (i.e., are stationary) and are Gaussian in nature. However, some
others do not satisfy these conditions and impact considerably the signals that can be detected.
The most relevant noise sources in aLIGO are described in the following subsections.

Figure 5.2 shows the dominant noise sources in aLIGO, which will be described in the
following subsections.

Figure 5.2: Amplitude Spectral Density (ASD) of the principal noise sources of aLIGO as a
function of frequency, explained in Subsections 5.1.1 through 5.1.4. The ‘Excess gas’ noise, in
pale green, is due to residual gas molecules in the arms of the interferometer, and the ‘Coating
Brownian’ noise is the fundamental contribution of thermal noise [2], described in Subsection
5.1.2. At low frequencies, the ‘Newtonian’ (in green), ‘Suspension Thermal’ (in blue), and ‘Seis-
mic’ (in brown) noise sources do not permit GW detection below 10 Hz. At higher frequencies,
the detection sensitivity is limited by the ‘Quantum Vacuum’ noise, shown in purple. (Figure
generated using the Gravitational Wave Interferometer Noise Calculator, pygwinc [76]).

1The difference between high and low-latency searches lies on the time it takes to process the data. BNS
searches, for instance, always need to be done in low-latency to allow for a rapid EM response.
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5.1.1. Quantum Noise

The Quantum Noise, or ‘Quantum Vacuum’ noise as labeled in Figure 5.2, has two main
contributions: radiation pressure at low frequencies, and quantum shot noise at high frequencies.
It is the contribution of the latter what limits GW detection at high frequencies.

Shot noise arises from the impossibility of measuring light intensity exactly, therefore lim-
iting the measurement in the difference in the length of the arms, ∆L, and the strain h(t). As
light intensity fluctuates randomly, so does ∆L and h(t). This comes from the counting error of
the photons of the beam in the photodiode - which follows a Poisson distribution, and is due to
the particle nature of light. This shot noise is given by [77]:

hshot(P ) =
1

NL

√
ℏcλ
2πηP

, (5.1)

with λ the wavelength of the light (1064 nm in the case of LIGO), η de quantum efficiency of
the photodiode (η ∼ 1), P the input power of the light into the interferometer, and NL the
effective arm length, with L the arm length (4 km for aLIGO, 3 km for AdVirgo) and N the
number of roundtrips a photon completes within the Fabry-Perot cavities of the arms.

Note that, by increasing laser power, the overall number of photons augments as well, and
the fractional error on the measurement of the power, P , will decrease, lowering the relative shot
noise, hshot(P ). Nevertheless, laser power cannot be arbitrarily increased due to the radiation
pressure noise.

Each photon arriving at the mirror of each arm exerts a force over it and transfers momentum
to that mirror [2]. As the power increases, pressure fluctuations on the test masses augment,
due to the number of photon collisions. This effect generates an additional motion of the test
masses that potentially masks GW signals. The radiation pressure noise is given by [77]:

hrad(f, P ) =
N

mf2L

√
2ℏP
π3cλ

, (5.2)

with f the frequency and m the mass of the test masses. To minimize this noise, LIGO makes its
mirrors very massive (they weigh approximately 40 kg, as explained in Section 4.3). The higher
the mass of the optical elements, the lower the unwanted motion due to radiation pressure.
Note that this noise dominates at lower frequencies, whereas hshot(P ) dominates for higher
frequencies.

As we aim to detect GWs in a broad frequency range, it is fundamental to find the pressure
P that minimizes both types of noises and maximizes the sensitivity of the detectors. This
happens when hshot(P ) = hrad(f, P ). Solving for P from Equations (5.1) and (5.2) we get:

P =
πcλmf2

2N2
. (5.3)

The Quantum Noise (or Quantum Vacuum Noise) is given by,

hquantum(f, P ) =
√
h2shot(P ) + h2rad(f, P ). (5.4)
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Using the optimal power P from Equation (5.3), we find that the Quantum Noise - often known
as the Standard Quantum Limit (SQL), is given by [77]:

hquantum(f) =
1

πfL

√
2ℏ
m
. (5.5)

Using the power recycling and signal recycling cavities, as well as other optical devices
described in Chapter 4, GW detectors aim to generate the optimal power from Equation (5.3)
that minimizes this quantum noise.

5.1.2. Thermal Noise

LIGO’s mirrors (and their suspensions) are subject to thermal noise like all physical objects
with non-zero temperatures are. As seen in Figure 5.2, there are mainly three contributors to
the thermal noise, namely: ‘Coating Brownian’ (in red), which is the dominant LIGO noise at
100 Hz, ‘Suspension Thermal’ (in blue) which is one of the main limiting sources below 10 Hz
(and one of the reasons why space-based interferometers are needed to detect low-frequency GW
signals), ‘Substrate Thermo-Elastic’ (in yellow), and ‘Substrate Brownian’ (in orange). These
last noise source, which is one of the least significant ones, comes from the thermal excitation
of the mirrors themselves [2].

The ‘Coating Brownian’ noise, as its name suggests, results from an analogy with Brownian
motion - the random walk of particles that collide with molecules that move with thermal
energy [2]. This dictates the random nature of kinetic energy in all parts of a macroscopic system
at non-zero temperature. In LIGO’s mirrors there exists residual thermodynamic motion of the
individual atoms in its surface. As these mirrors are coated with several layers of materials that
help increase their reflectivity (and therefore, their sensitivity), there is a mechanical coupling
which translates into mechanical friction. The coatings of mirrors are one of the main sources
of friction in an interferometer [72].

The ‘Suspension Thermal’ noise results from the thermal excitation of the suspension fibers
that hold the mirrors of the interferometer, which makes them exhibit random motion. The
thermal motion in a resonant system such as this one is concentrated at frequencies close to the
resonance. Therefore, at high frequencies, this noise source is significantly low compared to the
coating thermal noise [2].

Mitigating Thermal Noise

Mitigating Thermal Noise in aLIGO is one of its most challenging aspects. The first approach
to noise reduction is lowering the temperature of the mirrors and the suspensions. However, in
order to have a considerable reduction of the noise, such temperatures need to be very cold (near
the absolute zero) at all times. A more feasible solution is using materials and construction
methods that minimize mechanical losses.

The fused-silica suspension fibers that hold the mirrors have a special tapered shape that
minimizes any kind of thermal motion in them. They assure that the broadband suspension
thermal noise is low above 10 Hz. The size, weight and cylindrical shape of the mirrors are
carefully designed to make the resonance frequencies as high as possible to avoid the frequency
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band to which the detectors are sensitive. The lowest of them is designed to be at 6.8 kHz.
Additionally, all the optical elements are assembled in such a way that the friction among them
is reduced. The suspension fibers and the mirrors are joined by polishing the pieces to be flat to
a fraction of an optical wavelength [2] and then ‘pasted’ with a liquid solution of silica powder.
These pieces are then joined under pressure, so they are free of resonances and have very low
friction. Lastly, the optical reflective coating of the mirrors needs to be highly reflective, have
low absorption, and have the capability of limiting the amount of scattered light (Scattered
light is one of the most common glitches in aLIGO). Despite being ∼ 0.1 mm thick, they have
very high internal friction and are the main thermal noise source for frequencies above 10 Hz.
Research in new coating materials is being carried out to achieve design sensitivity levels, and
mitigate scattered light.

5.1.3. Seismic Noise

At low frequencies, ‘Seismic’ noise (ground motion due to human activity, wind, water, and
Earth’s seismic activity [9]) is one of the most limiting noise sources. This is due to the fact
that it falls as [77],

hseismic(f) =
A

f2
m√
Hz

, (5.6)

with A a constant that depends on the site where the interferometer is located. LIGO uses
several techniques to mitigate seismic noise, which has made this noise negligible above 10 Hz,
as described below.

Mitigating Seismic Noise

In order to reduce the possibility of gravitational-waves being masked, several systems that
mitigate seismic noise (and control the position of the mirrors) are used. The mirrors of aLIGO
are suspended with four glass fibers of 0.5 mm diameter and ∼ 60 cm long. Pendulum suspen-
sions are used due to their ability to protect the mirrors from seismic motion.

A pendulum suspension with resonant frequency fr provides an isolation factor of f2r /f2

above fr, which is an isolation factor of 100 at 10 Hz for a 1 Hz pendulum [77]. By using
N pendulums, the attenuation effect increases by (f2r /f

2)N . In aLIGO, four pendulums in
series are used to deliver much of the seismic noise mitigation, providing an isolation effect of
(f2r /f

2)4 = (fr/f)
8. This ‘quadrupole-pendulum system’, also known as Passive suspension, is

shown in Figure 5.3.
To further reduce motion, the ‘quadrupole pendulum’ system is hung from a servo-controlled

platform, as shown in the left panel of Figure 5.4. These systems monitor and control the velocity
and position of a motor based on a feedback signal. LIGO’s servo controls use several low-noise
seismology sensors, which track motion and rotation around the x̂, ŷ, and ẑ directions, and
magnetic motors to control these movements [2]. With the usage of all these seismic isolation
techniques, Seismic noise is almost negligible for all frequencies above 10 Hz.
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Figure 5.3: Optic suspensions of LIGO’s mirrors. Left panel: Schematic showing the four
pendulums in series used to suspend the mirror and mitigate seismic noise. The top two masses
are made of steel, and the bottom two are made of pure fused silica. These last two are held
with fused-silica fibers. (Figure adapted from [78]). Right panel: Real view of one of LIGO’s test
masses installed in its quadrupole suspension system. Image credit Caltech/MIT/LIGO Lab.

Figure 5.4: Left: Schematic of the passive suspensions (quadrupole pendulums) hanging from a
multi-staged servo-controlled platform made up of mass-spring systems that provide additional
seismic isolation. Right: The LIGO vacuum system, where the entire seismic isolation system
from the left panel is housed. The external supports, shown in blue, provide an additional
isolation layer [2]. (Figure adapted from [2]).

5.1.4. Newtonian Noise

Newtonian ‘Gravity’ Noise receives its name from the Newtonian gravitational attraction
between the interferometer’s mirrors and its surroundings. This kind of noise, which depends
on the location of the detector, arises from local gravitational gradients of uneven distributions
of matter around the interferometer that cause unwanted motion in the mirrors and masks GW
signals [72].
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There are two main causes of Newtonian noise: the movement of the buildings that house
the detectors, and density fluctuations in the ground under the detectors. For the first noise
source, the tilt of the optics (i.e., mirrors and suspensions) may be adjusted to reduce the
relative movement [72]. However, for ground density fluctuations, no mitigation strategies to
counteract movement exist yet. Most fluctuations in density are due to seismic waves (i.e., as the
compression wave passes, the interferometer is pulled toward the more compressed, denser earth,
moving the detector’s mirrors [2]). These density fluctuations are random and non-stationary;
however, they occur at ∼ 7 Hz, and are not one of the dominant sources of low-frequency noise
for LIGO and Virgo.

In the future, ‘Newtonian’ Noise will be one of the most limiting noise sources for ground-
based detectors at low frequencies, as shown in dark green for the Cosmic Explorer in Figure 5.6.
While placing detectors underground (like KAGRA and the Einstein Telescope in the future - see
Section 5.2.1) reduces the Newtonian noise significantly, lower frequencies will only be accessible
in space-based interferometers, such as LISA, described in Section 5.2.2.

5.2. Detecting gravitational-waves in a broader frequency range:
next-generation GW detectors

While the current network of GW interferometers (see Section 4.5) allows us to explore our
gravitational-wave universe for objects with high frequencies, there is much to explore in other
frequency bands.

Figure 5.5: Noise curves for LISA, aLIGO, the Einstein Telescope (ET), and the Cosmic Explorer
(CE) as a function of frequency, along with the strain of potential astrophysical noise sources
these interferometers might detect. Low-frequency signals (namely resolvable galactic binaries,
massive binaries, and extreme mass ratio inspirals) are only detectable by LISA. Higher frequency
signals, like Compact Binary Coalescences (CBCs) and core-collapse supernovae (Figure adapted
from a plot generated with the gravitational-wave sensitivity plotter [79]).

There are two ambitious plans for new generation GW ground-based observatories: the
European Einstein Telescope (ET [55]) and the US Cosmic Explorer (CE [54]), as well as the
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first space-based observatory, LISA (Laser Interferometer Space Antenna [48]). Figure 5.5 shows
the strain against frequency for these detectors (and aLIGO, for reference) and the detectable
range of a variety of possible astrophysical sources. Note that the idea of having additional
detectors is not to replace any GW interferometers, but rather to complement and augment the
frequency band to which the current GW detector network is sensitive2. The following sections
briefly describe these three proposed detectors.

5.2.1. The Cosmic Explorer and the Einstein Telescope

The Einstein Telescope (ET [55]) and the Cosmic Explorer (CE [54]) are two proposed
ground-based gravitational-wave interferometer detectors planned to be built in Europe and the
US in the 2030s. Instead of having 3 km and 4 km long arms, ET envisions 10 km arms while
CE plans two detectors, one with 40 km long arms and the other with 20 km long arms.

Figure 5.6: Amplitude Spectral Density (ASD) of the principal noise sources of the Cosmic
Explorer (CE). Note that most of them are shared with the ones from aLIGO, but have much
lower noise than the current GW interferometer. Note that, at lower frequencies, the most rele-
vant noise source for CE will be ‘Newtonian’ noise, while the ‘Seismic’ and ‘Suspension thermal’
noise sources will not suppose a problem at such frequencies. Additionally, the ‘Coating thermal’
noise, which is the most relevant thermal noise for aLIGO, will not be a considerable noise source
either. (Figure generated using the Gravitational Wave Interferometer Noise Calculator, [76]).

In order to reduce seismic noise and Newtonian noise, ET is planned to be underground; and
instead of the classic Michelson-Morley ‘L’-shaped interferometer design, it will have a triangular
form with three detectors (just as LISA), as shown in the left panel of Figure 5.7. Each detector
consists of two interferometers. This topology will permit the recovery of the polarization of a

2Other proposed instruments, such as Pulsar Timing Arrays, intend to explore GWs at much lower frequencies
than LISA.
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signal using a single observatory [2].
On the other hand, the CE is designed toward detecting specific GW sources, and just

like LIGO, Virgo, and KAGRA it is based on the Michelson-Morley interferometer shown in
Figure 4.1. The 20 km antenna is targeted toward observing the final phase of neutron-star
merger signals, whereas the 40 km long one aims to observe BBH mergers at the edge of the
universe [2]. Figure 5.6 shows the main noise sources that the CE will have. Note that, as
mentioned in Section 5.1.4, the most limiting noise source at low frequencies will be Newtonian
noise.

It is expected that both CE and ET will have ten times more sensitivity than current GW
detectors. This will put mostly all coalescing binaries of ∼ 100M⊙ within the detectable range
of ground-based detectors [2].

5.2.2. LISA: the Laser Interferometer Space Antenna

The Laser Interferometer Space Antenna, LISA [48], is a European Space Agency (ESA)
led mission (with important contributions from NASA) that aims to build the first space-based
gravitational-wave interferometer. Just like ET, LISA will be triangular-shaped: three detectors,
each consisting of two interferometers, will be arranged in a triangular topology, moving along
a heliocentric orbit similar to Earth’s [48]. LISA’s arms will be approximately 2.5 million km

long; several orders of magnitude larger than those of ground-based GW interferometers. A
conceptual design of LISA is shown in the right panel of Figure 5.7.

Figure 5.7: Conceptual designs of the Einstein Telescope (ET [55]) and the Laser Interferometer
Space Antenna (LISA [48]). ET will be built underground whereas LISA will be the first space-
based GW interferometer. Note that, different from aLIGO, Virgo, KAGRA, and the future
Cosmic Explorer (CE [54]), ET and LISA consist of three detectors arranged in a triangular,
equilateral topology, and each of them consists of two interferometers. Image credit EGO (Eu-
ropean Gravitational Observatory) and NASA-ESA, respectively.

Without seismic and Newtonian noise, LISA will be able to detect signals ranging from
100 µHz to 0.1 Hz, which are invisible to current GW interferometers. This will allow LISA to be
sensitive to sources all ground-based detectors will not be able to discover, such as binary white
dwarf systems (see Section 3.1.6), supermassive black hole (SMBH) mergers (with 103 M⊙ ≤
M ≤ 107 M⊙), and GWs from extreme mass ratio inspirals (EMRIs), where a stellar compact
object (with M ≤ 60 M⊙) decays slowly around a massive black hole (∼ 105 M⊙). LISA will
be also sensitive to detect the continuous waves (CWs) emitted by BNS and BBH systems in
their inspiral phase in the Milky Way [48].
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6 Transient noise: the impact of glitches on detecting

gravitational-waves

Besides the noise sources described in Chapter 5, GW detectors are prone to other non-
astrophysical transients, commonly known as glitches. These short-lived, non-Gaussian instru-
mental noise signals are particularly problematic when they mask and/or mimic the morphology
of gravitational-waves, as they may generate false-positive candidates [12, 80, 81], corrupt data,
and bias astrophysical parameter estimation (PE) [82–84].

In this sense, glitches impose an additional challenge for GW searches (see Section 4.6). If
aLIGO noise was perfectly Gaussian, the matched filter SNR from Equation (4.27) alone would
be enough to search for GWs. However, since LIGO and Virgo data have glitches, additional
consistency tests between the data and the GR predictions are required to discriminate real GW
signals from terrestrial and instrumental noise sources. The following section describes the χ2

discriminator [85], a widely-used and more accurate method for GW signal searches. The rest
of this Chapter is dedicated to understand the most frequent glitches in the LIGO detectors.

6.1. The χ2 discriminator: the impact of detector noise on searches
for gravitational-waves

An ideal GW-vs-glitch discriminator would veto all glitches and validate all astrophysical
signals [75]. While such perfect test does not exist, one of the most widely used discriminators
in GW searches is the χ2 discriminator [85]. This test is employed by the PyCBC [86] matched-
filter algorithm to perform GW searches in gravitational-wave detector data.

