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Abstract 

The ground-based International Gravitational-Wave Observatory Network (IGWN), including 

the Laser Interferometer Gravitational-Wave Observatory (LIGO) stations at Hanford and 

Livingston, Virgo and KAGRA [1], has detected gravitational waves (GWs) from Compact 

Binary Coalescence (CBC) sources [2] in distant galaxies as far away as 8 Gigaparsecs [3], 

which corresponds to a redshift of slightly greater than 1. More distant sources are too faint to be 

confidently detected as individual events. However, they are expected to be so numerous that 

they can be detectable as a Stochastic Gravitational Wave Background (SGWB) [4]. While 

stringent upper limits on the strength of the SGWB as a function of frequency in units of the 

cosmological closure density of the universe, ΩGW(f) [5], have been made through the IGWN, 

there has been no observed detection of the SGWB as such. However, while this was overturned 

as per the June 28, 2023, announcement on the preliminary — not completely confirmed — 

detection of an SGWB, which is believed to come from supermassive black hole mergers, the 

astrophysical background from all CBC sources in the LIGO frequency band is still to be 

detected [15]. Early implications for the SGWB from the first observation of stellar-mass Binary 

Black Hole (BBH) mergers [6] and more recent models from advanced LIGO and VIRGO data 

[7, 8] have all provided estimates of the CBC merger rate, which suggest that we are close to 

detecting the SGWB. The estimates from the ‘Regimbau method’ [6] come from complex 

simulations of many individual events, while the ‘Callister method’ [7] is based on numerical 

evaluation on an analytical expression for the SGWB. We reproduce these estimates through a 

thorough analysis of the methods used by Regimbau and Callister [6, 7], and study the degree to 

which they agree with each other, as well as the extent to which the results depend on 

uncertainties in the merger rate as a function of mass and redshift distributions of the sources. 

Overall, we investigate the predictions on SGWB parameters and constrain its limits, thereby 

decoding how the background changes due to uncertainties in several important astrophysical 

parameters. This incorporation of the latest theoretical models, with a key understanding of the 

limits and constraints in these frameworks, will aid in the long-term goal of refining estimates on 

the SGWB and detecting them with the IGWN. 

 

GW science: An introduction 

The principles of general relativity, specifically the link between the spacetime metric as 

described by Einstein field equations and energy-momentum tensor, including matter, 

momentum and stress, show that acceleration of massive objects creates warping or distortions in 

the fabric of spacetime. This phenomenon of spacetime curvature can propagate through space as 

a GW in a manner analogous to electromagnetic or even fluid waves spreading out from a source 

[2]. 

  

All GWs that have been detected by the IGWN to date are attributed to CBCs [3], specifically 

the merger of compact, stellar mass objects [1], which include events such as the merger of two 

neutron stars or two black holes [3] or a black hole and a neutron star [1, 3]. During such events, 

a portion of the mass energy and kinetic energy of the merging objects is converted into GWs, 

which emanate from the merging site and progressively reduce in amplitude. Analogous to 

conventional waves, these GWs carry information on the original source via frequency, 

wavelength, and amplitude [1]. According to general relativity, it is worth noting that GWs warp 



LIGO SURF Final Paper                                                                                           Pritvik Sinhadc 

3 

space-time as they propagate due to the fundamental interplay between spacetime curvature, 

matter-energy distribution, and momentum. 

 
Figure 1: This figure illustrates the deformation of the space-time fabric within an object 

induced by the passage of a GW, with each image representing a distinct stage in the warping. 

The object oscillates from maximum longitudinal stretching to maximum latitudinal stretching, 

with arrows showing the direction of warping of the spacetime fabric. Such a warping is 

described as linearly polarized. In this case, the effect is exaggerated, since by the time such 

waves are detected by the IGWN, the warping caused by them results in extremely small changes 

in distance — less than 1/1000th the diameter of a proton [2]. 

 

Source: Image generated by the author. 

 

This present overview holds significance owing to the fact that the majority of the SGWB is 

anticipated to emanate from a superposition of CBC events [5]. To elucidate the characteristics 

or nature of the SGWB, it is imperative to consider the properties of such events as described 

above [2]. 

  

The SGWB: An overview 

The SGWB is a complex amalgamation of multiple sources of GWs that offer valuable insights 

into the evolution and history of astrophysical collisions over the universe’s timespan [4]. 

Although numerous theorized sources, including cosmic strings, primordial black holes, etc, 

have been suggested to contribute to the SGWB, the vast majority of this background is expected 

to originate from a superposition of sources that are fully describable with parameterized models, 

CBCs, along with less predictable, unmodeled bursts such as core-collapse supernovae [4, 5]. 

This component of the SGWB is the astrophysical background, and is expected to be made up of 

the superposition of numerous GW events throughout the universe’s history [4, 5]. A much 

smaller component of the SGWB consists of a cosmological background, including the GWs 

predicted to be formed immediately after the Big Bang through processes such as the preheating 

phase at the end of Cosmic Inflation, and GWs generated during inflation [11, 12, 13]. Other 

hypothesized sources include baryonic acoustic oscillations, or even further back with 

contributions from earlier phase transitions [4]. Although this portion of the SGWB is fainter, we 

note that its frequency lies beyond the detectable range of the ground-based GW detectors, which 

encompass a frequency of 20-5000 Hz [11, 12, 13], and some of the advanced GW experiments 

such as Laser Interferometer Space Antenna (LISA) or even the Pulsar Timing Array (PTA) [9]. 

Thus, this report focuses on the astrophysical component from CBCs. 
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The SGWB is expected to be stochastic in nature (although scientists are beginning to realize 

that it is only an approximation dependent on the detector sensitivity and may be resolvable in 

next-generation detectors) with a source distribution assumed to be isotropic, as well as being 

randomly distributed across the observable universe [10]. An alternate anisotropy, that of a 

background centered around local galaxy superclusters, is also discussed later in this report.  