The χ2 method divides the frequency space spanned by the waveform template into bins of
equal energy, and checks if each bin of the data with a candidate event contributes the expected
amount of energy [2, 75]. This discriminator is given by [85]:

χ2 =
1

2p− 2

p∑
i=0

||⟨s, hi⟩ − ⟨hi, hi⟩||2, (6.1)

with p the number of frequency bins, which depends on the duration of the template, hi the
waveform template in each of these bins, and s the detector data (Note that hi and s are
functions of frequency). The inner product ⟨·, ·⟩ is defined in equation (4.27). If χ2 > 1, the
calculated SNR is re-weighted with the χ2 discriminator to produce a re-weighted SNR, ρ̃ [75]:

ρ̃ =


ρ if χ2 ≤ 1,

ρ

[
1

2
(1 + (χ2)3)

]−1/6

if χ2 > 1.
(6.2)

If there is a good match between the detector data and the signal template, ρ̃ = ρ. However,
if there is a mismatch, ρ̃ will decrease [2], suggesting the candidate is not astrophysical in origin.
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Figure 6.1 shows an example of the SNR, re-weighted SNR, and χ2 discriminator applied to a
gravitational-wave signal (GW170814) in the top panel, and to a Blip glitch (a loud and common
glitch in LIGO data, see Subsection 6.2.1) in the bottom pannel. Note that, while the SNR for
the glitch is even higher than for the GW signal, when it is re-weighted with the χ2 discriminator,
it reduces the astrophysical relevance of the event. On the other hand, the SNR and re-weighted
SNR are almost the same for the time of GW170817.

Figure 6.1: Matched-filter signal-to-noise ratio (SNR, in blue), re-weighted SNR (in orange), and
χ2 squared discriminator (in green), along with time-frequency (spectrogram) visualizations for
GW170814 (top panel) and a Blip glitch (bottom panel). The matched-filter SNR and re-
weighted SNR are almost equivalent for the astrophysical signal, but differ considerably for the
glitch. As the time-frequency evolution of the glitch does not match the waveform template, the
glitch is rejected as a GW candidate. (Image generated with PyCBC [86], based on Figure 5
of [2]).

The effectiveness of this test depends on the duration of the signal and the number of bins
(p) used in the test [80]. The test is very effective for long duration signals; rejecting a variety
of glitches for such candidates. However, if the noise transients are morphologically similar (in
time and frequency) to gravitational-waves, the discriminator will not be an effective method to
distinguish glitches from real astrophysical events. In such cases, the usage of further specialized
tools that aim to detect these glitches, such as the one developed in this thesis - GSpyNetTree,
are required.

6.2. Types of glitches

While there is a plethora of glitches that affect LIGO and Virgo data, the most problematic
cases of transient noise are those that mimic the behavior of real GW events. Some of these
glitch classes have a known cause. However, the origin of most of them is yet to be understood.
Table 6.1 summarizes the characteristics of the glitches that have been found to share morpho-
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logical similarities to GW candidates [13], and, thus, the most problematic ones for identifying
real astrophysical events. These are the types of glitches that GSpyNetTree considers.

Glitch Type Frequency Range [Hz] SNR Duration [s] Morphology
Blip 80− 500 ≈ 10 ≪ 1 Pulse

Low-frequency Blip 10− 100 ≈ 10 ≪ 1 Pulse
Koi Fish 10− 1000 > 100 ∼ 1 Loud pulse
Tomte 10− 100 ≈ 10 < 1 Pulse

Scratchy 50− 500 < 10 ∼ 2 Drifting frequencies / “Comb”
Light Scattering 20− 200 ≈ 10 < 2 Arches
Fast Scattering 20− 200 ≈ 10 < 2 Energy blops in close succession

Low-frequency Lines 10− 20 ≈ 10 0.1− 2 Lines

Table 6.1: Summary of the most important glitch classes in LIGO-Virgo data, known to be
morphologically similar to gravitational-wave signals. The frequency range, SNR, duration, and
morphology are described for each type of glitch. Note that the longest glitches in duration
are Scratchy, Light Scattering, Fast Scattering, and Low-frequency Lines, all with different
morphologies. In contrast, the shortest glitches in duration all have pulse-like morphologies. It
is important to note that all these glitch classes are included in GSpyNetTree. As described in
Chapter 9, GSpyNetTree considers that the morphology of each glitch makes it more similar to
GW signals in specific mass ranges than others; and uses this to determine in which of its three
classifiers they should be included. (Table based on [72]).

The rest of this Section is devoted to explain each of said glitches, their causes, and possible
mitigation techniques (if known), based on [12]. A time-frequency visualization of each of the
signals of Table 6.1, displayed in the time duration that best captures each of their morphologies1,
is shown in Figure 6.2.

6.2.1. Blip and Low-frequency Blip glitches

Blip transients are short duration glitches with high frequency bandwidth and no known
instrumental or environmental coupling [12]. Due to its morphology, as seen in Figure 6.2(a),
they may resemble a GW signal in a broad mass range. As a matter of fact, they are problematic
within the entire range of masses contemplated by GSpyNetTree (5M⊙ ≤M < 250M⊙). Due
to their duration and large bandwidth, they overlap significantly with the shortest templates
used in matched-filter searches, reducing the effectiveness of GW searches [12].

During the second observing run (O2), approximately 2 blip glitches per hour occurred in the
two LIGO laboratories. This rate increased to about 4 per hour in the Livingston Observatory
in O3. While these glitches have been found in all detectors (including Virgo), they do not occur
in coincidence at either site, confirming they are not astrophysical in origin. As a matter of fact,
the rate of blips follows a Poisson distribution [12].

One of the fundamental issues with Blip glitches is that they are typically not registered
by the witness sensors that monitor the detector, impeding their systematic removal from the
analyses [72]. So far, the origin of only a subset of them has been found to be correlated with
instrumental issues, including computer timing errors. Many other investigations on the origin
of Blip glitches have been pursued, including studies of correlations between low humidity or

1Figure 10.2 shows time-frequency visualizations of these glitches in the time-ranges considered by GSpyNet-
Tree.
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Figure 6.2: Time-frequency visualizations for the most problematic glitch classes (a-h) in LIGO-
Virgo data, along with a spectrogram of a clean detector background time (i) - i.e., without
a glitch. Note the diversity in duration and morphology among glitch classes; this is why
some of them are more similar to GWs in certain mass ranges than others - as considered by
GSpyNetTree. The glitch classes shown in this Figure are: (a) Blip, (b) Low-frequency Blip, (c)
Tomte, (d) Koi Fish, (e) Scratchy, (f) Low-frequency Lines, (g) Light Scattering, and (h) Fast
Scattering.

high energy cosmic rays with the high rate of Blips, both of which did not find the respective
phenomena responsible for these glitches [87]. Thus, the origin of the vast majority of blips
remains unexplained.

Similar to Blips, Low-frequency Blips have no known origin. Due to their morphology, they
are most likely to mimic short-duration GW transients, like signals from high-mass (50 M⊙ ≤
M < 250 M⊙) and extremely high-mass (M ≥ 250 M⊙, as defined by GSpyNetTree) CBCs
hindering detection. Low-frequency blips appeared during the third observing run (O3), they
were first detected by Gravity Spy [3], and receive their name from their morphological similarity
with Blips, but at much lower frequencies (namely, between 32 and 128 Hz) [88].

6.2.2. Tomte glitches

Just like Blips, Tomte glitches have SNR ≈ 10, as shown in Table 6.1. However, they
typically impact frequencies below 128 Hz (see Figure 6.2(c)). Although they have not been
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mitigated yet, their origin is associated to the response in the controlling system of the mirror
[72].

6.2.3. Koi Fish glitches

Koi Fishes are short, very loud glitches (SNR > 100) in LIGO and Virgo data, which saturate
spectrogram visualizations almost in the entire frequency band, as shown in Figure 6.2(d). They
are a problematic source of noise because they cause sudden and substantial reductions in the
sensitivity of the detectors [12], besides being very frequent in detector data. Just in O3,
they occurred with an average rate of 3.3/hour and 3.5/hour at the Livingston and Hanford
Observatories, respectively. Similar to Blips, their rate follows a Poisson distribution, and no
coupling with the detector has been found yet [12].

6.2.4. Scratchy glitches

Scratchy glitches, which appear to affect the 50 - 500 Hz band (see Figure 6.2(e)), are clusters
of vertical lines with excess power in detector data. Despite only occurring once or twice per
day, their long duration and variable frequencies make them a problematic source of noise,
especially for low-mass gravitational-wave signals from CBCs (5 M⊙ ≤ M < 50 M⊙, based on
the definition used in GSpyNetTree).

6.2.5. Low-frequency Lines

Low-frequency Lines are the type of glitches that affect the lowest frequencies in LIGO-
Virgo data. They started to be more common in the third observing run, and overlapped with a
significant amount of candidates, especially in Virgo. These glitches have no known origin yet.

6.2.6. Scattering glitches

As their name suggests, Scattering glitches are due to scattered light. These type of glitches
surge when part of the laser light gets scattered off of the mirrors, hits a surface (i.e., the scatterer,
which can be a reflective source or optic mounts, for instance) and rejoins the main beam [12], as
shown in Figure 6.3. The amplitude of the glitch depends on the amount of scattered light that
recombines with the main beam; and, its maximum frequency, on the strength of the relative
motion between the mirror and the scatterer [12]. Scattering was one of the prevailing glitches in
O3, and it came in two different morphologies: Light Scattering (or Slow Scattering, see Figure
6.2(g)) and Fast Scattering, as shown in Figure 6.2(h).

Light Scattering (or Slow Scattering) arches occur due to high ground motion in the micro-
seism band (i.e., 0.1 - 0.3 Hz), and affect GW sensitivity between 20 Hz and 120 Hz. During
periods of intense ground motion, the scattered light can be reflected multiple times between
the mirror and the scatterer. In this cases, higher frequency harmonics of the scattering arches
can be visualized in spectrogram visualizations. On the other hand, Fast Scattering glitches are
correlated with ground motion between 1 Hz and 6 Hz. Some causes of these glitches are human
activity and thunderstorms near the LIGO sites [12]. This type of glitch is more frequent in the
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Figure 6.3: Schematic representation of the occurrence of scattering in the Fabry-Perot cavity
of one of LIGO’s arms. Light gets scattered in the mirrors of the interferometer, as shown with
the arrows. After reflecting in a particular surface, it recombines with the main beam. (Figure
adapted from [89]).

Livingston Observatory than in Hanford, and this is due to the passing of trains near the Y arm
of the former [90].

6.3. Importance of glitch mitigation and subtraction

Glitches impose an additional challenge in LIGO-Virgo data analysis. While the first step in
the pipeline is to detect these glitches (which is where tools like GSpyNetTree are used), gating,
mitigating, and subtracting them are the steps that follow. The latter procedures become
particularly important when glitches overlap with candidate signals (especially those that may
trigger an electromagnetic follow-up campaign, like BNS and BHNS systems), and are necessary
to accurately estimate the parameters of the sources that originated the GW signals.

A famous example of a loud glitch overlapping with a signal is that of GW170817, the first
detection of a BNS system (see Section 3.1.4). This glitch happened 1.1 s before the coalescence
time of the event, and overlapped in time and frequency with the final merger stage of the GW,
as shown in the top panel of Figure 6.4. Using several techniques, the glitch was subtracted
from the data so the parameters (e.g., sky location) of GW170817 could be estimated, and the
electromagnetic search of the event could follow.

To remove this glitch (or, in general, any glitch) from the data without impacting consid-
erably the trace of the GW signal, several methods can be applied. In the case of GW170817
it was first important to do a rapid analysis (without the glitch) that could generate a better
sky localization of the signal and facilitate the EM follow-up campaign. In this process, the
gating algorithm of the PyCBC [86] library was used. In gating, using the strain h(t), the data
around the time of the glitch is set to zero before running the matched filter algorithm. To do
this process, the data is multiplied by a Tukey window function centered on the time of the
peak. The usage of the Tukey window, also known as the cosine-tapered window, assures no
discontinuities are induced in the input data. The window applied for this event is shown in
the gray curve in the bottom panel of Figure 6.4. This process allowed a rapid reanalysis of the
source and constrained GW170817 to a smaller region in space.

The process previously described may induce severe miscalculations in the parameters of the
source. To accurately estimate the ones of GW170817 (and in general, any other signal), more
sophisticated techniques need to be applied. In the case of GW170817 (and 15 candidates in
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Figure 6.4: Top panel: Time-frequency visualization of the last 10 seconds of GW170817 as
observed in the raw data of the LIGO Livingston observatory. Despite the loud glitch, which
occurred 1.1 s before the coalesce time, the track of the signal is clearly visible. Bottom panel:
Strain h(t) data in the time domain of time around the glitch. To calculate the sky location of
the GW, a rapid analysis used a Tukey window (in gray, right axis) to zero the data around the
glitch. To further measure the source’s properties, the glitch was modeled with BayesWave [91],
an algorithm that generates a model of the glitch based on a wavelet reconstruction (shown in
blue), and subtracted afterwards (Reproduced from [38]).

O3) [92], BayesWave [91] was used to perform glitch subtraction2. The following paragraphs
outline the basic method BayesWave uses to subtract glitch data, based on [92].

The BayesWave algorithm assumes that in each interferometer, the timeseries data h(t) from
the detector is a linear combination of Gaussian noise, n(t), an astrophysical signal, s(t), and a
glitch (or glitches), g(t) [92]:

h(t) = n(t) + s(t) + g(t). (6.3)

Both the signal and the transient noise (glitches) are modeled using a sum of sine-Gaussian
(Morlet-Gabor) wavelets, which are given in the time domain by [91]:

Ψ(t;A,Q, f0, t0, ϕ0) = Ae−(t−t0)2/τ2 cos (2πf0(t− t0) + ϕ0). (6.4)

with τ ≡ Q/(2πf0). The parameters of the wavelet are Q the quality factor, A the amplitude,
ϕ0 the phase offset, and t0 and f0 the central time and frequency, respectively. The number of
wavelets used, and their parameters, are calculated using a transdimensional MCMC (Markov

2Other algorithms, like gwsubtract [93], have also been used to mitigate glitches in LIGO-Virgo data.
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Chain Monte Carlo)3 [91].
Glitches are modeled independently and separately for each detector, as they are instrumental

noise. However, to model the GW event, a common set of wavelets, which have parameters
describing the sky location and polarization, is used [92]. In order to mitigate a glitch, either
of the following scenarios must occur: (a) the data h(t) contain Gaussian noise n(t) and a
glitch g(t), or (b) the data h(t) contain Gaussian noise n(t), a glitch g(t), and an astrophysical
signal s(t). If the glitch and the signal occur sufficiently separated in time and/or frequency
from each other, approach (a) is followed. On the other hand, if the glitch and signal overlap
significantly, method (b) is applied. This is where the importance of having multiple detector
data takes relevance. Using strain h(t) from other interferometers, the coherent signal power
can be separated from the glitch, assuring that no significant signal power is subtracted during
glitch mitigation [92]. The modeled (and subtracted) glitch that overlapped with GW170817 in
the Livingston Observatory is shown in the blue line of the bottom panel of Figure 6.4, between
−0.75 s and −0.5 s. Note how the glitch removal allows the accurate reconstruction of the GW
signal, as shown in the central panel of Figure 3.9.

3The transdimensional MCMC models are an extension of MCMC sampling algorithms that allow transitions
between models of different dimensions.
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7 LIGO-Virgo Detector Characterization and the in-

frastructure to understand, detect, and mitigate noise

Having studied the instrumentation of the GW interferometers (see Chapter 4), and their
most relevant sources of noise (see Chapters 5 and 6), it is important to study the infrastructure
and software tools used for detection, mitigation, and subtraction of noise in LIGO and Virgo.
This Chapter is dedicated to understanding detector characterization in LIGO-Virgo, explaining
some of its tools (namely, the ones that interact and/or are used by/with GSpyNetTree, based
on [12]), and its infrastructure (which is fundamental to understand how GSpyNetTree fits within
the LIGO-Virgo gravitational-wave event validation pipeline). A special emphasis is given to
the Data Quality Report.

7.1. Gravitational-wave detector characterization tools

Detector Characterization (DetChar) in LIGO-Virgo is the effort of understanding, detecting,
and mitigating sources of noise, both in the instruments and the data [12], and it is a fundamental
component of improving the performance of the LIGO-Virgo interferometers. As the detectors
are subject to a wide range of noise, which constantly evolves during observing runs due to
new technologies that emerge to improve sensitivity, it is important to have robust tools that
address this issue and help analyze the strain h(t) data produced by the detectors. The following
subsections describe some of the most important Detector Characterization tools.

7.1.1. GWpy

GWpy [94] is a signal processing and data visualization Python library used to study data
from GW detectors. It is computationally optimized for manipulating data both in the time
and frequency domain. It also has implementations of the fast Fourier transform and the multi-
Q transform (see Subsection 7.1.3) for timeseries data [12]. As a matter of fact, most of the
spectrograms in this thesis were generated using GWpy.

7.1.2. GW-DetChar

GW-DetChar is a Python extension of GWpy with specific applications to detector character-
ization. It includes tools to generate single web-pages with responsive design features, which
are used to record data and interpret results. An example use case of this functionality of GW-
Detchar is the Summary Pages (see Subsection 7.1.4) [12]. As a matter of fact, the output of
every prediction of GSpyNetTree is a webpage that utilizes GW-DetChar.

7.1.3. Omega scans

Omega scans [95] are a type of spectrograms, or time-frequency visualizations, that are widely
used to visualize the morphology of GW signals and glitches. Omega scans consist of a raw multi-
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Q transform. This method, which is closely related to the Fourier transform, consists of multiple
spectrograms that use tiles with a constant ratio of duration to bandwidth (the quality factor,
Q) [12]. An optimal Q that maximizes the energy in a single time-frequency tile is chosen to
perform the Q-transform, which is then interpolated to produce a high-resolution time-frequency
visualization of the energy of a signal. All time-frequency visualizations presented in this thesis
up until this Chapter use the Q-transform.

The Q-transform is also one of the fundamental tools used by GSpyNetTree. Indeed, all the
images of glitches and signals are generated using the Q-transform, with a Q-value of 20, as
explained in Chapter 12.

7.1.4. Summary Pages

The summary pages are a web service of LIGO that offers automated daily analyses of the
gravitational-wave strain data and other interferometer subsystems. They are one of the main
tools used to monitor the performance of LIGO detectors and overall data quality. The raw
HMTL of the summary pages is generated via Python code using GWDetChar, and the visual
layout is color-coded by interferometer [12]: blue for LIGO Livingston, red for LIGO Hanford,
and orchid for Virgo.

7.1.5. LIGO-DV Web

The LIGO Data Viewer Web Service (LDVW) [96] is an online data visualization platform
that provides direct access to data recorded at the LIGO and Virgo Observatories. This soft-
ware is often used to generate visualizations of data and complement the analyses done with
the Summary Pages [12]. Additionally, LIGO-DV web has a glitch database, in which users can
filter transient noise by epoch (e.g., third observing run), type (e.g., Blip), and interferometer
(e.g., Virgo), among others. These glitches correspond to Gravity Spy classifications (see Sec-
tion 8.3.1), and are the fundamental data source of glitches used for building the training sets
of GSpyNetTree.

7.1.6. The Data Quality Report (DQR)

The Data Quality Report (DQR) is one of the fundamental tools used for LIGO-Virgo event
validation [16]. It consists of a collection of analyses and routines, including GSpyNetTree, used
to enable and support the vetting of non-astrophysical GW candidates. Its infrastructure is
modular so that new tools and analyses can be added as needed [12]. The DQR is integrated
with the LIGO-Virgo Alert System (LVAlert) [97] and the Gravitational-wave Candidate Event
Database (GraceDB) [98]. When a gravitational-wave search pipeline identifies a GW candidate,
the event is recorded in GraceDB and the LVAlert broadcasts a notice to all subscribers, including
the DQR. The DQR then triggers the analyses of each of the tasks it handles, like GSpyNetTree.
For each of the tasks, a Data Quality issue is reported whenever the p−value is below a particular
threshold, and each task has its own way of calculating the p−value. The following subsections
outline the relevant, documented tasks that, along with GSpyNetTree, make up the O4 Data
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Quality Report1. Other tasks used in O4 include: Glitch Average, Omega overlap, and GPS
Numerology [17].

In parallel, an automated notice announcing the detection of a new GW candidate is sent
from GraceDB to the General Coordinates Network (GCN) [99] of NASA. The DQR architecture
then uploads web-based reports (generated with GW-DetChar) for each of its tasks to GraceDB.
With these reports, a further internal review is performed to inform the decision of dissemi-
nating additional GCN Notices and Circulars or retracting2 an announced GW candidate [12].
Figure 7.1 shows how this process works for a DQR task like GSpyNetTree.

Figure 7.1: Schematic diagram of the GW event validation pipeline of LIGO-Virgo. After a
GW event is stored in GraceDB, a public NASA GCN Circular is generated, and the event is
broadcasted by the LVAlert system to the Data Quality Report (DQR). The DQR triggers the
analyses of the event using all of its tasks, including GSpyNetTree. All DQR tasks generate
web-page reports which are published to GraceDB. After an internal review of the results, more
GCN Circulars are published to validate or retract the candidate event.

Stationarity Check task

This task is designed to identify if the noise spectrum during the time of a candidate event
is elevated with respect to other nearby time periods [17]. It computes the variance of the SNR
calculation from matched filtering, giving an idea of the stationarity of the detector data. The
task outputs two plots: an omega scan with a box highlighting the data used for the stationarity
calculation, along with the calculated PSD variation statistic, and a plot of the PSD variation
near the GW candidate event. For the second plot, two PSDs are used: a short-duration PSD
(often 8 seconds long), and a long-duration PSD (512 seconds long). Figure 7.2 shows an example
of the resulting web-page generated for GW170817 by the Stationarity check in the Livingston
Observatory. Note that the calculated p−value is 0, indicating a Data Quality Issue in the
proximity of this candidate event.

1I only explain the three tasks (additional to GSpyNetTree) with public documentation available in https:
//detchar.docs.ligo.org/dqrtasks/index.html. The documentation of GSpyNetTree is found in Section 13.1.

2As a matter of fact, the first GW event of O4 was retracted: https://gcn.nasa.gov/circulars/33871?
query=S230524x
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Figure 7.2: Result web-page of the Stationarity Check for GW170817 in the Livingston Ob-
servatory. Note that the calculated p-value is 0, which means that a Data Quality Issue was
identified by this task. (Reproduced from [17]).

PEMcheck task

The PEMcheck task aims to detect the times and frequencies in which environmental noise
contaminates a candidate GW signal. Given a broad array of environmental channels that
monitor different instrumental/environmental aspects of the detector, the PEMcheck reports
the channel(s) (if any) that might have triggered a false GW candidate. This is done using a
coupling function that depends on the channel [17].

Rayleigh Statistic task

The Rayleigh task measures whether the coefficient of variation of the PSD is significantly
different from nearby segments of data. The coefficient of variation (CV) is defined as the ratio
of the standard deviation, σ, to the mean µ of the PSD, cv = σ/µ. The task uses stretches
of data near the time of the GW event candidate, such that if the data preceding the event is
equally non-stationary as the one containing the signal (defined by the cv), no Data Quality
issue is flagged [17].

Glitch Find task

The Glitch Find task calculates the energy of the tiles of the Q-transform and verifies if they
are Gaussian (i.e., the usual noise of LIGO and Virgo) or not. If not, it selects the non-Gaussian
times (that do not correspond to a GW signal) and flags them. The task generates a spectrogram
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of the initial event, a second spectrogram with the reconstructed glitch (if any), and the energy
of the Gaussian data of the Q-tiles of the Q-transform for the initial spectrogram. Figure 7.3
shows an example of the resulting web-page generated for GW170817 by the Glitch Find task
in the Livingston Observatory, with a p−value < 0.000001 [17].

Figure 7.3: Result web-page of the Glitch Find task for GW170817 in the Livingston Observatory.
Note that the times corresponding to the glitch are flagged on the top spectrogram, and a new
spectrogram (at the bottom) is generated with the energy of the glitch found. The GW signal
of GW170817 can be faintly seen behind the glitch on the spectrogram at the top. The plot on
the right shows the distribution of energy in the Q-tiles of the spectrogram on the left, used the
generate the spectrogram at the bottom. (Reproduced from [17]).
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8 Machine Learning: the basis of GSpyNetTree

Having studied where GSpyNetTree is hosted in the LIGO-Virgo event validation pipeline, we
now turn to introduce the fundamentals of Machine Learning: the basis for building GSpyNet-
Tree. We start by giving an introduction to Machine Learning, followed by a description of
supervised methods. We end this chapter by giving a description of Gravity Spy [3], the
Machine-Learning citizen-science project on which GSpyNetTree is based, and InceptionV3 [15],
a state-of-the-art Machine Learning application.

Machine Learning (ML) is the science of programming computers so they can learn from
data [100]. ML is particularly useful because it applies techniques that make an algorithm
automatically learn to differentiate between different classes of inputs. In the case of GSpyNet-
Tree, ML constitutes an additional validation technique to the already existing DQR tasks that
identifies glitches in the proximity of a GW event candidate.

Machine Learning also has the advantage of automatically adapting to changes in data, as
shown in Figure 8.1, which is particularly useful for LIGO-Virgo data. With evolving detectors
using new instrumentation, background noise and glitch types change frequently. An ML model
can adapt to such changes. Additionally, ML is also useful to gain insights of complex problems
and large amounts of data, which is useful in LIGO-Virgo due to the vast amount of data
produced by the detectors.

Figure 8.1: Schema of an automatically adapting to change architecture based on Machine
Learning, for gravitational-wave and glitch data. Note that the process of training, evaluating,
launching a new model, and updating the data can be automated. (Adapted from [100]).

There are several types of ML algorithms, which can be classified into different categories
depending on several criteria. One of them is whether or not the models are trained with human
supervision. If so, they are called supervised models; if not, they could be unsupervised,
semisupervised, or based on Reinforcement Learning. [100]. The following section describes the
supervised methods, which are the ones used for GSpyNeTree’s classifications1.

1For a description on the unsupervised/semisupervised learning, refer to Géron [100].
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8.1. Supervised Learning

In supervised learning, the training set that is fed to the algorithm includes a label for each
sample. A label is (usually) previously classified by a human and is the desired output of a given
sample. One of the main types of supervised learning is classification, and this is the type of
task that GSpyNetTree implements. Having learned how to classify different GWs and glitches,
it must learn how to classify new events. There exist a lot of supervised learning models, such
as Random Forests and Support Vector Machines (SVMs). However, some of the most powerful
algorithms are Artificial Neural Networks (ANNs)2 (see Section 8.2). A particular type of ANNs,
known as Convolutional Neural Networks (CNNs) are widely used for image classification tasks.
These are described in Section 8.3.

Additionally, in supervised learning, each sample is a pair consisting of an input object (the
GW or glitch spectrograms, in the case of GSpyNetTree) and a desired output value (the name of
such input, e.g., GW, Blip, Low-frequency Blip, or Koi Fish for GSpyNetTree). Having analyzed
and learned information from the training data, supervised learning produces an inferred function
(or model), which can be used for classifying new examples. In order to accurately predict the
label(s) of unseen instances, the model must generalize adequately. Its ability to make good
predictions highly depends on the quality and quantity of samples in the training sets, and the
ML architecture used to generate the model. Classification tasks can be further split into several
categories, depending on how many classes (and possible outputs per sample) each problem
admits. The three fundamental types of classification tasks are binary, multi-class, and multi-
label [100]. We focus on the last two as GSpyNetTree evolved from a multi-class (see Chapter
10) to a multi-label (see Chapter 12) architecture for O4.

8.1.1. Multi-class vs multi-label architectures

While binary classifiers distinguish between two different classes only, a multi-class classi-
fier, as its name suggests, can distinguish between more than two classes [100]. In general, in
multi-class classifiers, each label is assigned a probability between 0 and 1, such that the sum
of the probabilities of all classes adds up to 1. It is important to highlight that, in a multi-class
classifier, each sample can be assigned one and only one label. This way, multi-class classifiers
cannot predict accurately, say, a GW candidate overlapping with a glitch. Examples of multi-
class classifiers are Gravity Spy (see Section 8.3.1) and the first version of GSpyNetTree (see
Chapter 10).

There are cases, however, in which it is relevant to output multiple classes for each instance
(e.g., in the event of an overlapping GW signal and a glitch, we want to predict both; to detect
not only the astrophysical signal but also the glitch, and be able to mitigate it). A classifier that
is able to predict multiple labels is called a multi-label classification system [100]. An important
aspect of multi-label classifiers is that they can predict zero or more classes per instance, by
returning a probability ranging from 0 to 1 for each considered class. This way, the sum of
the probabilities of all labels is not 1 (as occurs for multi-class classifiers, where the classes are
mutually exclusive). Instead, the probability of each label can take any value from 0 to 1, and

2Note that these can be used in unsupervised problems too.
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a label is said to be predicted by the classifier if its probability is greater than or equal to 0.5.
In the case where no label surpasses the 50% threshold, no labels are predicted3 [17].

8.2. Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs), or simply Neural Networks, are a type of supervised
learning algorithms widely used in Machine Learning classification and regression tasks. Their
name and structure are inspired by the human brain, as they were first designed to mimic how
biological neurons transmit information to each other.

In general, an ANN is made up of several layers of nodes or neurons. Each has an input layer,
one or more hidden layers, and an output layer, as shown in Figure 8.2. The depth of the ANN is
given by the number of ℓ hidden layers it has. For classification problems, the number of neurons
k in the output class corresponds to the number of labels in the problem. Each neuron connects
to another one and has an associated weight and threshold. If the output of any individual
node is above a pre-defined threshold, which depends on an activation function, the neuron is
activated and it will send the information that triggered its response to the following layer of
the network. Otherwise, no information is sent to the next layer by that particular neuron.

Figure 8.2: Schematic diagram of an Artificial Neural Network (ANN) consisting of an input
layer (in green), three hidden layers (ℓ = 3, in blue), and an output layer (in red). The ANN
has n inputs (which is why there are n neurons in the input layer) and k output classes, and
each hidden layer has m neurons. The subscript represents the i−th neuron in each layer, and
the superscript in the hidden layers denotes the j−th layer, 1 ≤ j ≤ ℓ.

The output hi of the i−th neuron of a given layer is calculated as [100]:

hi(xi) = ϕ(x⊤
i wi + bi), (8.1)

3These cases constitute an opportunity to verify the data that is being predicted by the classifier and consider
other ML architectures, like unsupervised learning.
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where xi is the vector of input features, wi is the vector of weights (which helps determine the
importance of a particular variable: larger weights contribute more to the output compared
with other inputs), bi is a bias (or threshold), and ϕ is the activation function that determines
whether information should be sent by the i−th neuron to the next layer or not. There are
several activation functions, like the reLU (Rectified Linear Unit),

f(x) = max (0, x), (8.2)

the sigmoid function,

f(x) =
1

1 + e−x
, (8.3)

shown in Figure 8.3, and the softmax function,

f(x) =
ex

⊤w∑K
k=1 e

x⊤wk

, (8.4)

for K classes. The softmax function is often used as the activation function of the output layer
of a multi-class ANN as it normalizes the output of a network to a probability distribution,
such that the highest probability is assigned to the neuron (class) with larger weights, and the
probabilities from all classes add up to one. This class will be the predicted label of a given
sample. On the other hand, the reLU and sigmoid functions are used as activation functions of
the neurons of the hidden layers (the most suitable function to use depends on each particular
task).

Figure 8.3: Plot of a sigmoid function, −6 ≤ x ≤ 6. Note that the range of the function is
defined between 0 and 1, and the line y = 0.5 is included for reference.

It is important to highlight that the sigmoid function is also used as the activation function of
the output layer of a multi-label ANN. This way, each neuron will have a probability 0 ≤ p ≤ 1,
which is rounded up to 0 if p ≤ 0.5 or to 1 otherwise. This way, multiple neurons can end up
with a value of 1 (or zero), so that several (or none) classes are predicted, instead of 1 and only 1
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(as in the softmax activation function for multi-class classifiers).

8.2.1. Loss functions: optimizing a model

An ANN is trained for several epochs, in which the weights learned from the previous itera-
tion, are the starting weights of the subsequent epoch. In each epoch, a cost (or loss) function
is minimized to maximize the number of correct predictions (note that several metrics can be
used for this purpose, see Subsection 8.2.2). The loss function tracks incorrect labeling of the
data class(es) by a model, penalizing it if deviations in probability occur in the classification of
labels. This way, low loss function values result in an increased number of correct predictions.

The cost function depends on the task. In the case of multi-class classification, the categorical
cross-entropy is used [100]:

CCE loss = −
K∑
i=1

yi · log ŷi, (8.5)

with yi and ŷi the real class and predicted class of a specific sample, respectively, and K the
number of classes. Note the similarity with the Shannon entropy. In the case of a binary or
multi-label classifier, a binary cross-entropy function is used [100]:

BCE loss = − 1

K

K∑
i=1

yi log ŷi + (1− yi) · log(1− ŷi), (8.6)

with K = 2 in the case of binary classifiers. Multi-label problems use this loss function as
they are actually a collection of multiple binary classification subtasks. This way, if a multi-
label problem consists of three non-mutually exclusive labels (say, GW, Blip glitch, and Tomte
glitch), the binary cross-entropy will be calculated in a binary fashion (determining separately
if the sample is a GW or not, a Blip glitch or not, and a Tomte glitch or not) and, at the end,
adding all the calculated values. Note that the binary cross entropy of each label is independent
of all the others.

8.2.2. Metrics: how is a model evaluated?

A cost function is used to maximize the number of correct predictions, and several metrics
can be used to quantify this number. Particularly, in GSpyNetTree, we use two metrics: the
accuracy and the recall, each of which is explained below.

The accuracy is a global metric, and evaluates the number of correctly classified samples,
out of the total number of samples. That is, if 90 samples out of 100 were classified correctly,
then the accuracy will be 90%. While this metric works perfectly to evaluate the performance
of a multi-class classifier (like the pre-O4 version of GSpyNetTree), note that the definition of
this metric is problematic for a multi-label classifier; as it does not consider the prediction of
individual labels per sample, but the entire prediction (i.e., all labels) for that sample as a whole.
This means that, if the real labels of a sample are X and Y , and the CNN only predicts X, the
entire sample will be considered incorrect by the accuracy. However, this is undesirable, and
results in underestimations of the real performance of the model. In the aforementioned case,
the X class should be labeled as correctly classified, whereas the Y class should be penalized by
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the metric. To solve these issues, other metrics can be used. We explain the recall, which is the
one used by GSpyNetTree in its multi-label fashion.

The recall, also known as sensitivity, measures how many samples of an actual class were
correctly classified by the CNN. That is, if a sample of class X is predicted as an instance of
class Y , the recall will be lower. The exact definition of recall is [100]:

Recall =
True Positives

True Positives + False Negatives
. (8.7)

Note that the recall aims to reduce the number of instances with particular labels that are
misclassified with a different set (or subset) of labels. This is the ideal metric for GSpyNetTree,
as the recall will aim to minimize the number of GWs classified as glitches, and vice-versa. As
a matter of fact, in the case of GSpyNetTree, it will always try to avoid misclassifying as many
samples of a particular class as it can, even if that increases the false positive rate of a particular
class (of course, increasing it substantially is also detrimental to GSpyNetTree as its predictions
would not be confident). Nevertheless, avoiding the misclassification of as many samples as
possible (even between different glitch classes) assures the minimization of the Data Quality
issues that GSpyNetTree fails to flag.

8.2.3. Hyperparameter selection: Fine-tuning a model

After selecting a model, the metric to monitor it, and training it, another fundamental
aspect of Machine Learning is the selection of hyperparameters. These hyperparameters are
not parameters of the model (i.e., they have nothing to do with the problem and the model
itself), but are adjustable arguments that need to be carefully fine-tuned or set based on ML
investigations.

One of the most important hyperparameters to select is the optimizer, and its selection
depends on the task [100]. An optimizer is an algorithm that aims to adjust the weights of an
ML model, usually looking to minimize the loss function with each epoch. For image classification
tasks, usually, the best optimizer is Stochastic Gradient Descent (SGD) [101]; however, in other
tasks, the usage of an adaptive algorithm gives better results. For the SGD, there are further
hyperparameters that should be fine-tuned, including the learning rate (which indicates how
much model weights should be updated in each epoch) [100] and the momentum (a parameter
which aims to accelerate the convergence of the SGD vectors to an optimal solution).

Finally, a fundamental hyperparameter that needs to be fine-tuned is the batch size, which
corresponds to the number of samples that the model is trained on per epoch. Several studies
have been performed and, while many authors agree that batch sizes should not exceed 32 [102],
others believe that, depending on the task, it could be larger. In the case of GSpyNetTree, we
always use a batch size of 32, as this is a standard value used in many ML applications.

8.3. Convolutional Neural Networks

Having studied the way in which ANNs work, and how they are evaluated, optimized, and
fine-tuned, we now turn to study Convolutional Neural Networks (CNNs), which are a specific
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type of ANN widely used in image classification tasks [100].

Figure 8.4: Schematic diagram of a Convolutional Neural Network (CNN), consisting of various
convolutional layers, pooling layers, fully connected layers, and an output layer. While not
shown here, pooling layers (usually used between convolutional layers) are often used to avoid
overfitting in the models.

CNNs provide an scalable approach to image classification tasks, leveraging principles of
linear algebra to identify patterns within a given sample. CNNs have five main types of layers:
Input layer (usually an image), Convolutional layers (after the input layer, the initial layer of the
CNN. Can be more than one), Pooling layers (between convolutional layers), Fully Connected
layers, and an Output layer (the number of neurons in this layer depends of the number of
classes/labels of the CNN). An example of a CNN is shown in Figure 8.4.