 

The SGWB: Expected detection signature 

The signal of the SGWB is currently indistinguishable from detector noise arising out of ground 

systems such as LIGO. This is shown in Figure 2 below, wherein the stochastic signal is 

enclosed within a higher amplitude noise. Cross correlation between detectors is needed to 

extract useful parameter information on the SGWB. However, the same signal, in more sensitive 

next-generation detectors, will be distinguishable from noise. Figure 2 [10] depicts a prototype of 

the stochastic signal anticipated to resemble the SGWB.  

 
Figure 2: An example of a signal from a stochastic GW source. The signal is roughly uniform in 

amplitude and frequency in time, and is very faint [10]. The amplitude of the detector noise is up 

to six times higher than the amplitude of the signal. 

 

Source: LIGO Scientific Collaboration [10] 

 

While Figure 2 above shows the overall expected signal that would be observed in the event of 

an SGWB detection, we can also look at specific signal parameters over an entire frequency band 

to extract useful information on the SGWB [6, 7]. The variable we focus on is the energy density 

of the SGWB or the term 𝛺𝐺𝑊, and we plot this value over a range of frequencies, since the 

SGWB covers a vast frequency range [6, 7]. The energy density of the SGWB provides an 

insight into the distribution of CBC events responsible for producing the background [6, 7]. 

While a greater deep dive into 𝛺𝐺𝑊 will be covered in later sections, as well as the various 

dependencies the term has on the frequency domain, merger mass distribution, and red shift, we 

introduce a brief overview here [6, 7, 19]. Notably, as shown in Figure 3 below, we can not only 

predict 𝛺𝐺𝑊 of the SGWB resulting from CBCs for various frequencies, but we can also show 

how with each subsequent observing run of the LVK network, the energy density values that the 

LVK can reach gets closer to the predicted SGWB energy density [6, 7, 19]. Therefore, to aid in 
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future detection of an SGWB, and to constrain predictions on the energy density of the 

background, we focus on building models of 𝛺𝐺𝑊(𝑓) from the SGWB [6, 7, 19]. Again, a more 

detailed analysis of the various parameters that affect 𝛺𝐺𝑊, as well as the various methods to 

produce simulated energy densities will be discussed later [6, 7, 19]. 

    
 

Figure 3: The energy density  𝛺𝐺𝑊 versus frequency for the total GWB corresponding to all 

CBC merger events shown in the blue line. The uncertainty in the merger rate, dominated by 

poisson error on the number of events detected by the IGWN, is also shown in pink giving the 

range of possible  𝛺𝐺𝑊 curves [6]. Also shown is an outdated prediction for the sensitivity of the 

IGWN to the SGWB in their first few observing runs. A more up to date impression of the 

energy densities each LVK observing run can reach is shown in later figures. 

 

Source:  GW150914: Implications for the Stochastic Gravitational-Wave Background from 

Binary Black Holes, B. P. Abbott et al, (LIGO Scientific Collaboration and Virgo Collaboration), 

Phys. Rev. Lett. 116, 131102, Published March 31, 2016, 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.131102 

 

While analyzing a simulated SGWB by looking at its energy density, we aim at studying the 

dependency of 𝛺𝐺𝑊 and the SGWB as a whole on merger rate, mass distribution, and the 

evolution of these astrophysical parameters with redshift. We expect the rough shape of the 

SGWB to be a broken power law (as shown in Figure 3 above) with a peak at a maximum energy 

density and a particular frequency value [6, 7, 19]. There are two distinct reasons for this turn-

over: The most important is that the spectral energy density of individual CBC events 
𝑑𝐸

𝑑𝑓𝑠
 in the 

source frame peaks at merger and then falls off at higher source frequency 𝑓𝑠; and the higher the 

total mass of the CBC source, the lower the peak frequency: 𝑓𝑠
𝑝𝑒𝑎𝑘

 is proportional to 
1

𝑀𝑠
, where 

M is mass distribution. The second reason is that CBC sources at finite redshift produce red 

shifted spectral energy densities at the detector, such that the detector frequency = 
𝑓𝑠

1+𝑧
. We 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.131102
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expect the merger rate to peak during (or after) ‘Cosmic Noon’, when the star formation rate of 

the universe was at its maximum, at a redshift of approximately 2 [16]. We also do not expect 

any mergers to occur before ‘Cosmic Dawn’ or when the first stars were born [16, 20]. The 

observed merger rate is in principle predictable under the assumption that mergers follow the 

birth of individual compact objects in binary systems, related to the star formation rate as a 

function of redshift. [6, 7, 19, 20].  

 

Motivation: Constraining the astrophysical parameters of SGWB 

GWs convey vital information on their sources, and likewise, the SGWB provides valuable 

insights into the underlying population of astrophysical sources that constitute it, including their 

mass distribution, the rate of formation of CBCs, and other parameters [5, 6]. Thus, by 

simulating SGWB with changing parameters, including amplitude, spectral shape, and angular 

distribution of sources, a novel window to understand the evolution of CBCs can open, targeting  

new, in-depth knowledge on how the mass distribution of compact binary systems and their sky 

location and redshift distribution impact the SGWB, which potentially reveal further insights into 

the astrophysical origins of GWs [14].  

 

The primary motivation for our endeavor to compare the differing methods of simulating 

SGWBs is to further constrain the expected detection of such a background, and understand the 

new insights that can be gathered on the evolution of CBCs over cosmic time. Currently, due to 

relativistic numerical simulations estimating parameters of the SGWB, as well as new estimates 

generated by the LIGO, VIRGO, KAGRA (LVK) detectors, we have begun to constrain the 

limits of the SGWB [6], the expected signal to noise ratio (SNR) needed for detection, and the 

mean expected energy density of the background. The results can be summarized in Figure 4 

below: 
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Figure 4: The image above shows the improvements in detector SNR (ratio of signal power to 

noise power or signal to noise ratio) [6, 19]. As measured SNR increases, the sensitivity level of 

the SGWB will also be reached by the LVK network [6, 19]. Therefore, as signal to noise ratio 

improves with subsequent observing runs, the sensitivity of LVK detectors improves over time, 

eventually resulting in a potential detection of the SGWB within a few years. The result of this 

research project, hence, contributes to further constraining and understanding the methodologies 

used to construct predictions of the SGWB, as well as decoding the range of possible predictions 

from simulation [6, 19]. 