Each of these layers works in a different way; however, in general terms, the complexity of
the CNN increases as we go deeper [100, 103]. The focus of the early layers is given to simple
features, like colors or edges, which is the reason why many CNNs can be used for Transfer
Learning (i.e., using the initial weights learned with a different training set in a new problem).
Deeper in the network, the CNN recognizes larger elements or shapes (e.g., it starts to finally
identify the morphology of a GW/glitch) until it finally learns to recognize the images it is
trained on. While the CNN is being trained, it is important to avoid overfitting. Between these
learning steps, pooling layers are used to reduce the parameters and complexity, and improve
efficiency. Note that many pooling layers can also have a detrimental effect on the predictions
of the CNN, as the information learned can be lost.

While several CNN architectures exist, we will study two of them: the Gravity Spy archi-
tecture [3], as it constitutes the base of the first version of GSpyNetTree, and the InceptionV3
architecture [15], which is the state-of-the-art version that our tool leverages.

8.3.1. Gravity Spy architecture

Gravity Spy [3, 88] is a citizen Science project that leverages a CNN architecture that ac-
curately classifies more than 20 glitch classes4. It is a widely used tool within the LIGO-Virgo

4The original Gravity Spy had 20 classes [3], but now it has approximately 23 [88].

68



collaboration for glitch detection and has had outstanding results in the previous observing
runs. Gravity Spy’s architecture is shown in Figure 8.5. It consists of two sets of Convolu-
tional + Pooling layers applied consecutively, followed by a fully connected layer and an output
layer. While this is a powerful architecture, several studies have built state-of-the-art CNN
architectures which leverage deeper networks that perform better in extracting CNN features.
One of them is InceptionV3 [15], briefly described in the next Section.

Figure 8.5: Convolutional Neural Network architecture of Gravity Spy [3], LIGO-Virgo’s ML
glitch classifier. Following the input layer, two sets of consecutive Convolutional layer + Pooling
layer are applied. After the last pooling layer, the features are flattened and sent to a fully
connected layer, which is then connected to the output of 20 neurons (20 neurons because there
are 20 glitch classes). (Reproduced from [3]).

8.4. InceptionV3

InceptionV3 [15], is one of the most used state-of-the-art CNNs for image classification prob-
lems. It is a Deep architecture, consisting of 42 layers; note the difference in depth compared to
the Gravity Spy architecture.

In order to leverage a powerful architecture that optimizes training time, InceptionV3 uses
factorized convolutions (i.e., it splits the convolutional work among several, parallel Convolu-
tional layers). This allows the extraction of characteristics and reduces the number of parame-
ters of the network considerably [15]. Additionally, it also has auxiliary classifiers between layers
which, during training, serve as regularizers that prevent overfitting.

A comparison of the InceptionV3 and Gravity Spy’s architecture is shown in Figure 8.6. Note
the robustness of InceptionV3 compared to Gravity Spy, which allows the former to perform
better on image classification tasks and extract more (and/or better) features from the samples
it is trained on.
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Figure 8.6: Comparison of the Convolutional Neural Network architecture of Gravity Spy (upper
panel) [3] and InceptionV3’s architecture [15]. Inception is a more robust, deeper network, which
makes it ideal for complex image classification tasks. (Reproduced from [14], which is in turn
adapted from [15, 104] ).
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9 Setting the base of GSpyNetTree: building a GW

signal-vs-glitch classifier based on Gravity Spy

In order to build a GW signal-vs-glitch classifier based on Gravity Spy, several changes
need to be implemented to the original architecture1. GSpyNetTree’s initial purpose was to
confidently predict GW signals in a given sample. However, as the needs of the LIGO Scientific
Collaboration Detector Characterization team evolved, so did GSPyNetTree.

The first version of GSpyNetTree was a decision tree of multi-class CNN classifiers, which was
build upon several recommendations proposed by Jarov et al. [13] (see Chapter 10). This work
outlines a new multi-classifier method to leverage prior Gravity Spy architecture to distinguish
GWs from glitches. Considering previous investigations on improving Gravity Spy that have
shown that its inaccuracies in glitch classification tend to be higher in poorly represented classes
in the CNN’s training set [105], Jarov et al.’s study recommends significant changes to Gravity
Spy for the purpose of a signal-vs-glitch classifier [14].

First, it recommends augmenting the data of the Chirp class (consisting of data from hard-
ware injections that emulate the behavior of GWs by displacing the detector’s test masses [106]),
which is morphologically similar to the typical GW events seen in O3 [88]. However, instead of
using hardware injections, it uses GW software simulations that allow the generation of more
GW samples, compared to the severely underrepresented Chirp class in the original Gravity Spy
training set [3]. It also recommends deploying specialized training sets to handle different ranges
of total candidate signal mass, as low and high-mass mergers have very distinct morphologies,
which may be more prone to confusion with particular glitch classes (see Figure 9.1) [14].

We developed this proposed signal-vs-glitch multi-classifier architecture and analyzed its
readiness for O4, as described in Chapter 10. After generating the specialized training sets
based on GW and glitch morphology and incorporating the data augmentation suggested by
Jarov et al. [13], we built three different classifiers, one per training set, with the same CNN
architecture Gravity Spy leverages. With the three signal-vs-glitch classifiers, we made a decision
tree sorted via total GW candidate mass, constituting the base for GSpyNetTree, the Gravity
Spy Convolutional Neural Network Decision Tree. During the current observing run, O4, this
tool will intake GW candidate events from GraceDB [98] and classify them as GWs or glitches
as part of the LIGO-Virgo Data Quality Report [16] (see Section 7.1.6) [14].

After building GSpyNetTree according to the recommendations in Jarov et al. [13], we
noted that the original Gravity Spy CNN architecture could be further improved (see Chapter
11). We decided to use Inception V3 [15], Google’s state-of-the-art CNN for image classification
tasks. We noted a vast improvement in classification accuracy, particularly for the GW class.
We also considered the additional changes expected for O4, including different persistent noise
subtraction for calibrated data, new potential noise sources, a high expected detection rate [74],

1Note that this is done for the purposes of our tool; Gravity Spy is a widely used tool within LIGO and Virgo
for glitch classification purposes only.
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Figure 9.1: Examples of CBC GW signals (I and II) along with morphologically similar glitches
(A, B, C, D) commonly confused by the glitch classifier Gravity Spy, according to [13]. A
simulated GW signal with a total mass of 245 M⊙ (I) is more prone to be confused with Blips
(a) and Low-frequency Blips (b). In contrast, a 126M⊙ signal with a total SNR of 35 (II) shares
morphological similarities with a Tomte (C) and a Koi Fish (D). (Reproduced from [13]).

and the likely occurrence of overlapping glitches and GW signals in time-frequency visualizations
[14].

For the first version of GSpyNetTree, we performed three validation studies based on the
classification challenges posed by the O4 sensitivity increase. Additionally, we propose solutions
to overcome them for the O4-era version of GSpyNetTree (see Chapter 12). First, we study
how the first version of GSpyNetTree responds to data with non-linear subtraction of 60 Hz AC
power artifacts, as expected for low latency LIGO data in O4. We evaluate its readiness for the
new background noise expected in O4 and its transferability to Virgo data, which has a different
noise background from the two LIGO detectors. We also test how GSpyNetTree responds to
glitches not included in its training set, as new noise sources are expected to appear during O4.
We curate a variety of glitches covering several cases of interest, including frequently occurring
glitches and glitches morphologically similar to others already included in the training set. We
then evaluate how GSpyNetTree responds to GW candidates overlapping with glitches, which
is even more likely to happen during O4 than O3, given the higher expected detection rate.
In O3 only, 24% of candidates overlapped with one or more glitches [7, 8], which makes it a
relevant case of interest to tackle. This first version of GSpyNetTree is based on Alvarez-Lopez2

et. al [14].
Chapter 12 shows the O4-era version of GSpyNetTree. Implementing the suggestions of the

first era version of GSpyNetTree [14], we built a new decision tree of signal-vs-glitch multi-label
classifiers, including: (1) instances of Virgo glitches, (2) instances of Hanford/Livingston glitches
with the 60 Hz subtraction calibration, and (3) overlapping samples of GWs and glitches. We

2This paper is currently under review in Classical and Quantum Gravity, and a preprint can be found in the
arXiv: https://arxiv.org/abs/2304.09977.
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also improve several other methods in dataset construction with respect to the first version
of GSpyNetTree, and include new glitches that are very likely to happen during O4 based
on Detector Characterization analyses, but not considered in the first version of our tool. In
Chapter 13 we discuss the deployment of GSpyNetTree as part of the DQR in the LIGO-Virgo
event validation pipeline. Finally, in Chapter 14, we evaluate our results per classifier, and
perform three validation studies: on glitches not included in the training set (but on Gravity
Spy), on some GWTC-3 (third gravitational-wave transient catalog) candidates [7, 8], and on a
few of the public superevents detected by LIGO-Virgo-KAGRA so far in the current observing
run.
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10 Pre-O4 GSpyNetTree: a decision tree of multi-class

signal-vs-glitch classifiers

Building upon the proof of principle described in Jarov et al. [13], GSpyNetTree leverages
a decision tree of three CNN classifiers, each trained on a specialized and balanced set of GWs
and morphologically similar glitches, sorted via estimated candidate mass metadata, obtained
from GraceDB. The three classifiers are: the low-mass (LM) classifier (for candidates with
an estimated total mass below 50 M⊙), the high-mass (HM) classifier (for candidates with an
estimated total mass between 50 M⊙ and 250 M⊙), and the extremely high-mass (EHM) classifier
(for candidates with an estimated total mass above 250 M⊙). Depending on the mass estimate
provided via GraceDB [98], each candidate GW event is sent to the LM CNN or HM CNN to
determine whether it is astrophysical or a glitch. If the candidate’s mass is above 250 M⊙, it is
then sent from the HM classifier to the EHM classifier for more accurate classification. Figure
10.1 shows examples of simulated GW signals in each of the mass ranges, and Figure 10.2 shows
the glitches they are morphologically similar to. Table 10.1 specifies the glitch classes considered
for each mass range depending on morphological similarities, as considered by Jarov et al. [13].

Low-Mass (LM) Classifier High-Mass (HM) Classifier Extremely High-Mass (EHM) Classifier
Class Samples Class Samples Class Samples

GW (3-50 M⊙) 1000 GW (50-250 M⊙) 1000 GW (250-350 M⊙) 1000
Blip 999 Blip 999 Blip 999

Low-Frequency Blip 1039 Low-Frequency Blip 1039 Low-Frequency Blip 1039
No Glitch 1017 No Glitch 1017 No Glitch 1017
Scratchy 1093 Koi Fish 990

Tomte 758

Table 10.1: Classes and number of samples (before time-offset augmentation, which add four
more examples for each sample listed) per class for each of the GSpyNetTree’s classifiers. The
GW mass ranges listed indicate the target total mass of an event candidate.

The EHM classifier presents additional challenges that need to be addressed. Low-frequency
blips share strong similarities in duration, frequency range, and morphology with EHM mergers.
Indeed, the original Gravity Spy model misclassifies EHM mergers as Low-frequency blips with
99% confidence [13]. However, since the mass range of detected GWs is expected to increase
in each observing run, it is essential to make GS pyNetTree robust for these possible future
detections. GSpyNetTree incorporates a spectrogram scaling technique that Jarov et al. showed
to be of great utility in this mass range [13]: we apply the Mercator projection, which stretches
the signals vertically, scaling the image features to better segregate GW signals from Low-
frequency blips1 (see Figure 10.3).

Additionally, when dealing with CNN training sets, it is important to consider data augmen-
tation techniques to avoid overfitting. One strategy is to generate slightly modified versions of
existing samples, increasing the amount of training data. Thus, we generated four random time

1The Mercator projection is not used in the O4-era version of GSpyNetTree, as we included new glitches in
the EHM Classifier and this transformation affected the performance of the CNN (see Chapter 12).
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(a)

(b)

(c)

(d)

Figure 10.1: Examples of spectrograms of simulated GW signals with all four durations used in
the training set of GSpyNetTree (0.5 s, 1 s, 2 s, and 4 s). (a) Software simulated GW signal
in the low mass regime, with a total mass of 29.2 M⊙. (b) Simulated GW signal in the high
mass regime, with a total mass of 118.7 M⊙. (c) Simulated GW signal in the high mass regime,
with a total mass of 182 M⊙, but with a significantly lower signal-to-noise ratio (SNR) than the
example shown in Figure 10.1b. Signals with a low SNR may occur in any of the mass ranges,
and they may be similar to the No Glitch class (Figure 10.2e). (d) Simulated GW signal in the
extremely high mass regime, with a total mass of 283 M⊙. These signals are morphologically
similar to Low-frequency blips (Figure 10.2b).
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(a) Example of a Scratchy glitch.

(b) Example of a Low-frequency blip glitch.

(c) Example of a Koi Fish glitch.

(d) Example of a Tomte glitch.

(e) Example of a No Glitch.

Figure 10.2: Examples of selected glitches with all four durations used in GSpyNetTree (0.5 s, 1
s, 2 s, and 4 s). These non-astrophysical events are morphologically similar to the GW signals
in the three mass ranges, as detailed in Table 10.1. The Blip glitch is not shown here due to
space constraints, but Figure 6.2(a) and Figure 10.2(A) each show an example of this type of
glitch. (All glitches were obtained from LIGO-DV web [96]).
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Figure 10.3: Simulated GW signal with a total mass of 270M⊙ (a) along with a Low-frequency
Blip glitch (c). Note the morphological similarity between the GW signal and the glitch. To
better segregate the two samples, the Mercator projection is applied to the EHM signals, as
shown in (b) and (d) for the GW and the glitch, respectively. Note the thinning of the Low-
frequency Blip at lower frequencies, as opposed to the GW signal. (Adapted from [13]).

offsets within 0.1 s in the time-frequency visualizations of each GW and glitch so that samples
are not always perfectly centered (see Figure 10.4). This also makes GSpyNetTree robust to
small offsets in estimated candidate merger times, which is likely to happen in the GW search
pipelines.

Following this approach, we built an augmented training set for each of GSpyNetTree’s CNNs.
First, we ensured a balanced representation of both GWs and glitches, as previous studies have
shown that a higher rate of inaccuracies is related to poorly represented classes in Gravity Spy
[13, 105]. Additionally, it is well known for CNN image classifiers that increasing the size of the
training set improves classification performance [107]. Instead of having ∼ 150 instances per
class as in previous studies [13], we decided to enrich our training sets with more samples so
that there were 1000± 300 of each per class. Moreover, we included the No Glitch class for the
three classifiers to account for GWs with low signal-to-noise ratio (SNR). Table 10.1 shows the
distribution of classes per classifier in the pre-O4 GSpyNetTree training sets.

We fetched all the glitches included in this training set from Gravity Spy classifications via
LIGO-DV web [96] for both LIGO Hanford (LHO) and LIGO Livingston (LLO) observatories.
Additionally, we manually verified all examples to discard misclassified or morphologically un-
conventional samples (we saved those for the validation study explained in Section 11.2). For the
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Figure 10.4: A simulated GW signal with merger time at t = 0 s (b), along with two copies
of the signal, shifted to the left (a) and right (c). The time shifts are drawn from a uniform
distribution in the range of [−0.1, 0.1] s, and are included to be robust against GW candidates
not centered at t = 0 s. Red vertical lines at t = 0 s are included as a visual aid. (Adapted
from [13]).

GW simulations, we identified several segments of 64-second quiet detector data for both LHO
and LLO during previous observing runs and injected simulated waveforms into them using the
inspiral injection module of LALSuite [108], using the waveform model IMRPhenomPv2 [109, 110].
GSpyNetTree’s GW examples are uniformly drawn from a total merger mass range of 5M⊙ to
350 M⊙, with individual masses ranging from 2 M⊙ to 175 M⊙, an SNR range of 8 to 35,
and individual component spins ranging from 0.05 to 0.95. In this version of GSpyNetTree, the
orientation and inclination of the interferometer with respect to the source is calculated to be
optimal (that is, the GW is always coming perpendicular to the plane of the detector)2.

Figure 10.5: Samples generated by GSpyNetTree for a Blip glitch, in RGB (Red, Green, Blue)
(a) and in black/white (b) color-schemes. The spectrograms of 0.5 (top-left), 1 (top-right),
2 (bottom-left) and 4 (bottom-right) seconds in duration are collated in a 2 × 2 matrix, to
better capture the morphology of GWs and glitches. The samples used for GSpyNetTree are all
generated in the black/white color-scheme (like Subfigure (b)) to remove the redundancy of the
information codified in the three RGB channels. The colored sample in the left is included for
visual reference.

We used the strain h(t) timeseries from each glitch and simulated GWs to generate the time-
2This is changed in the O4-version of GSpyNetTree (see Chapter 12).
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frequency features required by GSpyNetTree for each sample: four spectrograms 0.5 s, 1 s, 2 s,
and 4 s in duration arranged in a 2 × 2 matrix, as in the original Gravity Spy architecture [3]
(see Figure 10.5). The different spectrogram durations are used to better capture GW signals
and glitches of different durations.

We fed these samples to GSpyNetTree, with architecture shown in Figure 10.6. After apply-
ing the time-offset augmentation, each sample is directed to one of GSpyNetTree’s CNNs, based
on its estimated total mass. If the sample’s total mass is less than 50 M⊙, it is directed to the
LM classifier; otherwise, it is sent to the HM classifier. Events classified by the HM classifier
are further directed to the EHM classifier when the following criteria are met: the total mass of
the candidate is estimated to be greater than 250 M⊙ and the HM classifier has classified the
candidate as a Low-frequency Blip, No Glitch, or GW.

In the EHM classifier, the Mercator projection is applied to the sample before classification.
Finally, each CNN returns an array of probabilities assigned to each class per sample. The
pre-O4 version of GSpyNetTree (as the O4 era version) intakes GW candidate events uploaded
to GraceDB [98] via the Data Quality Report [16] and classifies them as GWs or glitches with
a reported probability.

Figure 10.6: GSpyNetTree architecture: Triggered by a GraceDB superevent [98], timeseries
(strain h(t)) data is fetched to generate spectrograms of 0.5, 1, 2, and 4 second durations.
Time-frequency spectrogram visualizations are sent to the classifiers based on the estimated
total candidate mass, and the Mercator transform is applied to the extremely high mass GW
candidate visualizations. Each CNN outputs the probability that the input visualization contains
a GW, an included class of glitch, or no glitch.

Once GSpyNetTree’s training sets were complete, we trained the CNNs and evaluated their
results. We used 80% of the dataset for training, and allocated the remaining 20% for testing
the CNNs. Within the training set, we allocated 20% for validation. The results of the pre-O4
version of GSpyNetTree, as well as the validation studies carried out to evaluate its performance,
are given in the next Chapter.
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11 Pre-O4 GSpyNetTree: results

Having our augmented training sets ready for all classifiers, we first tested GSpyNetTree
using the original Gravity Spy architecture [3].

The low-mass CNN had an overall accuracy of 94%, the high-mass CNN achieved 94.6%,
while the extremely high-mass CNN made 96% accurate predictions. Additionally, all of them
had a 92% accuracy for the GW class, with 7.2%, 4.5%, and 2.9% of GW signals misclassified as
No Glitches in the LM, HM, and EHM classifiers, respectively. This was expected for low SNR
signals, which may appear faint in spectrogram visualizations. Therefore, these misclassifications
are not problematic for GSpyNetTree’s purposes. Additionally, on average, the three classifiers
accurately classified 94.2% of the glitches. While these are good results, it is not desirable to
misclassify 8% of the astrophysical data per mass range, especially considering the high detection
rate expected for O4 [74], and 6% of glitches (on average).

In order to further improve the accuracy of classifications, we used a new CNN architecture.
It is well known that CNNs are the state-of-the-art method for complex image classification
tasks [111]. Therefore, several networks specifically designed to tackle these problems have been
studied and developed in the computer science realm. One of them is Inception V3: Google’s
state-of-the-art CNN [15]. It is made up of 42 layers, which makes it a very deep model compared
to Gravity Spy’s 5 layers (see Figure 8.6 in Section 8.4 for a comparison of the Gravity Spy and
Inception V3 architectures). Additionally, it has shown better accuracy, less computational cost
than other architectures, and a very low error (the percentage of erroneously classified samples)
in various image classification tasks. Deeper neural networks require larger training sets to avoid
overfitting; however, due to our drastically increased training set size over the one used in Jarov
et al. [13], Inception V3 remained a viable option for our investigation.

We trained the three Inception V3 CNNs (LM, HM, and EHM) from scratch, as we had a
large enough training set to do so, using the training data introduced in the previous Chapter.
Figure 11.1 shows the improvement in classification with this new approach. Additionally,
Appendix A shows the confusion matrices for the LM (first row), HM (second row), and EHM
(third row) classifiers, using the Gravity Spy architecture (left column) and Inception V3 (right
column).

Following the implementation of the Inception V3 CNNs, all classifiers reached more than
96% accuracy for GWs and all glitch classes, with 3.9%, 2.6%, and 2.3% of GWs misclassified
as No Glitches, such that the GW (+ No Glitch) accuracy was 96% (+3.9%), 96% (+2.6%),
and 97% (+2.3%) for the LM, HM, and EHM classifiers. This is a considerable decrease in the
amount of misclassified astrophysical events. Also note that, on average, the glitch classification
performance increased from 94.2% to 96.8%. The highest improvement was for the EHM clas-
sifier, from 92% to 96.3%, followed by the HM classifier, from 94% to 96.2%. The LM classifier
only improved by ∼ 1%, but this is because its performance on glitches was already very good
with the Gravity Spy architecture.

Due to the multi-class nature of the problem, the CNNs were trained using a categorical
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Figure 11.1: Accuracy results for the three GSpyNetTree CNNs trained using the Gravity Spy
architecture (in blue) and the InceptionV3 architecture (in gray) for all GWs and glitches in the
test set (upper panel), for only GWs (middle panel), and for only glitches (bottom panel). In
the case of GWs, the classification accuracy improved from 92% in all three cases to 97% (LM),
96% (HM), and 97% (EHM). For glitches, the percentage of improvement from the Gravity Spy
architecture to InceptionV3 was 1.3%, 2.2%, and 4.3% for the LM, HM, and EHM classifiers,
respectively. Finally, overall accuracy also improved from 94% (LM), 95% (HM), and 96%
(EHM) to 97% in all cases.

cross entropy loss function (see Subsection 8.2.1). To measure the performance of the classifiers,
the accuracy and recall metrics were used. The latter was selected because it aims to minimize
the number of false negatives in classification, which is optimal for the purpose of reducing
the amount of misclassified gravitational-waves (i.e., those erroneously classified as glitches by
GSpyNetTree).

Additionally, all classifiers were trained for several epochs. However, in order to avoid over-
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fitting, several methods were implemented. First, the weights (see Chapter 7.1.6) of the best
model were always saved. That is, if there was an improvement in the loss function from one
epoch to the other, that model was saved and preferred over a previous one. Additionally, the
model was set to early stop if there was not an improvement in the minimization of the loss
function after certain number of epochs. After several experiments, this number was set to
10. Lastly, to tune the remaining hyperparameters of the model (see Subsection 8.2.3), several
experiments were carried out with different optimizers and different learning rates. In partic-
ular, we experimented with the Adam Optimizer and the Stochastic Gradient Descent (SGD)
optimizer. As expected, Adam had the worst results: for periods of consecutive epochs, the loss
increased instead of decreasing. This is because Adam is well known to perform worse than SGD
in image classification tasks [101]. For SGD, we tried using different learning rates, keeping the
momentum constant (in 0.9). We ended up selecting an initial low learning rate (ℓ = 0.001).
Figure 11.2 shows the training plot of the EHM classifier using the Inception V3 architecture.
Note that the loss function and validation loss function both tend to 0 (although the validation
loss is above the training loss, as expected), and the accuracy and validation accuracy both tend
to 1. For this classifier, the best models were obtained in epoch 15.

Figure 11.2: Training plot of the multi-class classifier trained with InceptionV3, with the training
(solid line) and validation (dotted line) for the loss function (blue) and accuracy (orange), using
an SGD optimizer with learning rate 0.001 and momentum 0.9. Note that the accuracy tends to
increase, while the loss decreases. For the last epochs, a slight increase in validation loss can be
seen: this is because the model has already achieved its optimum value. Indeed, the best model
is found at epoch 15, where the validation loss is the lowest.

Assuring the selection of the best model with the most suitable combination of hyperparam-
eters, and having improved the classification accuracy of the CNNs, we validated GSpyNetTree’s
readiness for O4 by performing three validation studies. We tested both the original Gravity
Spy and the Inception V3 architecture, and the results were better with the latter for all valida-
tion studies (see [14]). The results for the InceptionV3 architecture are shown in Sections 11.1
through 11.3, based on [14].
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11.1. Testing the reliance of GSpyNetTree on detector background
noise

It was important to first evaluate the dependence of GSpyNetTree on detector background
noise. This is important for O4 because the noise subtraction used to produce low-latency
calibrated strain h(t) is expected to differ from previous observing runs. O4 low-latency data is
expected to use a non-linear subtraction of AC 60 Hz power artifacts (and resonances), similar
to the technique used for publically released data from O3 [112]. It is also important to evaluate
how transferable the GSpyNetTree model is to detect GWs for Virgo and KAGRA detectors,
which have a different noise background from LIGO [14].

To test the reliance of the CNNs on background, we used 100 glitch examples per glitch class
(see Table 10.1), using the non-linear 60 Hz subtracted strain channel, for each classifier. Figure
11.3 shows an example of a Blip glitch obtained from the original (left) and the clean (right)
channels, respectively. Note that, to the naked eye, the differences in background are faint.

Figure 11.3: Spectrograms of an O3-era Blip from the Hanford detector, fetched from the original
strain h(t) channel (left) and the channel with a non-linear subtraction applied (right). A subtle
difference in background can be appreciated around 60 Hz, as shown in the red boxes. The
non-linear subtraction is implemented for low-latency data in O4. (Adapted from [14]).

Even though both spectrograms look quite similar to the naked eye, these small differences
in background significantly impact CNN accuracy. In fact, when tested with non-linearly noise
subtracted data, overall accuracy decreased to 76%, 75%, and 76% for the LM, HM, and EHM
classifiers, respectively. Additionally, as shown in Figure 11.4, individual class accuracy also
decreased for all of the glitches but one (Koi Fish). This likely occurs because these glitches
usually cover a wide frequency and time range, so the background data applying the non-linear
subtraction does not significantly impact the visualization [14].

Following this discovery, it is clear that to transfer GSpyNetTree to O4 with maximum
accuracy, the CNN’s dependence on background needed to be addressed with a new augmented
training set. This way, the glitch dataset would be robust enough to account for changes in
detector background noise. To do this, the training sets of the O4-era version of GSpyNetTree
include not only data with and without the non-linear 60 Hz subtraction for LIGO Hanford and
LIGO Livingston; but also Virgo glitches and simulated GWs injected in Virgo background noise
[14]. This is detailed in Chapter 12.
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Figure 11.4: Accuracy results for the LM (top), HM (middle), and EHM (bottom) classifiers
for each of the glitches in the validation set. Except for Koi Fish glitches, there is a significant
decrease (∼ 20%) in accuracy when the nonlinear subtraction to the data is applied. This likely
happens as Koi Fish glitches are very loud and saturate the spectrogram, so the background
calibrations do not affect the visualization considerably. (Adapted from [14]).

11.2. Testing the ability of GSpyNetTree to generalize on glitches
not included in the original training set

To further validate the performance of GSpyNetTree toward O4, we studied the CNNs’
performance on glitches not included in the original training set, which was restricted to avoid
excess glitch classes that could reduce CNN performance. We selected 8 samples of Thunder
glitches, all of which occurred during O3, and more than 100 samples of Extremely Loud,
Repeating Blips, and Scattering glitches from previous observing runs. An example of each of
the first three1, in the duration that better captures their morphology, is shown in Figure 11.5.
While the former type of glitch is not a Gravity Spy class, the three latter are part of the Gravity
Spy training set [14].

Each type of glitch was carefully selected to address possible classification challenges that
GSpyNetTree might face during O4, which started on May 24th, 2023. Scattering and Thunder
glitches are fairly common in LIGO-Virgo data [12], so it is likely that they appear at the same
time as a candidate GW. Additionally, Repeating Blips are an interesting case as Blips and Low-
frequency Blips are already included in the training sets of the three classifiers. Studying the
CNNs’ performance in cases where these glitches repeat in the spectrograms allows a preliminary
study on how the CNNs perform in cases where multiple glitch instances appear in the same
visualization. Extremely Loud glitches are morphologically similar to Koi Fish glitches: they
both extend in a wide frequency and time range. Including them permits the evaluation of the
CNNs performance on morphologically similar glitches [14].

1An example of a Scattering glitch is shown in Figure 6.2(g).
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Figure 11.5: Examples of three of the glitches used to test the ability of GSpyNetTree to gen-
eralize on samples not included in the original training sets: (a) Thunder glitch, (b) Repeating
Blips, and (c) Extremely Loud glitch. The Thunder glitch is shown in a different time scale
than the other glitches to highlight its morphology and duration. Note that, similar to a Koi
Fish glitch, Extremely Loud glitches are very loud and saturate the spectrogram in (almost) the
entire frequency range.

The classification results for the LM, HM, and EHM classifiers for the new glitches are shown
in Figures 11.6a, 11.6c, and 11.6b, respectively. First, it is important to highlight that several
glitches are often classified as GWs [14]. A lack of robustness to glitches not included in the
training is problematic in O4, as new noise sources may appear with the increase in the detectors’
sensitivity (see Section 4.5).

Overall, the CNNs have low confidence when classifying new glitches2. The classification
probability is almost evenly distributed among all classes (including GWs) for most of the glitches
in the three classifiers. This is, however, not the case for Repeating Blips and Scattering (in
all three CNNs), and Extremely Loud glitches (in the HM classifier). Repeating Blips were
classified as Blips with 56%, 52%, and 46% accuracy for the LM, HM, and EHM classifiers,
respectively. Even though these results can be further improved, this is promising evidence that
the CNN architecture can be tuned to better classify multiple instances of glitches in the same
visualization [14].

Scattering glitches have significantly different behavior in the three classifiers. In the LM
CNN, they are mistaken for No Glitches (42%) and Low-frequency Blips (40%), possibly because
they evolve in a low-frequency range. However, the probability is distributed among the three
non-GW classes in the EHM classifier. On the other hand, the HM CNN classifies most of the
Scattering glitches (57%) as Koi Fish glitches, suggesting that it focuses on the broad (low)-
frequency range the Scattering glitches cover. Since Scattering glitches are one of the most
common glitches in current GW detectors [12] and having shown such different behavior among
the three CNNs, this glitch class is included as part of the O4-era GSpyNetTree training set (see
Chapter 12).

Moreover, morphologically similar glitches (particularly Koi Fish and Extremely Loud glitches,
which both display saturated spectrograms) were classified with 99% accuracy as the class al-
ready known by the HM CNN, as shown in the red box in Figure 11.6c, and they are not easily
mistaken for GWs. This is desirable as GSpyNetTree should minimize flagging non-astrophysical
glitches as GW candidates. Even though not as morphologically similar as Koi Fish glitches, the

2This was expected, as supervised CNNs learn to predict what they have been exposed to during training.
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(a) Confusion matrix for the LM classifier of GSpyNet-
Tree for glitches not included in the original training
set.

(b) Confusion matrix for the EHM classifier
of GSpyNetTree for glitches not included in
the original training set.

(c) Confusion matrix for the HM classifier of GSpyNetTree for
glitches not included in the original training set.

Figure 11.6: Confusion matrices for the (a) LM, (b) EHM, and (c) HM classifiers for the test
of glitches not included in the original training set: Scattering, Repeating Blips, Thunder, and
Extremely Loud glitches. The x and y axes represent the predicted and true classes, respectively,
and the confusion matrices are normalized by the total number of glitches of each class of the
validation set. The black boxes highlight the fraction of glitches misclassified as GWs. The
red box in the confusion matrix of the HM classifier highlights the fraction of Koi Fish glitches
classified as Extremely Loud glitches. (Adapted from [14]).

LM CNN classified Extremely Loud glitches as the most dispersed in time and frequency glitch
it knows: the Scratchy glitch. However, as opposed to the HM CNN, it misclassifies 24% of them
as GWs, which is undesirable if the false positive rate is to be mitigated. On the other hand,
the EHM classifier has a peculiar behavior when classifying both Thunder and Extremely Loud
glitches. As shown in Figure 11.6b, 85% and 45% of the samples are misclassified, respectively,
as No Glitches. Covering a wide time-frequency range with a high SNR, it is counter-intuitive
that they are both classified in the No Glitch class [14].

In light of this behavior, an option to address misclassifications of new glitches is creating a
new class for unknown or miscellaneous noise sources. However, this may reduce both the overall
and GW classification accuracy, as glitches with substantially different morphologies would be
included in the same class. Additionally, although the easiest solution is to include as many new
classes in the CNNs as glitches arise, this approach will potentially reduce the performance of
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the CNN (as it has more classes it can get confused with) [14].
To solve this issue for the O4-era GSpyNetTree, each CNN could be used as a feature

extractor in a semi/unsupervised learning task, similar to the approach followed by George et
al. [113]. This way, each CNN’s second-to-last layer3 would be projected to a 2-dimensional
space (or 3-dimensional space) using a clustering algorithm, such that glitches form clusters
whose positions in the 2-d (or 3-d) space depend on their morphology. An example of this
approach (for a 3-d space) is shown in Figure 11.7. Outliers (glitches not included in the
original training set) would create a new cluster (i.e., a new glitch class) or could be separated
enough to be segregated from training set classes for further Detector Characterization and glitch
mitigation studies [14]. Compared to the other alternatives, this approach would successfully
distinguish new glitch classes from GWs, maximizing the detection of astrophysical events with
a low false alarm rate. This extension of GSpyNetTree for O4 is not developed in this thesis,
and is suggested as future work.

Figure 11.7: Location of different classes of glitches after applying a t-SNE (T-distributed
Stochastic Neighborhood Embedding) [114] from an InceptionV3 CNN fine-tuned by George
et al. [113]. The t-SNE algorithm reduces the dimensionality of the features of the CNN to a
3-d space, where different types of glitch form clusters. The relative separations of the clusters
depend on the morphology of the glitches. (Adapted from [113]).

11.3. Testing the ability of GSpyNetTree to classify gravitational-
waves in the presence of glitches

As the aLIGO and AdVirgo detectors become more sensitive and the rate of detected events
increases, the probability of overlapping glitches and GW signals in strain h(t) data also rises.

3The second-to-last layer has all the features learnt by the CNN, whereas the last layer only has the predicted
output.
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During the first [7] and second [8] parts of O3, it already happened with 26% and 23% of
the candidates, respectively, and its therefore more likely to happen during O4. Thus, test-
ing GSpyNetTree’s performance in cases in which candidates occur in a similar time window
as glitches is imperative to understand whether this hinders the classification of astrophysical
signals [14].

Figure 11.8: Samples of GWs injected in close proximity to a Tomte glitch (underlines in red).
(a) and (b) show the same GW (with a total mass of 191.8 M⊙), but the glitch has a different
time-offset with respect to the GW: 0.011 s (a) and −0.130 s (b). Subfigure (c) shows the
Tomte glitch with the same time offset as in (a), i.e., 0.011 s, but the GW signal has different
astrophysical parameters (a total mass of 52 M⊙). (Adapted from [14]).

For each classifier, 30 events per glitch class were selected. Then, 3 GWs with different
astrophysical parameters (but in the same parameter space as in training) were simulated, and
each of them was injected into one of the aforementioned glitches. After that, the glitch was
shifted with respect to the GW, using an offset drawn from a normal distribution (µ = 0 , σ =

0.25 s) of time shifts. This allowed to test the performance of the CNNs in samples of GW
signals (with different SNR, mass, and spin) with offset glitches occurring in the same time
window of each spectrogram [14]. Figure 11.8 shows an example of a high-mass GW and a
Tomte glitch [14], using different time offsets and astrophysical parameters. Similarly, Figure
11.9 shows samples of two different GWs injected into a Koi Fish (upper panel) and a Blip (lower
panel) for all time durations used to generate GSpyNetTree’s samples. Note that, depending on
the offset, the glitch is visible in all spectrograms or just a few. In the first case, the glitch is
shifted 0.47 s to the right, so it is only visible in the spectrograms of 2 and 4 seconds in duration.
On the other hand, the blip is shifted 0.13 s to the right of the GW only, so it is visible in all
time-frequency visualizations.