 

Source:  Fig 1 (right), GW170817: Implications for the Stochastic Gravitational-Wave 

Background from Compact Binary Coalescences, B. P. Abbott et al, (LIGO Scientific 

Collaboration and Virgo Collaboration), Phys. Rev. Lett, 120, 091101, Published February 28, 

2018, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.091101  

 

This research project aims at investigating the properties of the SGWB resulting from CBCs, 

with a focus on how different variables such as mass distributions, anisotropies, and redshift 

distributions impact the background signal. To accomplish this, the simulation techniques 

employed to model the SGWB are analyzed in detail, including how such models can be 

parametrized to account for different parameters [6, 7]. The theoretical framework for modeling 

the SGWB is developed, including understanding the power spectrum of strain fluctuations 

generated by the sources, along with a replication of the numerical simulations utilized to 

generate background signals for different scenarios [6, 7].  

 

More specifically, the simulations are used to investigate the properties of the SGWB due to 

different mass distributions of CBCs. The impact of anisotropies in the distribution of CBC 

sources on the SGWB has also been studied. Additionally, this research project examines the 

impact of redshift evolution of these parameters on the SGWB due to CBCs. This includes 

investigating the potential for the SGWB to be affected by the evolution of the universe over 

time. 

 

Overall, the goal of this research is to gain a deeper knowledge of the SGWB due to CBCs and 

the information it carries on the population of astrophysical sources that compose it. By studying 

how different variables impact the SGWB, we hope to develop a finer theoretical framework for 

modeling the background signal, which is crucial for interpreting future observations of the 

SGWB, and will aid in the overarching goal of gaining a better understanding of what to expect 

when the SGWB is finally detected. 

 

Mathematical Background for SGWB 

The SGWB is Gaussian (normally distributed), unpolarized compared to an individual source, 

and is expected to be isotropic in nature — or invariant with respect to sky location of the 

individual source [11]. This background can be fully characterized by the background energy 

density, and this spectrum can be expressed, as mentioned previously, by the term ΩGW(f). This 

term allows for the calculation of the GW energy density within a frequency interval [11]. 

Specifically, ΩGW(f) can be described by the equation below [11]: 

 

𝛺𝐺𝑊(𝑓) =
𝑓

𝜌𝑐
 
𝑑𝜌𝐺𝑊

𝑑𝑓
                    (1) 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.091101
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Where 𝑑𝜌𝐺𝑊 is GW energy density, 𝑑𝑓 the frequency interval, 𝜌𝑐 the critical energy density 

needed to have a flat, non curved universe — defined as below: 

 

𝜌𝑐 =  
3𝐻0

2𝑐2

8𝜋𝐺
           (2)  

 

Where c is the speed of light, G is Newton’s gravitational constant, 𝐻0 is Hubble constant, which 

we take from Planck satellite data as 67.4 km/s/Mpc [11].  

 

Equation (1) for 𝛺𝐺𝑊(𝑓) derives a relationship between the energy density of the SGWB and the 

frequency content, thereby allowing us to understand the contribution of GWs for specific 

frequency intervals [11]. The frequency 𝑓 that we measure in equation (1) above is of course the 

frequency measured by a detector. We take 𝑓𝑠as the frequency as observed in the source frame 

[11]. The term 𝑓𝑠 is described by the equation 𝑓 =
𝑓𝑠

1+𝑧
, wherein once again 𝑓 is frequency in the 

detector frame [11]. We can decompose our equation (1) into another form below: 

 

𝛺𝐺𝑊(𝑓) =  
𝑓

𝜌𝑐
 
𝑑𝜌𝐺𝑊

𝑑𝑓
=

𝑓

𝜌𝑐
∫

10

0

𝑅𝑚(𝑧)

(1+𝑧)𝐻(𝑧)
〈

𝑑𝐸

𝑑𝑓𝑠
〉𝑑𝑧      (3) 

In equation (3) [11], we still measure energy density of GWs within the frequency interval for 

the SGWB, but we now have 𝛺𝐺𝑊(𝑓) in terms of new parameters. 𝑅𝑚(𝑧) is the merger rate [11] 

in Gpc−3yr−1, which is explained in further detail later on. The parameter 𝐻(𝑧) is the Hubble 

expansion rate [11]. Notice that each parameter described (and the integral as a whole) is in 

terms of z, or the redshift. Typically, we assume that CBCs occur from a redshift of 20 

(corresponding to the expected time in the universe’s history when the first black holes are 

expected to form) till now (z=0) [11]. Thus, from equation (3), we have a preliminary link 

between the energy density of the SGWB, the redshift distribution that we are observing, as well 

as the mass distribution of CBCs, which the merger rate is dependent upon [11]. The overall aim 

of this research has been to evaluate equation (3) numerically. By creating simulations of the 

SGWB using mathematical models, such as the equation (3) above, we can manually adjust the 

merger rate through mass distribution, redshift distribution, etc. We can see the impact of 

variations in parameters to the energy density of the SGWB itself. The term 𝛺𝐺𝑊(𝑓) is the 

energy density of the SGWB, and is characterized by integrating the spectral energy density of 

the SGWB or the average of 
𝑑𝐸

𝑑𝑓𝑠
 [11]. It is a key quantity in the study of the SGWB, and is, 

therefore, used to calculate the energy density and SNR of the SGWB as it provides crucial 

insights into the properties of the GW sources that contribute to the SGWB background [11]. 

 

Computational methods 

This study of the astrophysical SGWB relies on various tools, including numerical integration, 

specifically of the model used in equation 3, simulations of several gravitational wave events to 

construct estimates of 〈
𝑑𝐸

𝑑𝑓𝑠
〉, coarse-grain example SGWBs to be generated, and dedicated Python 

packages, particularly pygwb — the latest released version — for all of the aforementioned 

gravitational wave science [20, 21]. Numerical integration techniques can be used to better 

understand the spectral energy density of the SGWB, and generate predictions on sensitivity 

ranges of various detector and mission operations to observe the presence of an SGWB [20, 21]. 
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Therefore, such techniques remain a critical tool for the final stages for this research. The result 

of applying these methods on the energy density 𝛺𝐺𝑊(𝑓) — as defined by equation 3 — can be 

seen in Figure 5 below [8]. Note, unlike in figure 3, the contributions from BBH, BNS, NSBH 

merger events have been analyzed and plotted separately. 

 

 
   

Figure 5: The image above shows the predictions of the SGWB due to CBCs as well as LVK 

detector sensitivity following Observation Run 3 [8]. Figure 5 (left) shows the expected 

contributions to the background from various astrophysical sources of gravitational waves, 

including binary black holes in green, binary neutron stars in red, and neutron star black hole 

mergers in blue [8]. Figure 5 (right) shows the sum of these three contributions (the total 

background) as the thin solid black line, with merger rate uncertainty shown as the blue band. It 

also shows the predicted detector sensitivity to 𝛺𝐺𝑊(𝑓) for present and near future versions of 

the LIGO detectors. 

 

shows the intersection between detector sensitivity and required parameters needed to reach the 

SGWB detection sensitivity [8]. A key part of this research includes understanding the 

appropriate uncertainty in merger rate and mass distribution for each source of the CBC SGWB.  

 

Source: The population of merging compact binaries inferred using gravitational waves 

through, GWTC-3, B. P. Abbott et al, (LIGO Scientific Collaboration and Virgo Collaboration),  

February 23, 2022, https://arxiv.org/abs/2111.03634, section X and Fig 23. 

  

The other key tools that have been used during this research are simulations provided by Python 

packages for gravitational wave science, particularly pygwb [12]. Through simulations and 

coding, the project aims at utilizing different parameters and approximations for both mass 

distributions and redshift distributions in my research, apply statistical techniques to prototype 

SGWBs generated, study SNRs required to probe such backgrounds, etc. 

 

Summary of objectives  

The main objectives of this research are: 

https://arxiv.org/abs/2111.03634
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1. Reproducing and comparing the estimates of the CBC merger rate and the SGWB from [6] 

and [7], which are based on different numerical methods, including simple simulations of 

individual events and numerical evaluation of analytical expressions for the SGWB. 

2. Investigating the degree to which these estimates agree with each other and the implications of 

any discrepancies. 

3. Studying the dependence of these estimates on uncertainties in the merger rate as a function of 

mass, redshift distributions of the sources, and potential anisotropies in overall source 

distribution. 

4. Assessing the impact of these uncertainties on any potential constraints that could be applied 

to the SGWB, including the energy density of the SGWB, contributions from different mass 

ranges of CBCs per frequency band, etc.  

 

Final report 

Description of both methods 

Let us calculate and graph 𝛺𝐺𝑊(𝑓) over frequency as in [7]. To do this, we have followed the 

method utilized by Callister to simulate the background [20]. We start by revisiting equation 3 

derived in the background section to provide an overview of the 𝛺𝐺𝑊(𝑓) calculation applicable 

to both the Callister and Regimbau methods [11]. This equation shows how the calculation of 

𝛺𝐺𝑊(𝑓) or the background energy density of the SGWB depends on 𝑅𝑚(𝑧) or the merger rate, 𝑓𝑠 

or frequency in source frame, and 𝑓 or frequency in detector frame, where 𝑓 =
𝑓𝑠

1+𝑧
, z being 

redshift of source [11]. 𝛺𝐺𝑊(𝑓) is characterized by integrating the average spectral energy 

density of the ensemble of sources that make up the SGWB, 〈
𝑑𝐸

𝑑𝑓𝑠
〉, and allows for the calculation 

of the GW energy density within a frequency interval [11]. Other important terms include 𝐻(𝑧) 

or the Hubble expansion rate, and 𝜌𝑐 or the critical energy density needed to have a flat, 

uncurved Universe [11]. 

𝛺𝐺𝑊(𝑓) =  
𝑓

𝜌𝑐
 
𝑑𝜌𝐺𝑊

𝑑𝑓
=

𝑓

𝜌𝑐
∫

10

0

𝑅𝑚(𝑧)

(1+𝑧)𝐻(𝑧)
〈

𝑑𝐸

𝑑𝑓𝑠
〉𝑑𝑧      (3) 

This is the expression that both the Callister and Regimbau methods attempt to calculate. We can 

further decompose this equation by noting that 
𝑑𝐸

𝑑𝑓𝑠
 or the population averaged energy spectrum 

can be described as follows [17]: 

〈
𝑑𝐸

𝑑𝑓𝑠
〉 = ∫ 𝑑𝑚1𝑑𝑚2

𝑑𝐸

𝑑𝑓
(𝑚1,  𝑚2, 𝑓(1 + 𝑧))𝑝(𝑚1, 𝑚2)    (4) 

Here, 𝑚1, 𝑚2 represent the masses of the two merging objects, 
𝑑𝐸

𝑑𝑓
 represents the spectral energy 

density of a GW from a single source using a simple model. And 𝑝(𝑚1, 𝑚2) represents their 

population probability distribution, dependent on their respective mass [17]. We can also break 

down the merger rate distribution describing it as an integral over a time delay distribution as 

described below [17]: 

𝑅𝑚(𝑧) = ∫ 𝑑𝑡𝑑𝑅∗(𝑧𝑓(𝑧, 𝑡𝑑))𝐹(𝑍 < 𝑍𝑐 , 𝑧𝑓(𝑧, 𝑡𝑑))𝑝(𝑡𝑑)     (5) 

 

Thus, we see that the merger rate depends upon the time delay distribution 𝑝(𝑡𝑑), redshift values 

𝑧, depending on frequency, the critical redshift or 𝑧𝑓 and  𝑍𝑐, as well as the formation redshift at 

the critical redshift or 𝐹(𝑍 < 𝑍𝑐 , 𝑧𝑓(𝑧, 𝑡𝑑)) and 𝑅∗ or star formation rate [17]. Since we currently 

do not have exact limits on the time delay distribution, we fix 𝑅𝑚(𝑧) at z = 0.2 with LIGO data 

(Table IV of [8]), and use the crude model from section VI.D and figure 13 of [8] for the redshift 
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dependence.We decomposed both 𝑅𝑚(𝑧) and 〈
𝑑𝐸

𝑑𝑓𝑠
〉, so we can start reproducing the method 

utilized for calculating and plotting 𝛺𝐺𝑊(𝑓) as used in [7, 17]. This process is the same as used 

in acquiring Figure 5 of [7] and a guide for following the path to calculating and graphing 

𝛺𝐺𝑊(𝑓), which can be found in [17]. 