Figure 11.10 shows the results of the three classifiers for overlapping GW signals with each
type of glitch (in a particular given mass range). More than 60% of the GW signals in the
presence of glitches are misclassified as glitches (70% for the HM classifier). Whenever not
flagged as GWs, the LM and HM CNNs classified the overlapping GW and glitch events as
the longest duration or most saturated glitches they were exposed to during training: Scratchy
glitches and Blips in the LM classifier, and Koi Fish and Tomte glitches in the HM classifier.

The EHM classifier tends to inaccurately classify overlapping GWs and glitches as Low-
frequency blips, with almost the same probability (40%) as it classifies them as GWs (39%).
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Figure 11.9: Samples of GWs injected in close proximity to a Koi Fish (top panel) and a Blip
(bottom panel) in the four durations used to generate the training sets of GSpyNetTree. (Top
panel:) The simulated GW has component masses m1 = 172.3M⊙ and m2 = 148.1M⊙ and is
time shifted 0.47 s with respect to the Koi Fish glitch. (Bottom panel:) A GW with component
masses m1 = 16.7 M⊙ and m2 = 32.9 M⊙ is injected 0.13 s to the left of a Blip. Note the
differences in morphology between the two GWs due to their mass, and how the offset determines
in which spectrograms the glitch will be visible.

Figure 11.10: Accuracy results for the LM (top), HM (middle), and EHM (bottom) classifiers for
the overlapping gravitational-waves and glitches. Percentages are shown for classes with more
than 10% of the total number of instances. GWs are shown in orchid, No Glitch samples in
pale orchid, Blips in light blue, Low-frequency Blips in light brown, Scratchy glitches in red, Koi
Fishes in green, and Tomte glitches in dark blue. More than 55% (70% for the HM classifier) of
the samples are misclassified as glitches.

In all three CNNs, having such a high fraction of candidates flagged as glitches may result
in unnecessarily vetoed candidates, an issue that must be avoided for O4. This shows the
importance of building an O4-era version of GSpyNetTree that is robust to these events, so it
can be useful in fully-automated validation of LIGO-Virgo event candidates [14].

GSpyNetTree misclassifies most of the overlapping glitch and GW events because in its pre-
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O4 era version it is a multi-class classifier: it outputs the probability that a given sample
belongs to one and only one particular class, which is independent and mutually exclusive with
the other classes. Chapter 12 describes GSpyNetTree’s transition to a multi-label classifier,
which would support the prediction of multiple mutually non-exclusive classes [100]. This way,
the GW signal (or, equivalently, the glitch) is not misclassified, but both of them are flagged
as samples of their respective labels. Figure 11.11 illustrates graphically the difference between
a multi-class classifier (pre-O4 era version of GSpyNetTree) and a multi-label classifier (O4-era
version of GSpyNetTree), explained in the next Chapter. An additional advantage of a multi-
label classifier is that it is able to accurately classify instances of overlapping glitches (such as the
Repeating Blips, see Figure 11.5), without including them as a separate class during training.
In this way, multi-label GSpyNetTree would be able to accurately classify GWs in the presence
of overlapping (or repeating) glitches. Section 14.5 shows the performance of the multi-label
GSpyNetTree in this scenario.

Figure 11.11: Differences between a multi-class (left) and a multi-label (right) GW signal-vs-
glitch classifier. In the first case, the CNN is only able to identify one of the mutually exclusive
classes it was trained on (making it prone to misclassify astrophysical data as glitches, or vice-
versa). In this particular example, the classifier only detects the Blip glitch from a sample with an
overlapping GW signal. The multi-label architecture, on the contrary, is able to predict several
labels for a single sample. Both the GW signal and the Blip glitch are accurately classified.
Chapter 12 explains the implementation of the multi-label version of GSpyNetTree.

Having explored likely O4 scenarios in which the pre-O4 multi-class version of GSpyNetTree
fails, we proceeded to build a new-O4 version of our tool; based on the previous findings, and the
recommendations of Jarov et al. [13] and Alvarez-Lopez et al. [14]. The next Chapter describes
the O4-version of GSpyNetTree, which is currently deployed in the Data Quality Report [17] as
part of the LIGO-Virgo event validation pipeline.
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12 O4-era GSpyNetTree: a decision tree of multi-label

signal-vs-glitch classifiers

Building up on the recommendations given by Jarov et al. [13] and Alvarez-Lopez et al. [14],
we built the O4-era version of GSpyNetTree: a decision tree of multi-label GW signal-vs-glitch
classifiers. Besides augmenting the training sets with Virgo glitches and with data extracted from
a broad array of background noise, and adapting GSpyNetTree to a multi-label architecture, we
also implemented several other changes to build a more robust training set. This Chapter
outlines all the changes implemented to the pre-O4 era version of GSpyNetTree. Divided in
several subsections, the generation of GW signals is tackled first, followed by the inclusion of
new glitch classes. Then, the changes in the construction of the training sets are detailed; and,
at the end, the transition to a multi-label classifier is addressed.

12.1. Gravitational-wave signal simulation: improvements with
respect to pre-O4 GSpyNetTree

This section details the changes we implemented to GSpyNetTree regarding gravitational-
wave signal simulation, making it a more robust tool with respect to its pre-O4 predecessor.

12.1.1. Making GSpyNetTree robust to a broad array of background noise

The first thing we did was to increase the automation of GSpyNetTree. Being a tool used
within the LIGO-Virgo collaboration, it is important to build on the computational aspects of the
project. The generation of the GW signals and their injection into background data was taking
approximately 1 day, so we started to use HTCondor [115] to parallelize our computationally
intensive task. This reduced the computational time of GW signal generation to around two
hours.

Additionally, as described in the previous Chapter, one of the recommendations for the O4-
era version of GSpyNetTree was to make it more robust to background noise. The background
noise data that the pre-O4 version of GSpyNetTree used was drawn from clean detector times
that occurred in a single day during O2 in the LIGO Hanford and LIGO Livingston observatories.
However, the data of a single day is not representative of the noise that LIGO experiences during
an entire observing run. In order to have a broader array of noise to inject the GW signals, we
added to our already selected times, clean detector data from the first [7] and second [8] parts
of O3, for all Hanford, Livingston, and Virgo detectors.

To do so, we studied random 10-second long time intervals of O3. As the longest spectrogram
used in GSpyNetTree is 4 seconds in duration, these 10 second intervals give us 3-second windows
of clean detector data before and after our longest spectrogram time interval. For these time-
windows we programmatically generated spectrograms via Q-transforms for the specified time
interval with a Q-value of 20 (the selected Q-value selection is justified later on). Having the
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data ready, we calculated the energy of each bin (or tile) of the Q-transform using a convolution
over each bin. We then fitted a linear regression to the data to calculate the number of bins
above the energy threshold, similar to the method employed by the Glitch Find DQR task (see
Section 7.1.6). The non-clean bins were marked with white for noise below 10 Hz, as shown in
Figure 12.1(c) for a time window of discarded noisy Virgo data, and with red for noise above
10 Hz (see Figure 12.1(d) for a discarded Livingston time - note that it actually corresponds
to a Fast Scattering glitch). In this process, we discovered that Virgo is, in general, very noisy
at lower frequencies (i.e., below 10 Hz). While this is not a limit for current GW detectors (as
noise sources like seismic noise impede GW detection as such frequencies, see Chapter 5), it could
make GSpyNetTree more robust to typical Virgo noise. For the O4-era version of GSpyNetTree
presented in this thesis, we decided not to include such times, to assure clean detector data for
GW signal injection.

Figure 12.1: The top panel shows spectrograms of two clean detector background times, (a) for
LIGO Hanford and (b) for LIGO Livingston. as identified by our algorithm, which are used to
inject gravitational-wave signals for GSpyNetTree’s training sets. The bottom panel shows two
samples of noisy detector data: (c) shows a 10-second interval of Virgo with abundant blops of
noise below 10 Hz flagged in white. (d) shows a spectrogram of LIGO Livingston marked as
noisy. This spectrogram shows a Fast Scattering glitch, and the time of each blip is shown in
red. Both (c) and (d) times were discarded as clean backgrounds to inject gravitational-wave
signals for GSpyNetTree.

We defined the normalized energy threshold to be 24, and the maximum number of bins for
a time interval to be considered not clean, 4. If four or more bins (or tiles) of the Q-transform
had a normalized energy above 24, the given time interval was discarded. We ran this process
until we had approximately 1000 clean background times for each detector, like the ones shown
in Figure 12.1(a) and Figure 12.1(b) for LIGO Hanford and LIGO Livingston, respectively. At
the end, we obtained 984, 980, and 958 different clean detector data segments for LIGO Hanford,
LIGO Livingston, and Virgo, respectively. Since a longer period of time (the entire duration of
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O3) was considered for this background data selection, a better representation of clean detector
times, compared to the pre-O4 version of GSpyNetTree, was assured.

Besides improving the method of finding clean detector background times to inject GW
signals for all three GW detectors (Hanford, Livingston, and Virgo) in their respective strain
h(t) channels, we also generated data for the selected times applying the non-linear subtraction
of 60 Hz (and resonances) power artifacts for both LIGO detectors1 This is one of the calibrations
used for low-latency strain h(t) data in O4. All these techniques assure that GSpyNetTree is
robust to a broad array of GW signals, independent of the detector background noise in which
they are embedded.

12.1.2. Randomizing gravitational-wave signal simulation parameters

For the first version of GSpyNetTree, the longitude and latitude (equivalently, right ascension
and declination) of the GW signal were calculated to be optimal with respect to the detector’s
orientation. However, in reality, GWs do not always come optimally oriented with respect to the
detector (i.e., perpendicular to the detector plane, see Section 4.1.1). In fact, the response of
the interferometer changes depending on the orientation of the GW (recall the antenna pattern
of Figure 4.3). To better capture any possible location and inclination of the astrophysical
sources that generated the GW with respect to the location of the interferometer on Earth, we
randomized the latitude, longitude, and inclination parameters of the simulations. While this
change makes GSpyNetTree more robust to GW candidates in O4, it does not have a considerable
impact to the naked eye on spectrogram visualizations. The mass, SNR, and spin of the signals
were already drawn from uniform (the two former) and normal (the latter) distributions; so
drawing location and inclination information from a uniform distribution was the last step to
randomize all relevant GW astrophysical parameters in signal simulation (within current detector
limits). Note that, as well as in the pre-O4 version of GSpyNetTree, the signals were simulated
using the LALSuite [108] and the IMRPhenomPv2 [109, 110] waveforms.

12.2. Glitch selection

Once we had ready our simulated gravitational-wave signals, we focused on selecting glitches
relevant for the O4-era version of GSpyNetTree, and optimizing the generation of their timeseries.
We noticed that, similar to what happened with the injections, generating the timeseries for
glitches was a bottle-neck of the training set generation process, so we decided to optimize it
using HTCondor [115] as well. Again, parallelizing the tasks reduced the process to a couple of
hours from an entire day.

Compared to its predecessor, and based on Section 11.1 [14], the O4-version of GSpyNetTree
includes new Virgo glitches. These were all obtained from LIGO-dv [96] and manually verified.
Including Virgo glitches makes GSpyNetTree more robust to background noise, as desired.

Based on Davis et al. [12] and the recommendations of Alvarez-Lopez et al. [14], we decided
to include two additional glitch classes, Fast Scattering and Scattering, as these were the most
common glitches in LIGO-Virgo data during O3, and they are likely to occur during O4. While

1Note that Virgo has different instrumentation and does not apply this calibration yet.
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not morphologically similar to all kinds of GWs (although low-mass GWs might share some
similarity with Scattering, and high-mass signals may be easily confused with a single Fast
Scattering energy blop), it is important to include them due to their recurrent appearance in the
data. This makes GSpyNetTree robust to detect GW signals in the presence of the most recurrent
glitches. While not included in the original O4 training set, after exploring the performance of the
O4-era version of GSpyNetTree in other types of glitches, we decided to include Low-frequency
lines (a type of glitch included in Gravity Spy [3]) to make GSpyNetTree robust against noise in
the low-frequency region. An example of this type of glitch is shown in Figure 12.2. Including
noisy Virgo times below 10 Hz could also help address cases with very low-frequency noise in a
future version of GSpyNetTree2. As manually verifying these samples is time consuming, only
around 300 samples of Low-frequency Lines were included. Augmenting this training class is
also a necessary future addendum to the current O4-version of GSpyNetTree.

Figure 12.2: Example of the Low-Frequency Lines glitch in all four spectrograms (0.5, 1, 2, and
4 seconds in duration) used for GSpyNetTree samples. Note that this is the only type of glitch
in GSpyNetTree considering noise at low frequencies.

Table 12.1 shows the distribution of glitches (including the No Glitch class) in the O4 version
of GSpyNetTree. Note the importance of including more Low-frequency Lines samples in a
future version of GSpyNetTree. Table 12.1 only shows the number of original samples, without
considering the data augmentation techniques we use. First, it is important to highlight that
LIGO Hanford and LIGO Livingston glitches are generated in two different ways (just as for
clean detector times): using the usual, low-latency channel, and applying the non-linear 60Hz
subtraction to the data. This way, the number of glitches (and clean detector times) for both
LIGO detectors is doubled. Additionally, similar to the previous version of GSpyNetTree, four
time offsets drawn from a uniform distribution between −0.5 and 0.5 seconds are used to shift
the signal, so the merger time is not always centered in t = 0 s. We extended the range of the
time offsets from [−0.1, 0.1] s, to be more robust against merger times not centered at 0 by the
GW search pipelines (see Section 4.6). While we aimed to have a balanced number of glitches
between all detectors, there are a few types of glitches (e.g., Fast Scattering, Low-frequency
Blips, and Scratchy) for which there are either no Virgo glitches (the two former) or they are
very scarce (the latter). In those cases, more LIGO glitches were obtained.

2This is not implemented in this thesis, but considered as future work.
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Type of Sample Number of Samples per Detector
LIGO Hanford LIGO Livingston Virgo

No Glitch 984 980 958
Blip 511 488 546

Low-frequency Blip 406 594 0
Fast Scattering 459 602 0

Koi Fish 359 499 331
Light Scattering 354 217 272

Scratchy 467 533 67
Tomte 498 492 427

Low-frequency Lines3 90 80 140

Table 12.1: Distribution of glitches and No Glitch sample per detector for the O4-era version of
GSpyNetTree. Note that the number of LIGO Hanford and LIGO Livingston samples is doubled
due to the usage of the channel applying the non-linear 60 Hz power artifact subtraction, in
addition to obtaining data from the original strain h(t) channel. Additionally, four time-offsets,
drawn from a uniform distribution [−0.5, 0.5] s, are used to generate four additional samples of
each glitch/No Glitch in order to augment the training set and make GSpyNetTree robust to
candidates with merger time shifted from t = 0 s. Note that there are some types of glitches for
which there are 0 or very few Virgo glitch samples. This is because either Virgo does not have
these types of glitches, or they are very rare, respectively.

12.3. Generating samples of gravitational-waves in close proxim-
ity with glitches

One of the recommendations of Alvarez-Lopez et al. [14] described in Section 11.3 is the
inclusion of overlapping GW signals and glitches, as this is very likely to occur during O4. In
fact, it already happened with more than 25% of GW events during O3 [7, 8].

Before generating the samples, we noticed that completely overlapping glitches and GW
signals (especially for very loud glitches, like Koi Fish) saturated the spectrogram visualizations
in a way that the GW signal and the glitch were no longer distinguishable, as shown in Figure 12.3
for a 4-second long spectrogram.

Figure 12.3: Example of a very saturated spectrogram resulting from overlapping a GW signal
with a Koi Fish in very close proximity. The excess power in the time-frequency visualization
results from excess energy in the tiles of the Q-transform.
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To tackle this problem, we implemented two different solutions to avoid excess power in
spectrograms with overlapping samples. The first thing we did was to set a standardized Q-
value of 20, instead of considering the (4, 64) Q-range that was used in the pre-O4 version of
GSpyNetTree. Having a lower Q-value restricts the amount of energy per tile in the Q-transform,
such that excess power is less likely to saturate the spectrogram visualization. Additionally, a
standardized, and relatively low Q-value also improves the visualization of low-mass GW signals,
potentially increasing the number of accurately classified samples. However, it is important to
experiment with other Q-values to find the one that optimizes GW signal-vs-glitch classification
in the entire mass range considered by GSpyNetTree (i.e., between 5M⊙ and 350M⊙). This is
not done in the current thesis but is proposed as future work for this tool.

To further avoid excess power in overlapping GW signal and glitch events, we devised a new
method to inject a gravitational-wave event into a glitch. First of all, we noted that the glitches
used for GSpyNetTree can be further segregated by their duration: on one category, transient
glitches (shorter in duration) like Blips, Low-frequency Blips, Koi Fish, and Tomte. On the
other, glitches extending in a broader time range: Scratchy, Light Scattering, Fast Scattering,
and Low-frequency Lines. Therefore, random time-offsets for all types of glitch could result in a
spectrogram with excess power. To generate offsets consistent with the duration of each glitch,
we followed these steps:

Type of Glitch Average duration [s]
Blip 0.138

Low-frequency Blip 0.137
Tomte 0.346

Koi Fish 0.899
Fast Scattering 1.657

Scratchy 1.750
Light Scattering 2.073

Table 12.2: Average duration of each glitch considered in the training sets of GSyNetTree. Note
that Blips, Low-frequency Blips are shorter in nature than Koi Fish, Fast Scattering, Scratchy,
and Light Scattering glitches.

1. Calculate the average duration of each glitch: Using the method described in Section
12.1.1, we flagged the glitchy times in a spectrogram (with either red or white, depending
on if the glitch is above or below 10 Hz, respectively). Having the initial and final times
of the glitch, calculate their duration. Repeat this process for 30 different samples of each
glitch class, and average the results to get the average duration per glitch class. Due to
the central limit theorem, the mean of the durations of the samples is representative of
the duration of the entire population of glitches. Table 12.2 shows the average durations
calculated for each type of glitch4.

2. Obtain the duration of the GW event that is going to be injected in proximity to the
4Low-frequency Lines are not included here because, for the current version of GSpyNetTree, no overlapping

samples of this glitch and GW signals were generated. Such samples will be generated when more Low-frequency
Lines instances are manually verified and included in the training sets of GSpyNetTree, in a future version of the
tool.
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glitch.

3. Calculate the time intervals in which the glitch can be injected without gener-
ating excess power in the spectrogram visualization. The process varies depending
on the duration of the glitch.

If the glitch is a short noise transient, it could be injected at any time between −2 s

(the left limit of the longest spectrogram in duration considered by GSpyNetTree) and
−(durationGW−0.5 ·durationglitch) seconds, as shown in the top panel of Figure 12.4.
To the right, the glitch can be injected anytime from (0.5 · durationglitch) seconds to
2 s, as shown in the bottom pannel of Figure 12.4. A uniform distribution is generated
for these time intervals and, from each of them, one offset is drawn randomly. This
way, for each simulated GW, one glitch will be injected to the left and, another one,
to the right.