 

Method of summing over a grid of astrophysical model parameters 

To give a brief overview of the Callister process, which is described in [17, 20] and the final 

result of which is represented in [7], we create a grid of (𝑚1, 𝑚2) data values, and of frequency 

and redshift values, respectively [17, 20]. We can then precompute the spectral energy density 

for each combination of mass values, redshift of each source, and frequency of each signal [17, 

20]. Thereafter, for a given mass distribution, we can calculate the probabilities of that 

distribution over the mass grid [17, 20]. Next, we aim to get a precomputed grid of binary 

formation rates (or rate of formation of CBC systems dependent on system mass) using an 

assumed star formation rate 𝑅∗ [17, 20]. This grid is a function of merger redshift as well as time 

difference between binary system formation and merger or time delay [17, 20]. We can also get a 

probability distribution of time delay between source formation and merger, as inspiral times in 

such CBC systems are dependent on masses of the two objects in question [17, 20]. Much more 

importantly, they depend on the initial binary separation at formation, which is entirely 

unknown. To simplify the process further from here, we can get a merger rate of compact 

binaries from matrix multiplying our array of formation rates by a probability distribution of 

delay times [17, 20]. This is an intuitive explanation of the process of getting the pre computed 

grid of binary formation rates, as once again, we are uncertain about the actual time delay 

distribution and are unsure if mergers follow the formation of binaries as capture-based mergers 

can occur, where two initially non orbiting black holes capture each other to form a binary which 

may eventually merge [17].    

 

Now, for actually encoding 𝛺𝐺𝑊(𝑓) through the Callister method, we can summarize the above 

by the following steps [20]: We first define a local merger rate and mass distribution, set up the 

𝛺𝐺𝑊(𝑓) object, and then reweight it according to the mass distribution in order to integrate over 

the range of possible object masses [20]. We then compute 𝛺𝐺𝑊(𝑓) through a function taking 

into account mass distribution, local merger rate, evolution of merger rate with redshift, and 

frequency range over which we define 𝛺𝐺𝑊(𝑓) [20]. Overall, we calculate population averaged 

energy spectrum, 〈
𝑑𝐸

𝑑𝑓𝑠
〉, over the entire frequency range to get 𝛺𝐺𝑊(𝑓) [17, 20]. Thus, we 

numerically evaluate equation (3) by gridding over parameter space, as can be shown below in 

the calculation of 𝛺𝐺𝑊(𝑓) by the following matrix product expression [17, 20]:  

𝛺𝐺𝑊(𝑓) =  
𝑓

𝜌𝑐
 
𝑑𝜌𝐺𝑊

𝑑𝑓
=

𝑓

𝜌𝑐
∫

𝑅𝑚(𝑧)

(1+𝑧)𝐻(𝑧)
〈

𝑑𝐸

𝑑𝑓𝑠
〉𝑑𝑧 =

𝑓

𝜌𝑐
∑𝑧 {

𝑅𝑚(𝑧)

(1+𝑧)𝐻(𝑧)
}

𝑧
{〈

𝑑𝐸

𝑑𝑓
〉}

𝑓,𝑧
  (6) 

Where {〈
𝑑𝐸

𝑑𝑓
〉}

𝑓,𝑧
is the population averaged energy spectrum dependent on frequency and redshift, 

and the curly brackets represent a matrix multiplication between the aforementioned grids we 

created [17]. Therefore, the energy density, 𝛺𝐺𝑊(𝑓), of the SGWB, as measured by a stochastic 

search, is described by a weighted integral over the CBC merger history over the universe’s 

evolution and is sensitive to the totality of past mergers [17]. We can tune the minimum and 

maximum values of masses for neutron star binary mergers and black hole binary mergers with 

an assumed merger rate to arrive at plots of 𝛺𝐺𝑊(𝑓) over time, as shown in Figure 6 below [17, 
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20]. We have given a mass distribution for each of the object pairs in the simulated mergers that 

make up this modeled SGWB, each distribution having a maximum and minimum mass. This is 

because, to reiterate, the SGWB is a superposition of GWs from CBCs of pairs of merging 

objects. 

 

 

 

 

 

 

 

 

 

Figure 6: For the above plots (linear plot on right, logarithmic on left) we have taken a minimum 

mass of first merging object, m1_min = 2.5 solar masses, and a maximum mass of first merging 

object, m1_max = 100 solar masses, a minimum mass of second merging object m2_min = 1.5 

solar masses and a maximum mass of second merging object of 100 solar masses [17, 20]. The 

mass distributions themselves were power laws. Note, the peak in the energy density is in the 

hundreds of Hz, and the fact that 𝛺𝐺𝑊(𝑓) is a broken power law distribution, is reflected as 

predicted. Thus, we have plotted the energy density of a simulated SGWB [17, 20]. 

 

Source: Image generated by the author, but the methodology used can be found through [7, 17, 

20].  

 

We can also do a test to see if the SGWB plot is in reality the same as we expected [20]. In 

particular, we can test the prediction that if we decrease the mass distribution by decreasing the 

maximum mass value in the merger, we should see the graph shift to higher frequencies. Figure 7 

below shows exactly this [20]. 
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Figure 7: Here, we use the Callister method to create plots in both linear scale (left) and 

logarithmic scale (right) for different mass distributions [20]. On the orange plots we see a mass 

distribution with a minimum of 5 solar masses, maximum of 50 solar masses for the mass of one 

merging object. On the blue we see plots for a minimum of 5 solar masses, maximum of 100 

solar masses for the mass of one merging object [20]. We can see that the peak of the 100-solar-

mass maximum plot is shifted to the lower frequencies compared to the 50-solar-mass maximum 

plot (clearer on the log scale plot) which is exactly what we expect when we simulate higher 

mass distributions [20]. In both cases we have a 1:1 mass ratio between merging objects, so 

m1_mass = m2_mass [20]. 

 

Source: Image generated by author, but the methodology used can be found through [7, 17, 20]. 

 

We can repeat the plots shown in figure 7 but for a greater variation in maximum mass of the 

mass distribution, again we keep a 1:1 mass ratio between merging objects, and keep a constant 

minimum mass m1_min = m2_min = 5 solar masses, but we vary m1_max = m2_max as shown 

in Figure 8 below [20]: 
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Figure 8: Here we see the application of the Callister method for a series of different mass 

distributions with m1 distribution = m2 distribution, both being power law distributions, but 

different maximum masses (as shown in the legend), where m1_max = m2_max= 55, 78.75, etc 

[20]. As can be seen, as mass distribution increases by having greater maximum masses, the 

curve shifts to lower frequencies [20]. 

 

Source: Image generated by the author, but the methodology used can be found through [7, 17, 

20]. 

 

Thus, the Callister method creates spectra as per our predictions. If we continue to keep the 

maximum mass of both merging objects equal to one another (for one-to-one ratio of mass for 

the merging objects), and vary the maximum merging mass value, we can plot how frequency 

and 𝛺𝐺𝑊(𝑓) changes with mass distribution across several different maximum mass values [20]. 

The Callister method has m1 and m2 maximum values representing both merging objects [7, 17, 

20]. If we keep increasing these values and repeating the graphs, and from there plot how 

frequency and 𝛺𝐺𝑊(𝑓) varies with maximum mass, we get Figure 9 as shown below [20]: 

 

Figure 9: A linear scale plot of how peak frequency changes with mass distribution on the left 

and a linear scale plot for how peak 𝛺𝐺𝑊(𝑓) changes with mass distribution on the right [20]. In 

other words, we observe how the peak of the graphs from Figure 8 changes with the maximum 

value of the mass distribution for the merging masses with a 1:1 mass ratio between merging 

objects [20]. It is clear that with increasing mass distribution, by inclusion of higher and higher 

maximum merging masses as shown on the x axis, the frequency is shifted to lower and lower 

values, and 𝛺𝐺𝑊(𝑓) is shifted to higher and higher values [7, 17, 20]. The maximum merging 

mass represents the maximum mass expected for m1 and m2 in mergers [20].  

 

Source: Image generated by the author, but the methodology used can be found through [7, 17, 

20]. 

 

It should be noted that this result is dependent on several factors, especially if the local merger 

rate assumed in the Callister method remains constant in redshift [7, 17]. For Figure 9, we 

assume that the merger rate remains constant [7, 17, 20]. However, the mass distribution has 

been changed, thus leading to the plot shown above in Figure 9 [7, 17, 20]. However, more 
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refined plots will need to be generated to replicate the result shown in Figure 9, as it is still 

unclear whether or not we expect such a wide variation in frequency range from this particular 

variation in maximum mass distribution [7, 17, 20]. More simulations are needed to better 

understand how the merger rate function 𝑅𝑚 also depends upon mass as an integral over mass 

distribution. We also understand that the Callister method uses a simple 
𝑑𝐸

𝑑𝑓
 proportional to 𝑓−

7

3, 

which we know to be incorrect. Therefore, there are still numerous refinements and changes that 

need to be made to this method. 

 

If we take the local merger rate (or merger rate at our current redshift of 0), we can change this 

value to see how it impacts 𝛺𝐺𝑊(𝑓) across a frequency range. This result is shown in Figure 10 

below [ 17, 20]. Note that for this analysis, we have chosen specific fixed merger rates to see 

how measurement uncertainties may affect the plots [17, 20].  

 

 
Figure 10: A plot of how 𝛺𝐺𝑊(𝑓) against frequency changes with different mean local merger 

rates. The graph is shifted to higher values of 𝛺𝐺𝑊(𝑓) when greater merger rates are applied — 

an expected outcome — as 𝛺𝐺𝑊(𝑓) represents the energy density of the SGWB. If the rate of 

mergers is higher, then the energy density of the SGWB is higher as well [7, 17, 20]. 

 

Source: Image generated by author, but the methodology used can be found through [7, 17, 20]. 

 

Method of summing over individual events 

Now, we can also do the same calculation as described in [7,17] and plot for 𝛺𝐺𝑊(𝑓), but use a 

different method [18, 21] than the one used in [20]. This is the process as outlined in [6]. This 

method utilized by Regimbau, and later simplified and standardized by Renzini, is Monte-Carlo-

based unlike the Callister method [18, 21]. The brief overview of this methodology is that it aims 

at using a Monte-Carlo sampling of individual injections of CBC events from an assumed 

population distribution distribution to build up 𝛺𝐺𝑊(𝑓) across a frequency range [18, 21].  

𝛺𝐺𝑊(𝑓) ∝
1

𝑇𝑜𝑏𝑠
∑𝑁

0 𝑓3 𝑑𝐸

𝑑𝑓
         

 (7) 
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As can be seen in equation (7), we are building up 𝛺𝐺𝑊(𝑓) from a number of simulated events or 

injections 𝑁 drawn from a population characterized by 𝑝(𝑚1, 𝑚2) and 𝑅𝑚(𝑚1, 𝑚2, 𝑧) (c.f. 

Equations 3 and 4 above) 

 

[18, 21]. As we can see, the greater the number of injections, the more accurate the curve will be. 

In other words, a list of CBCs is created with random parameters from a given set of 

astrophysical bilby priors (where bilby is the python package utilized), including prior 

probability of masses, luminosity distance, etc [18, 21]. Finally, the total injected 𝛺𝐺𝑊(𝑓) can be 

computed in the frequency domain [18]. The overall goal is to compute 𝛺𝐺𝑊(𝑓) through the 

injection of individual CBC events [18]. We can increase the number of injections, thereby 

resulting in a smoother curve, and then for each injection we can generate a parameter 

dictionary, a frequency domain waveform, orientation factor, and ultimately arrive at the final 

PSD of the signal, which is then added to the 𝛺𝐺𝑊(𝑓) spectrum [18, 21]. The injections are 

sampled via Monte-Carlo methods. Thus, we can again calculate 𝛺𝐺𝑊(𝑓) as shown in Figure 11 

below [18, 21]:  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: 𝛺𝐺𝑊(𝑓) over a frequency range compared to a power law of ⅔ [18]. The priors that 

we specify are the average ratio of the masses in CBCs, the average masses themselves, 

luminosity distance, and a host of other variables [18, 21]. If we set luminosity distance to a 

power law function with a minimum of 100 Mpc to 1000 Mpc, we can get the above Figure 8 

(left and right) through an average mass ratio of 1.0, setting both priors for mass 1 and mass 2 to 

uniform distributions with a minimum of 1.5 and a maximum of 100 solar masses [18, 21]. Note 

that 10 injections were used to create the left figure and 100 injections were used to create the 

right figure [18, 21]. 