If the glitch is a longer transient, a different process is applied. Note that Scattering
and Fast Scattering occur at rather low frequencies. Also, the Scratchy glitch has a
very low SNR. These features suggest that, if occurring simultaneously with a GW,
it is very unlikely that the spectrogram will be over-saturated. For these cases, we
consider three injections per glitch: one before the merger time of the GW, one
after the merger time of the GW (without the restrictions that apply for the shorter
transients in either case), and one at merger time (i.e., t = 0 s). This last sample
is included as Fast Scattering and Scattering are some of the most common glitches
in LIGO-Virgo data [12], and injecting them at the same time of merger time is not
likely to affect the time-frequency visualization5.

4. Generate 1800 samples of GWs occurring in the proximity of a glitch for each of the
GSpyNetTree classifiers using the appropriate glitches. This is done using the original
low-latency strain h(t) channel, assuring a balanced distribution of glitch samples in all
detectors (i.e., ∼ 600 per interferometer).

5. Generate another 1800 samples, but this time using the channel that applies the non-linear
60 Hz power artifacts subtraction, to increase robustness to a broader array of background
noise. A balanced distribution of glitches in all interferometers is assured as well.

6. In the same way it is done for samples with only glitches and only GW signals, generate 4
offsets drawn from a uniform distribution in the [−0.5, 0.5] s time range. This is done to
increase robustness against candidate times with mergers not centered at t = 0 s.

When generating of these samples, we tried to maintain a balanced training set, considering
the individual GWs and glitches we had already generated. Also note that each sample of the
overlapping GWs and glitch instances was tagged with two labels: GW and the corresponding
glitch category. As two labels may be predicted by the CNN, considerable architectural changes
were applied to GSpyNetTree, as detailed in the following section.

5This same process will be applied to Low-frequency Lines when they are included in the tool.
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Figure 12.4: The Figure shows a schematic representation of the injection of a GW in the
proximity of a Blip glitch before (top panel) and after (bottom panel) the merger time of the
signal. The duration of the GW and the closest initial time at which the glitch can b injected
injected are indicated in both cases. The suitable injection times are shown in green and the
invalid ones, in red.

12.4. Building a multi-label architecture for GSpyNetTree

Due to the increased number of samples that the O4-version of GSpyNetTree is trained on,
the first thing we had to do was to build a TensorFlow-based data generator. This was done
because we noticed that our training set exceeded the RAM memory of the LIGO Livingston
computing cluster we were using to train our CNNs. This way, instead of reading more than
50.000 at once, the training generator loads batches of 32 instances each time. The batch size
of 32 was chosen based on various recommendations to keep this value low in Deep Neural
Networks [102].
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Having the training generator ready, it was important to change the CNN architecture we
were using for the pre-O4 version of GSpyNetTree. There were four main changes that we
performed: changing the loss function, adapting the activation function of the output layer of
the CNN, using a new metric to evaluate the performance of GSpyNetTree, and changing the
way in which results were interpreted.

Regarding the loss function, as described in Section 8.2.1, multi-label classifiers need a binary
cross entropy loss function, instead of the categorical cross entropy that is used in multi-class
classifiers. This is because a multi-label problem can be divided into several binary tasks, each
of which is evaluated using this loss function. At the end, all binary results are added to obtain
the loss of each epoch.

The final layer of the CNN was also changed to use a sigmoid activation function instead
of a softmax activation function. This way, each neuron in the last layer has a weight ranging
from 0 to 1; and a label is said to be predicted by that particular neuron if the resulting weight
is above 0.5 (recall the sigmoid function of Figure 8.3). Note that, different from the multi-class
classifier in which only one neuron will have the largest probability of them all (as the weights
of all neurons in the last layer add up to 1), in the multi-label classifier, more than one neuron
(even all of them or none of them) can have a probability higher than 50%. This way, glitches
can be predicted accurately in the proximity of GWs whenever this situation happens. With the
possibility of predicting either 0, 1, or more than 1 label, we had to change the way in which we
interpreted GSpyNetTree’s results. To do so, we noted that a single confusion matrix (like the
ones in the multi-class pre-O4 version of GSpyNetTree) could not be generated for the multi-
label case. Instead, one binary confusion matrix is generated per label. If there are N labels,
each of these binary confusion matrices will have two possible outcomes per sample: predicted
as the i−th class, and NOT predicted as the i−th class (or, equivalently, predicted as anything
else but i), with i ∈ N .

The last change we implemented for the multi-label version of GSpyNetTree has to do with
the metric monitored during training. In the pre-O4 version of GSpyNetTree, we used accuracy
as the main metric. However, accuracy is not substantially useful in multi-label problems. This
is because if a sample has two real labels (say, GW and Blip), and only GW is predicted, the
entire sample will be marked as an incorrect classification, while the only affected class should
be Blip. To avoid this issue, which underestimates the performance of the CNN, we use recall
as the main metric to monitor in our CNNs. We chose this metric as its main purpose is to
minimize the number of false positive samples. That is, GWs incorrectly predicted as glitches,
or vice-versa. For completeness, we also include the precision metric, but we do not use it to
track the performance of GSpyNetTree.

All the other aspects of the pre-O4 version of GSpyNetTree were preserved; namely, the
optimizer (Stochastic Gradient Descent) with the same learning rate and momentum, and the
usage of early stopping with no improvement after 15 epochs. The following section details the
architecture of GSpyNetTree in its O4-era version, as well as the documentation written for the
task for the DQR.
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13 Deploying GSpyNetTree as part of the LIGO-Virgo

Data Quality Report

Having adapted GSpyNetTree to its multi-label O4 version, we adapted the broader archi-
tecture that integrates GSpyNetTree to the DQR. The new architecture is shown in Figure
13.1.

Figure 13.1: GSpyNetTree multi-label architecture: Triggered by a GraceDB superevent [98],
timeseries (strain h(t)) data is fetched to generate spectrograms of 0.5, 1, 2, and 4 second
durations. Time-frequency spectrogram visualizations are sent to the classifiers based on the
estimated total candidate mass. Each CNN outputs the probability that the input visualization
contains a GW and/or an included class of glitch, or no glitch. The main difference with respect
to the previous architecture is the fact that no Mercator projection is applied in the EHM
classifier, and GSpyNetTree outputs the probability for all of the labels it was trained on. In
addition, more than one label can be predicted by GSpyNetTree in this new use case.

Note that the Mercator projection is no longer applied in the EHM classifier. However,
the events are still sent from the HM classifier to the EHM classifier whenever the mass of the
candidate is above 250 M⊙. This means that each EHM candidate is first treated as a HM
signal, so that it can be compared to Koi Fish and Tomte glitches. In case the candidate event
was calculated to have a mass above 250M⊙, but it was classified as a Tomte or Koi Fish, it will
not be sent to the EHM classifier. This is done to reduce the number of glitches this classifier is
trained on.

In this O4-version of GSpyNetTree, we focused on developing all the necessary products to
deploy our tool in the Data Quality Report. As explained in Section 7.1.6, all DQR tasks report
a glitch p−value. If this value is below a given threshold, 0.5 in the case of GSpyNetTree, a
Data Quality issue is triggered by a task. If it is above such value, no Data Quality issues are
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flagged and the event is said to be clean. Note that the p−value of all tasks is considered when
making the decision of flagging or not a candidate with a DQ issue.

The following sections shows the documentation of GSpyNetTree, as seen in the DQR tasks
documentation1 [17]. Additionally, two examples of the output webpage generated by GSpyNet-
Tree, using GWDetchar, are shown.

13.1. GspyNetTree documentation for the Data Quality Report

This section shows the documentation of GSpyNetTree, which is also publicly available in the
DQR tasks’ documentation. The most relevant section of the documentation is the explanation
of the calculation of the p−value for GSpyNetTree. The relevant fragment of the documentation
reads as follows [17]:

“GSpyNetTree, the Gravity Spy Convolutional Neural Network Decision Tree, is a data
quality report task that uses machine learning to determine whether a glitch is present at
the time of a candidate event. GSpyNetTree leverages a decision tree of multi-label CNN
classifiers, sorted via total estimated gravitational-wave (GW) candidate mass, and trained
with morphologically similar glitches. This task is based on Alvarez-Lopez et al. [14], and
a new paper on the O4-version of GSpyNetTree is in preparation.

[. . . ] GSpyNetTree leverages a multi-label architecture for its three CNNs, which means it
also considers cases where a GW candidate and a glitch overlap in time (and frequency).
With a multi-label architecture, GSpyNetTree is able to predict 0 or more labels for each
candidate, by returning a probability ranging from 0 to 1 for each considered class. This
way, the sum of the probabilities of all labels is not 1 (as occurs for multi-class classifiers,
where the classes are mutually exclusive). Instead, the probability of each label can take
any value from 0 to 1, and a label is said to be predicted by GSpyNetTree if its probability
is greater than or equal to 0.5. In the case were no label surpasses the 50% threshold, no
labels are predicted and a “human input needed” message is displayed.

If GSpyNetTree predicts that a glitch is present (including the case where a GW and/or No
Glitch label is simultaneously predicted with a glitch), GspyNetTree needs to determine if
a data quality issue should be flagged. To do this, GSpyNetTree uses the glitch p-value,
which ranges from 0 (data quality issue identified) to 1 (no data quality issue identified).
A data quality issue is flagged whenever the p-value is below 0.05.

The glitch p-value is calculated as 1−max allglitchprobabilities, such that if the probability
of the glitch is very high, the p-value will be near zero and a data quality issue will be
flagged. Similarly, in cases were GSpyNetTree is very confident about a GW/No Glitch
prediction, the glitch probabilities are generally very low and the glitch p-value will be
almost 1. Note that the GW/No Glitch probability is not used to calculate the glitch
p-value”.

1The DQR tasks documentation for GSpyNetTree is available at: https://detchar.docs.ligo.org/
dqrtasks/gspynettree.html.
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Having outlined the section of the DQR documentation, it is relevant to show two samples of
the output generated by GSpyNetTree. Figure 13.2 shows a candidate event accurately classified
as a GW event and Figure 13.3depicts a sample classified as Fast Scattering by GSpyNetTree.
Note the different messages displayed when no Data Quality issue is found (first case) and where
a Data Quality issue is identified by GSpyNetTree2.

2The first sample can be found at https://detchar.docs.ligo.org/dqrtasks/_static/task_examples/
gspynettree/GW_sample/index.html and, the second one, at
https://detchar.docs.ligo.org/dqrtasks/_static/task_examples/gspynettree/FS_sample/index.html
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Figure 13.2: Output of GSpyNetTree when run over a GW signal of LIGO-Virgo that occurred
during the second observing run. Note that the signal does not occur in the proximity of a
glitch, and no Data Quality Issue is identified by this task.
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Figure 13.3: Output of GSpyNetTree when run over a Fast Scattering glitch. Note that the noise
transient os correctly classified as a glitch, and a Data Quality Issue is flagged by GSpyNetTree.
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14 O4-era GSpyNetTree Results

Before detailing the results of the O4-era version of GSpyNetTree, it is important to un-
derstand a few changes that were implemented before building our last version of the classifier.
In the first part of this Chapter, some issues we tackled for the first O4-era version version of
GSpyNetTree are introduced.

One of the main changes for the EHM classifier in its O4-era version is that it does not
implement the Mercator projection for its samples. The EHM classifier has two new glitch
classes (Scattering and Fast Scattering), which are much longer in duration than blips, low-
frequency blips, and GWs, so the Mercator projection is no longer useful. The advantage of the
characteristic thinning of the Low-frequency Blip (see Figure 10.3) with respect to the GW that
was previously useful in discerning between astrophysical signals and noise, was now affecting
the predictions of other types of glitches. From the original 96% accuracy that we achieved in
the pre-O4 era version of GSpyNetTree, we obtained correct classifications of glitch classes of
70% (Light Scattering), 64.5% (Fast Scattering), 75.5% (Blip), and 38.6% (Low-frequency Blip)
for the EHM classifier. In contrast, the LM and HM classifiers did not reduce their performance
with respect to the pre-O4 GSpyNetTree. Figure 14.1 shows the application of the Mercator
projection to a Fast Scattering glitch. Note that it is very difficult to extract useful features
from the samples now, and the morphology of the glitch is completely lost. Thus, we removed
the application of the Mercator projection from the O4-era version of GSpyNetTree, for which
the results improved considerably (see 14.1).

Figure 14.1: Mercator projection applied to a Fast Scattering glitch. Note that the morphology
of the glitch is completely overshadowed by the usage of the Mercator projection.

The second fundamental change that the O4-era version of GSpyNetTree has is the inclusion
of Low-frequency Lines in all training sets of GSpyNetTree, and of Koi Fish glitches in the LM
CNN. We noted that Low-frequency Lines (and similar Low-frequency glitches) were happening
frequently in the LIGO detectors in the weeks prior to the start of O4. As this was a recent
discovery, we were only able to manually verify around 300 samples of this type of glitch, and
no overlapping samples of it with GWs could be generated before the start of O4. This explains
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the poorer results of this class compared to other GSpyNetTree glitches. A new training set
including more Low-frequency Lines (as well as overlapping samples of this glitch with GWs)
will be included in a future version of GSpyNetTree. In the case of Koi Fish glitches, while
not morphologically similar, we realized that it is important to account for the case in which
a loud and saturated glitch occurs at the moment of a GW signal (see the scenario of the
glitch overlapping with GW170817 in Figure 6.4). This was an important inclusion based on
preliminary results with these types of candidates.

Having outlined the major changes of GSpyNetTree, we can now study its performance in
all three mass ranges for each of its CNNs.

14.1. O4 GSpyNetTree: results

Having our training sets and multi-label InceptionV3 CNNs ready, it is now time to under-
stand the results of our classifiers in all of the mass ranges of GSpyNetTree. For visualization
purposes, the binary confusion matrices per label per CNN are shown in Appendices B, C, and
D, respectively.

The main purpose of the O4-era version of GSpyNetTree is to build a classifier robust to
detect glitches responsible for or in the presence of GW candidates. As outlined in Chapter 13,
GSpyNetTree will trigger a Data Quality Issue anytime the glitch p−value is below 0.05; i.e.,
whenever a glitch is detected. In this sense, for the results below, the case of predicting a GW or
a No Glitch are indistinguishable, as either of them would pass the test imposed by the DQR. In
this sense, besides data visualization purposes, we present the results of our CNNs in a binary
fashion. Namely, we add the results of all glitch classes together and relabel them as “Glitch”,
and for the combination of GWs and No Glitch predictions, “No DQ issue identified”. Ideally,
in the presence of a real GW event, the GW label would be predicted instead of the No Glitch
label. Figure 14.2 shows the results for the LM, HM, and EHM classifiers in this binary fashion.
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(a) Confusion matrix for the LM
classifier of O4-era GSpyNetTree.
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(b) Confusion matrix for the HM
classifier of O4-era GSpyNetTree.
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(c) Conf. matrix for the EHM
CNN of O4-era GSpyNetTree.

Figure 14.2: Binary confusion matrices for the (a) LM, (b) HM, and (c) EHM classifiers for the
multi-label versions of the O4-era GSpyNetTree. The results are shown in a binary fashion for
data visualization purposes, where the ‘Glitch’ label includes all glitch classes in each particular
classifier, and the ‘No DQ Issue’ label covers both the GW and the No Glitch class. In these
confusion matrices, the number of samples (instead of percentages) is used.

From the three classifiers, the HM classifier shows the best performance among all. It only
misclassifies 5.45% of GWs/No Glitch samples as glitches, and 2.32% of glitches as GWs/No
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Glitch. The results for misclassified glitches stay low for the LM (2.11%) and EHM (4.58%)
classifiers. This is ideal as, responding to its original purpose, GSpyNetTree is flagging more
than 95% of all glitches (and overlapping GWs and glitches) as DQ issues. Note that these
percentages were calculated using the recall (see Section 8.2.2), meaning that they correspond
to the amount of correctly classified samples of each class (where class is either “Glitch” or “No
DQ issue”.

However, the LM and EHM classifiers classify 9.89% and 7.30% of all GWs/No Glitch in-
stances as glitches, which is a high rate compared to the HM classifier (5.45%). Particularly in
the case of the LM classifier, this means that GSpyNetTree has issues classifying very low mass
signals in the presence of glitches; and many superevents in the low mass range, especially those
overlapping with glitches, will be misclassified as only the type of glitch they are overlapping
with. The GW signal will, therefore, be ignored. While not desirable, this is not a considerable
issue with GSpyNetTree, as the most important thing for it to tackle is detecting DQ issues in
the presence of GWs. Indeed, if a GW candidate (even if it is in the low mass range) has already
been detected by several search pipelines in various detectors, the event is most likely to be
astrophysical in origin. To further understand these results, it is important to visualize which
are the glitch labels most easily mistaken as GWs/No Glitch samples. Sections 14.2 through
14.4 cover these analyses, and study particularities of each classifier.

14.2. Low-mass Classifier results

The results for the incorrectly classified samples in the LM classifier, considering all glitch
samples, are shown in Figure 14.3. The left panel shows the number of times GWs were mis-
classified as each type of glitch; while the right panel shows glitches commonly misclassified as
GWs.

Figure 14.3: Left: Number of overlapping GWs and glitches only classified as glitches, per glitch
type (four extra labels are not included, as only one instance of each case was predicted). Note
that the Scratchy glitch is the one that most hinders low-mass GW signals, possibly due to its
long duration. Right: Frequency of misclassifications of glitches as GWs/No Glitches. Note that
the most problematic glitch class is the Low-frequency Lines.

In the case of the plot in the right, most of the misclassified glitches are Low-frequency Lines.
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Indeed, this is the only label for which more than 100 samples are not accurately classified.
Manually verifying these samples, we noticed that most of them are classified as No Glitch
samples. This is due to the fact that Low-frequency Lines are the worst represented class in
GSpyNetTree. By augmenting this class, as we intend to do in the next version of GSpyNetTree,
this issue should be fixed. Additionally, we note that the next most frequent misclassified label
is overlapping samples of Blips and GWs, in which only the GW is correctly classified. By
visualizing a few of the samples, we noticed that in most of the misclassifications, the Blip was
very far away from the signal. This way, it is important to build samples more robust to glitches
occurring farther away from the signal.