 

Source: Images generated by the author, but the methodology used can be found through [18, 

21]. 

 

Therefore, to solve the issue of excess fluctuations in the graph, we can increase the number of 

injections, as shown in figure 11 above [18, 21]. This ensures that there are fewer fluctuations in 

the data at higher values of frequency [18, 21]. At lower injections, it becomes difficult to 

identify what peak is an aspect of the curve that can be smoothed out with more injections or 
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what is an actual feature of the 𝛺𝐺𝑊(𝑓) versus frequency relationship [21]. If we keep all values 

the same as in Figure 11 above, but increase the number of injections to 1000, we get Figure 12 

below [18, 21]: 

 
Figure 12:  Using the same parameter priors in Figure 10, with 1000 injections, we can get a 

smoother curve, cementing the essentialness of using as many injections as possible when using 

the Regimbau method [18, 21]. Note, that each peak may correspond to some important 

contribution towards 𝛺𝐺𝑊(𝑓) [6]. Thus, a crucial aim for future research lies in analyzing the 

distribution of peaks with different parameters or prior inputs [18, 21]. 

 

Source: Image generated by the author, but the methodology used can be found through [6, 18, 

21].  

 

In the Callister method, all 𝛺𝐺𝑊(𝑓) values are in an order of magnitude that is 10-10 , while in the 

Regimbau method, 𝛺𝐺𝑊(𝑓) values can be between 10-4 to 10-8. We can still see the difference in 

𝛺𝐺𝑊(𝑓) values by normalizing all inputs — and removing the neutron star contribution from the 

Callister method — by setting both m1 and m2 values to be a minimum of 5 and a maximum of 

50 solar masses [20, 21]. We also ensure that both m1 and m2 values in the Regimbau method 

can be described by a normal distribution with a minimum of 5 and a maximum of 50 solar 

masses [20, 21]. The results of this comparison are shown in Figure 13 [20, 21] below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIGO SURF Final Paper                                                                                           Pritvik Sinhadc 

18 

 

Figure 13: The result of the above constraints for both the Callister method (left) and the 

Regimbau method (right) [20, 21]. As can be seen, while both methods peak at a similar 

frequency (somewhere in the range of 2 × 10
2
Hz, their peak values, and therefore the entire 

graphs, fall on entirely different frequency ranges. While the Callister method typically results in 

peak 𝛺𝐺𝑊(𝑓) values in a range from 10-8 to 10-9 Hz, the Regimbau method typically results in 

peak 𝛺𝐺𝑊(𝑓) values between 10-4 to 10-8 [20, 21]. 

 

Source: Images generated by the author. 

 

This discrepancy is a result of the fact that observation time and number of injections are related 

in the Regimbau method, when in fact they should be separate from each other [17, 18]. When 

we look back at equation (7), we can modify it to get a relationship between observation time 

and number of injections [17, 18].  

𝛺𝐺𝑊(𝑓) ∝
1

𝑇𝑜𝑏𝑠
∑𝑁

0 𝑓3 𝑑𝐸

𝑑𝑓
         

 (8) 

𝑇𝑜𝑏𝑠 ∝ ∑𝑁
0 𝑓3 𝑑𝐸

𝑑𝑓
          

 (9) 

However, the way we have done this is that we have forgot to normalize the equation as there is 

ultimately no physical relationship between 𝛺𝐺𝑊(𝑓) and number of injections, which is to say 

that energy density of background should remain constant regardless of injections, so we needed 

to use   
1

𝑁
∑𝑁

0 𝑓3 𝑑𝐸

𝑑𝑓
to normalize equation (9), where again, 𝑁 is the number of events [17, 18]. 

Thus, the overall idea behind the relation between observation time and number of injections is 

that although these can be described as such that injection number is proportional to observation 

time, we can normalize both sides by the number of injections to remove this proportionality, as 

again, physically, these quantities should be independent of 𝛺𝐺𝑊(𝑓) [17, 18]. We expect that the 

error in the implementation of the Regimbau method, wherein it gives a much higher than 

expected value, is due to this normalization error, but of course, further research is needed at this 

time [17, 18]. The Callister method is not reliant on injections so does not face the same issue as 

with the Regimbau method, thereby currently giving more accurate estimates on 𝛺𝐺𝑊(𝑓) [17, 

18]. 

 

However, because we still show the proportionality between observation time and injection 

number, as with equation (9), we can still try calculating the number of injections based on 

observation time to try and get the Regimbau method to match the results of the Callister method 

[17, 18]. This helps to validate both methods, check that both methods are capable of 

consistently providing useful and expected outputs, and ultimately leads to more effective 

methods of combining the methods, as will be detailed later [17, 18]. We can fine tune for certain 

values of luminosity distance, set a common distribution/observation time of one year, and 

calculate injections from there [17, 18]. With a common mass distribution of 5 to 50 solar 

masses, we have the comparison plot in Figure 14 below [17, 18]: 
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Figure 14: By calculating injections roughly based on a common observation time with the 

Callister method, we are able to adjust the parameters in the Regimbau method to roughly agree 

within the same order of magnitude as the Callister method. It should be noted, however, that 

while the Regimbau method in this case uses a uniform mass distribution — and this can be 

changed to a power law, broken power law, etc — the Callister method is inbuilt with a power 

law distribution. Even so, we can still see better agreement between the two methods [17, 18].  

 

Source: Images generated by the author. 

 

We can continue to adjust the observation time in the Callister and Regimbau methods, such that 

the number of injections matches the appropriate observation time. The result for both m1 and m2 

with a log distribution of between 5 and 50 solar masses and a redshift distribution from our 

current redshift of 0 to a redshift of 2 (given by a power law) is shown in Figure 15 [17, 18] 

below: 
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Figure 15: Another attempt is to adjust the observation time for both methods and match the 

appropriate number of injections to be utilized for the Regimbau method. The two methods now 

provide results that are close to the same magnitude, suggesting success for this methodology. 

Instead of using luminosity distance to tune the injections, we use a redshift parameter  [17, 18].  

 

Source: Images generated by the author. 

 

We can also try other pathways to combine the Regimbau and Callister methods. Whilst the 

Callister method is grid based, as described in equation (6), with the change in probability over 

the mass distribution being multiplied by a calculated Jacobian, we can instead use bilby priors 

for specifying prior probability of both merging masses 1 and 2 [17, 18]. In other words, we are 

using the priors from the Regimbau method to calculate the probabilities in the Callister method 

[17, 18]. The final result of doing this is specified in Figure 16 below: 

 

 
Figure 16:  The final 𝛺𝐺𝑊(𝑓) against frequency plot resulting from using probability priors from 

the Regimbau method within the Callister method. As can be seen, calculating probability this 

way still overall results in a  peak 𝛺𝐺𝑊(𝑓) of around 10-8 as is appropriate [17, 18].  

 

Source: Images generated by the author. 

 

Thus, we have managed to temporarily ensure that the two methods agree with one another to at 

least an order of magnitude, as well as combined the two methods in terms of probabilities and 

still achieved an accurate result. An attempt still needs to be made to fully characterize the 

injections used in the Regimbau method in terms of the Callister method and observation time. 

An attempt has also been made on this for the specific observation time of one year, one day, and 

so on [17, 18].  

 

Next steps and conclusion 
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As per the section on main objectives, throughout the first part of our research, we have 

reproduced estimates of energy density of the SGWB from [6] and [7] using corresponding 

methods in [18] and [17] respectively and corresponding tools in [20] and [21] respectively. By 

repeating the simulations with different mass distributions and merger rate values, we have 

quantified the dependence of the estimates on uncertainties in merger rate as a function of mass 

[17, 18]. We have looked at the degree to which these estimates agree with each other, calculated 

specific observation times and instances of reasonable agreement between these methods, as well 

as impacts of uncertainties on potential constraints that can be applied to the SGWB’s energy 

density [17, 18]. We have begun inputting priors into the Callister method in the same way that 

they are utilized in the Regimbau method to allow for a greater comparison between the two 

methodologies [17, 18] and the two pathway tools [20, 21] . 

 

Our next main goals are to continue generating 𝛺𝐺𝑊(𝑓)  plots for both the Regimbau and 

Callister methods, understand the parameter distribution that leads to each plot result, such as 

merger rate, energy density, frequency etc, and understand how these parameters evolve with 

differences in mass and redshift distribution [17, 18]. Recent work has been conducted as part of 

this research on varying the mass distribution of mergers — each represented by a single mass of 

the merging pair — for different redshift values to see that as we scale mass distribution with 

redshift, the cut-off value for mass distribution gets larger and larger. Provided are some example 

variations in mass distribution scaled to be less than 100 solar masses as a starting model. 

 

We define the cut-off as follows: If we plot the change in mass merger rate with redshift against 

mass values as a power law, we see there is a point where the change in gradient with change in 

mass is negligible. The mass value that this occurs at, is the cut-off of the mass values. We plot 

this graph for redshifts from 0 (our reference frame) to a redshift of 2 as shown in Figure 17 

below. We see that the cut-off values for mass distributions increase with redshift.  
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Figure 17: A graph showing how different redshifts affect cut-off values of mass distribution — 

the point wherein change in mass merger rate for a given change is negligible. This cut-off 

occurs at higher mass values for higher redshifts. 

 

Source: Images generated by the author. 

 

The purpose of this cut off value analysis is to better look at the mass distribution of mergers. 

We expect the mass distribution to look somewhat like a ‘Power law + Peak distribution’ given 

by the following equation. 

𝑝(𝑚1) = 𝑚1
−𝛼 + 𝑐𝑒−(𝑚1−𝑚1

∗)2/𝛿𝑚1
2

        (10)  

As can be seen in equation (10), the mass distribution 𝑝(𝑚1) can be described as the sum of a 

power law  𝑚1
−𝛼, with −𝛼 being the slope of this power law, and a peak formula that we will 

explore in later research. Instead of looking at the cut off value of this formula, we can also scale 

the slope of the mass distribution with different redshift values. Therefore, we can scale the 𝛼 

values, which is given by the following equation. 

 

𝛼 = 𝛼0 + 𝛼∗𝑧           (11) 

We scale both the initial 𝛼0 as well as 𝛼∗ (or the change in alpha with the change in redshift) for 

different redshift values. The result of doing this is shown in Figure 18 below: 

 

 
Figure 18: A graph showing how different redshifts affect slope alpha values of mass 

distribution. Here we fix the cut off mass at 100 solar masses, and ensure 𝛼∗ is half of 𝛼0 so that 

the slope of the graph would be 0 at a redshift of 2, which we easily observe, showing we have 

achieved the expected correct results. 

 

Source: Images generated by the author. 

 



LIGO SURF Final Paper                                                                                           Pritvik Sinhadc 

23 

Further work will need to be completed on breaking down the equations defining the change in 

merger rate with respect to peak merger mass, the overall probability distribution given particular 

mass distributions. More research will need to be done on how all of equation (10) — the entire 

power law + peak distribution — scales with redshift, as well as substituting this new mass 

distribution into the Callister and Regimbau methods [17, 18, 20, 21]. 

 

In any case, the overall goal of this project will be to continue investigating the relationship 

between various parameters and hyperparameters with changes in mass distribution and redshift 

distribution. Moreover, a longer-term goal will be to actually use the data collected on SGWB 

[15]. Overall, the next steps will also be to repeat the same analysis of 𝛺𝐺𝑊(𝑓), but measure it as 

it varies with redshift distribution, thereby looking at the impacts of potential anisotropies. 
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