For the plot on the left note that, in general, most of the overlapping GW signals and glitches
classified as only glitches are Scratchy glitches; probably because the Scratchy glitch is is longer
in duration and covers a wider frequency range, hence it is prone to overshadow a very faint GW
signal. Followed by Scratchy glitches, the next most confused are Scattering and Fast Scattering
again, probably, because of their duration. Lastly, Blips and Koi Fish are the next most likely
glitch types to overshadow a GW signal. While short in duration, both of them have a very
high SNR (especially the latter), possibly reducing the attention paid by the CNN to the fainter
GW signal. Note that, while still good results, we can further improve the classification of
GW signals in the presence of glitches by identifying the best Q-value to generate spectrogram
visualizations. This is also proposed as future work on GSpyNetTree.

Another advantage of the current version of GSpyNetTree is that, being multi-label, more
than two classes can be predicted; and even two glitch classes (in which the CNN was not
trained on) can be identified by GSpyNetTree. As a matter of fact, the plot on the left of Figure
14.3, four predictions are not included (for visualization purposes). The labels predicted in
these four cases were: Blip and Scratchy, Fast Scattering and Scratchy, Fast Scattering and Koi
Fish, and Blip and Koi Fish. Note that, even though the CNNs are not trained in overlapping
glitch spectrograms, the classifier sometimes predicts many glitches in a single sample. If an
overlapping sample of a GW and a glitch (or alternatively an independent GW or glitch) is
identified by GSpyNetTree, and an extra glitch (or GW) label is predicted, new instances non
previously identified (either astrophysical in origin or not) will be flagged by GSpyNetTree.
This way, our tool will be able to find GWs (or glitches in proximity with GW candidates)
that were not detected by any other GW search pipeline or DQR task, respectively. This is a
very interesting scenario, and a sample of a prediction of GSpyNetTree in such a case is shown
in Figure 14.4. In this particular prediction, a low-mass GW signal is predicted along with
a Low-frequency blip (to the left, original label of the sample) and a Blip (on the right, not
originally included in the label of this particular sample). GSpyNetTree is learning the glitches
it is trained on in such a way that it is capable of predicting two (and possibly even more)
instances of glitches, even though it was not initially trained on these types of samples. This
type of predictions can be found in the three mass ranges consudered by GSpyNetTree.

Finally, it is important to highlight that the LM classifier has a very low false alarm rate,
defined as the number of actual GWs (and only GW samples, without overlapping glitches)
that were erroneously classified as glitches. As a matter of fact, this only happens for 2.57%
of the signals GSpyNetTree was tested on. This means that GSpyNetTree is very unlikely to
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Figure 14.4: GSpyNetTree sample (colored) in which two different glitch labels (Low-frequency
Blip and Blip) are predicted along a low-mass GW signal. All three instances are underlined
in red in the bottom right plot. Note that, while the Low-frequency Blip is clear in all four
spectrograms, in this last plot an artifact (the GW signal) can be seen at the right of Low-
frequency Blip. Another artifact, this time a Blip, is visible at the left of the Low-frequency
Blip. The two glitches (one of which was not originally labeled by GSpyNetTree - the Blip) and
the GW signal were correctly predicted by our tool.

trigger a false DQ issue. This is a fundamental advantage of our tool, as its results flagging DQ
issues can be almost always regarded as confident, meaning that the DQR and DetChar experts
can rely on the results of GSpyNetTree (complemented of course, by the results of other DQR
tasks) to flag a DQ issue whenever GSpyNetTree finds one. However, an improvement to our
tool could be providing this rate when reporting the result generated in the webpage uploaded
to the DQR report.

14.3. High-mass classifier results

A similar analysis to what was previously done for the LM classifier is shown in Figure 14.5.
Just as in the LM classifier, the most problematic glitch class (meaning the one most prone to
be classified as a GW/No Glitch, see bottom panel) is the Low-frequency Lines. This is the
only glitch class above 80 wrong misclassifications, further confirming the need of augmenting
the GSpyNetTree training sets with more samples of this glitch class, along with overlapping
samples of such instances with GW signals in all mass mergers. In this sense, we note that
the lack of overlapping GW samples with this particular kind of glitch affects significantly the
number of correctly classified samples.

On the other hand, the type of glitch that most hinders GW classification is the Blip glitch
(see top panel of Figure 14.5, closely followed by Tomte and Scattering glitches. In the case of
Blips, note that the second glitch most prone to be ignored in the presence of a GW signal is the
Blip glitch (see bottom panel of Figure 14.5). Besides the morphological similarities between
GWs in the mass range considered by the HM classifier and the most confused glitches, it is
important to note that some high-mass signals of very low SNR may be too faint to be detected
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Figure 14.5: Top: Number of overlapping GWs and glitches only classified as glitches, per glitch
type (four extra labels are not included, as only one instance of each case was predicted). Note
that the Blip glitch is the one that most hinders high-mass GW signals, possibly due to the
morphological similarities between both of them. Bottom: Frequency of misclassifications of
glitches as GWs/No Glitches. Note that, as for the LM classifier, the most problematic glitch
class is the Low-frequency Lines.

by GSpyNetTree. This way, a louder glitch, in close proximity to the signal, is more likely to be
detected by GSpyNetTree. Nevertheless, this happens for just 5% of the candidates overlapping
with glitches (the percentage of correctly classified samples is higher for GW signals alone).
However, one way to further increase the accurate GW classifications is finding an optimal Q-
value for each mass range that better shows the morphology of the GW signal in the presence
of a glitch. Finding an optimal Q-value is proposed as future work for GSpyNetTree.

14.4. Extremely high-mass classifier results

Lastly, Figure 14.6 shows the results of GSpyNetTree on the test set of the extremely high-
mass classifier. The EHM CNN shows a different behavior compared to the LM and HM classi-
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fiers. As a matter of fact note that, when overlapped with glitches, GWs tend to be overshadowed
the most by Scattering glitches. Recall that Scattering glitches occur at low frequencies, so much
like the EHM mergers due to their high chirp mass (see Chapter 3). In addition to Scattering
being one of the longest glitches in duration, it is very likely that segments of the arches of
scattering are overlapping with parts of the EHM signal, making it impossible for GSpyNet-
Tree to detect the astrophysical candidate in such cases. To mitigate this effect, longer time
offsets between EHM signals and scattering glitches must be considered in a future version of
GSpyNetTree.

Figure 14.6: Left: Number of overlapping GWs and glitches only classified as glitches, per glitch
type (four extra labels are not included, as only one instance of each case was predicted). Note
that the Scattering glitch is the one that most hinders extremely high-mass GW signals, possibly
due to the fact that both occur at low frequencies. Right: Frequency of misclassifications of
glitches as GWs/No Glitches. Note that, different from the LM and HM classifiers, the most
problematic glitch class is the GW + Low-frequency Blip prediction (followed, of course, by the
Low-frequency Lines).

Additionally note that, different from the LM and HM classifiers, instead of Low-frequency
Lines being the most problematic glitch class mistaken as GW signals/No glitch samples (al-
though they are still in second place), in overlapping Low-frequency Blips and GW signals, the
former is usually ignored by the CNN. While the initial approach of GSpyNetTree was to use
the Mercator projection to better segregate GW signals from this particular type of glitches, we
proved that such approach is no longer useful in the presence of more types of glitches. Addi-
tionally, note that the problem is not with Low-frequency Blips alone (still, about 22 of them are
misclassified as GWs, although that is a very small fraction of the entire test set); but rather with
the overlapping simples of this glitch and GW signals. In this case, the alternative to produce
better results is not exactly on the training set, but on the overall GSpyNetTree architecture.
In case a candidate event is classified as having either a Low-frequency Blip, a Blip, or both of
them, the sample is further sent from the EHM CNN to a binary CNN classifier that segregates
GW signals and Low-frequency blips (and overlaps of them) only. As only these two would be
included in the specialized CNN, the usage of the Mercator projection to the samples included
in this classifier can be evaluated again to better distinguish non-astrophysical signals. This is
proposed as future work for the next version of GSpyNetTree.

Note that, while there is room to improve the CNNs, the results obtained for all of them
up until now are very promising in classifying glitches responsible for GW candidates or in
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the presence of real astrophysical signals. As a matter of fact, it has proven its outstanding
classification capabilities in several scenarios. The following sections evaluate the performance
of GSpyNetTree on detecting repeating instances of glitches (particularly, repeating blips), and
on two GW candidates that have been detected since the start of O4 (May 24th, 2023).

14.5. Evaluating the performance of O4-era GSpyNetTree on de-
tecting instances of repeating glitches

One of the most important results from the study of the multi-class pre-O4 version of
GSpyNetTree is that it was unable to confidently predict types of glitches it was not origi-
nally trained on. While not surprising, we noted that, after Extremely Loud glitches in the
HM CNN, the next class with the most confident predictions was Repeating Blips: 56%, 46%,
and 52% of all the samples of this glitch in the LM, HM, and EHM classifiers were accurately
predicted as Blips. With the new multi-label architecture, we repeated this validation study to
verify if the percentage of correctly classified samples increased. As the CNN is now able to
predict more than one class, and some samples include a GW signal overlapping with a glitch
(i.e., two energy artifacts), we suspect that the CNN will now be able to confidently predict
more Repeating Blips samples as well.

Indeed, the LM classifier predicts 90% of Repeating Blips as Blips, a great improvement
form the original 56%, while the HM and EHM CNN predict the former as the latter type
of glitch 75% and 85% of the times, respectively. All of these are considerable improvements
from the multi-class version of GSpyNetTree, suggesting that the O4-version is more robust to
a broader set of glitches, including samples with repeating instances of transient noise. This
makes GSpyNetTree a valuable tool for GW candidate identification, even in the presence of
repeating instances of noise. Note that the unsupervised extension of GSpyNetTree will also be
able to predict multiple (and new) sources of glitches, so the results obtained with this supervised
multi-class version of GSpyNetTree will be further improved by this new model we are in the
process of building.

14.6. Results on selected ER15 and O4 GW candidate events

To conclude the results section, we show the performance of GSpyNetTree on two selected
gravitational-wave candidates from the current observing run, O4. Both of them are publicly
available in the GraceDB database [98], in the Public Alerts section. The chosen candidates are
a retracted GW signal due to its terrestrial origin and a BBH candidate event. Note that I only
present the results of GSpyNetTree and not of the other DQR tasks, as their reports are part
of the internal review of the collaboration. The spectrograms, mass of each candidate, time of
occurrence, and ID are not shown either, as these are not public results yet.

112



14.6.1. Classification performance on example candidate event 1: retracted
event

The first example candidate event of O4 is a retracted event, flagged as such because of its
terrestrial origin. GSpyNetTree predicted this candidate signal as a Fast Scattering glitch in
both detectors, as shown in Figures 14.7 and 14.8 for the LIGO Livingston and LIGO Hanford
detectors.

14.6.2. Classification performance on example candidate event 2: a BBH
candidate

This candidate event was detected in both LIGO Observatories1. Figures 14.9 and 14.10
show the reports generated by GSpyNetTree for this sample in the Hanford and Livingston
detectors, respectively. Remarkably, there was a glitch approximately 1.5 seconds after the time
of the merger of the GW in the Livingston Observatory. With an 81.62% probability, it is
predicted to be a Tomte glitch. While this value did not trigger a Data Quality issue due to the
fact that the glitch p−value is still above 0.05, the ability of GSpyNetTree to predict glitches in
close proximity with GWs is proved.

1Virgo is expected to join LIGO in O4 later on 2023.
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Figure 14.7: Report webpage generated by GSpyNetTree for the retracted candidate example
event 1 in the Hanford Observatory. Note that a Fast Scattering glitch is predicted, indicating
a Data Quality issue.
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Figure 14.8: Report webpage generated by GSpyNetTree for the retracted candidate example
event 1 in the Livingston Observatory. Note that a Fast Scattering glitch is predicted, indicating
a Data Quality issue.
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Figure 14.9: Report webpage generated by GSpyNetTree for the second example GW candidate
event in the Hanford Observatory. A GW is predicted by GSpyNetTree, with a 86% of probability
that the event is a BBH signal.
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Figure 14.10: Report webpage generated by GSpyNetTree for the second example GW candidate
event in the Hanford Observatory. A GW is predicted by GSpyNetTree, with an 81.6% of
probability that the event is a BBH signal. A Tomte glitch is also predicted to occur in close
proximity to the GW, proving the ability of GSpyNetTree to detect GWs in the presence of
glitches.
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15 Conclusions and future work

This dissertation describes the development of GSpyNetTree: the Gravity Spy Convolutional
Neural Network Decision tree, a signal-vs-glitch classifier for LIGO-Virgo GW event candidates
that is part of the Data Quality Report of the fourth observing run. GSpyNetTree is part of
the GW event validation pipeline, and its results have been already utilized to identify glitches
responsible for or in the presence of GW candidates. The entire evolution of GSpyNetTree is
presented: from its initial, pre-O4 multi-class version to its current, O4 multi-label architecture.
Following a procedure of tuning the best possible models, and generating training sets robust
to a broad array of background noise, glitches, and overlapping samples of GWs and glitches,
we achieved more than 95% correct classifications in all glitches, both morphologically similar
to GWs, and occurring in the proximity of real astrophysical events. This means that less than
5% of the Data Quality issues currently present in the LIGO-Virgo data are not identified by
GSpyNetTree. As a matter of fact, in the already started observing run, GSpyNetTree has had
an outstanding performance in segregating GW candidate events from glitches in the superevents
published in GraceDB [98] up to date.

In addition, more than 90% of GW candidates and No Glitch samples are classified correctly
among the entire mass spectrum (i.e., from 5 M⊙ to 350 M⊙). The misclassified GW samples
usually occur for low SNR GW signals; which, if happening in close proximity with a glitch,
may be completely overshadowed by the latter. This is an expected outcome, as it is difficult for
GSpyNetTree to disentangle the power of a very faint signal from a very loud glitch. However,
as long as the DQ issue is identified by the task and if an overlapping GW signal occurred at the
same time as a non-astrophysical event, further mitigation and subtraction techniques may be
applied to recover the GW signal in its entirety (as it was done for GW170817). Additionally,
the tool is able to classify accurately more than 75% of repeating instances of glitches when
tested over a set of Repeating Blips in the entire mass range considered by GSpyNetTree.
This is a considerable increase with respect to the multi-class version of the task, and suggests
that this new version of GSpyNetTree is more robust in predicting repeating instances of the
morphologically similar glitches it already knows. Moreover, a very valuable contribution of
GSpyNetTree to the DQR is the fact that it can predict more than one class of glitch. This way,
even if multiple types of glitches occur in the proximity of GWs, GSpyNetTree will be able to
detect them.

It is important to note, however, that GSpyNetTree performs poorly on instances of Low-
frequency Lines; this is because they are an underrepresented class in the training set. For
a future version of GSpyNetTree, these classifications will be improved (both including more
manually verified samples of the glitch, and introducing instances of overlapping GWs with
it). Furthermore, many GW signals are ignored because of the Q-value (of 20) used. A future
version of GSpyNetTree will study a broader range of Q-values to generate the spectrograms of
GSpyNetTree, aiming to find an optimized value that maximizes the visible GW signal (even
for low SNR samples). Moreover, in order to further improve the classifications in the EHM
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classifier, which has a significant issue identifying GWs in the presence of Low-frequency blips
(but not confusing astrophysical signals as these type of glitch, as in the multi-class version of
GSpyNetTree), we propose the implementation of a specialized multi-label binary CNN that is
triggered whenever an event is cataloged with having a GW, a Low-frequency Blip, or both. As
this new classifier will only have two classes to predict, the usage of the Mercator projection can
be reconsidered.

Finally, and based on the recommendations of Alvarez-Lopez et al. [14] a future version of
GSpyNetTree will also include an unsupervised extension. In this new model, samples, for which
GSpyNetTree’s predictions are not confident, will be clustered to identify new possible sources
of glitches (either very common or morphologically similar to GWs) in which GSpyNetTree was
not initially trained on. This will allow, in the future, to deploy an automated GSpyNetTree
system which will be updated with the new clusters (i.e., labels) that, based on the O4 data,
the unsupervised architecture will generate.
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A Confusion matrices for the multi-class pre-O4 ver-

sion of GSpyNetTree

Figure A.1 shows the confusion matrices for the multi-class pre-O4 version of GSpyNetTree.
Each row represents a different classifier. The left column shows the results with the Gravity
Spy architecture [88], whereas the second column shows those obtained with Inception V3 [15].
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(a) LM Classifier using Gravity Spy architecture.
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(b) LM Classifier using InceptionV3 architecture.
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(c) HM Classifier using Gravity Spy architecture.
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(d) HM Classifier using InceptionV3 architecture.
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(e) EHM Classifier using Gravity Spy architecture.
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(f) EHM Classifier using InceptionV3 architecture.

Figure A.1: Confusion matrices for each multi-class classifier of the pre-O4 version of GSpyNet-
Tree. The left column shows the results using the Gravity Spy architecture [3] while the second
one shows those obtained with Inception V3 [15]. The first row corresponds to the LM classifier,
the second row to the HM classifier, and the third row to the EHM classifier.
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B Confusion matrices for the multi-label low-mass O4

version of GSpyNetTree

Figures B.1, B.2, and B.3 show the confusion matrices for the multi-label low-mass O4 version
of GSpyNetTree using the Inception V3 architecture [15].

Figure B.1: Binary confusion matrices for each label of the low-mass multi-label classifier of the
O4 version of GSpyNetTree.
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Figure B.2: Binary confusion matrices for each label of the low-mass multi-label classifier of the
O4 version of GSpyNetTree.
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Figure B.3: Binary confusion matrices for each label of the low-mass multi-label classifier of the
O4 version of GSpyNetTree.
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C Confusion matrices for the multi-label high-mass O4

version of GSpyNetTree

Figures C.1, C.2, and C.3 show the confusion matrices for the multi-label high-mass O4
version of GSpyNetTree using the Inception V3 architecture [15].

Figure C.1: Binary confusion matrices for each label of the high-mass multi-label classifier of
the O4 version of GSpyNetTree.
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Figure C.2: Binary confusion matrices for each label of the high-mass multi-label classifier of
the O4 version of GSpyNetTree.
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Figure C.3: Binary confusion matrices for each label of the high-mass multi-label classifier of
the O4 version of GSpyNetTree.

133



D Confusion matrices for the multi-label extremely high-

mass O4 version of GSpyNetTree

Figures D.1 and D.2 show the confusion matrices for the multi-label extremely high-mass
O4 version of GSpyNetTree using the Inception V3 architecture [15].

Figure D.1: Binary confusion matrices for each label of the extremely high-mass multi-label
classifier of the O4 version of GSpyNetTree.
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Figure D.2: Binary confusion matrices for each label of the extremely high-mass multi-label
classifier of the O4 version of GSpyNetTree.
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