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Gravitational waves (GWs)[1, 2] are fundamental predictions of the General Theory of Relativity (GR). GWs
detections have introduced a novel window into the universe and are revolutionizing our understanding of as-
trophysics. The motion of two massive objects in an eccentric orbit emits GWs which carry information about
the eccentricity of the binary black hole (BBH) source. These waveforms are characterized by their eccen-
tricity, which measures the deviation of the orbit from a quasi-circular orbit. Studying eccentric binary orbits
provides evidence for the dynamic formation of the binary system. In this project, we study a new family of
GWs waveforms from eccentric binaries and their implications for detecting and analyzing eccentric compact
binary systems near mergers. I will develop eccentric waveform models and parameter estimation frameworks
for eccentric BBH and use these tools to analyze the data from current and upcoming GWs observations. Since
eccentric waveforms are predicted to have similar waveforms with GWs from BBH systems with precessing,
I will try to distinguish eccentric waveforms and precessing waveforms by investigating their differences. We
will determine the minimum eccentricity that could be detectable with GWs as a function of SNR and other
parameters.

I. INTRODUCTION AND MOTIVATION

A. Background

The discovery of GWs, initially proposed by GR[3–6], has
brought a new observational window on the cosmos. Explor-
ing the properties of GWs can provide us with fresh perspec-
tives into the properties of massive compact objects (neutron
stars and black holes) in the universe and their role in the evo-
lution of galaxies.

B. Gravitational Waves

GWs are ripples in space-time, which propagate outward at
the speed of light, generated by the acceleration of massive
objects. BBH mergers and binary neutron star (BNS) merg-
ers are compact binary coalescences (CBCs) that generate de-
tectable gravitational waves. Since the distance of CBCs from
Earth is extremely far, GWs generated are extremely weak
and hard to detect when they reach the Earth. They were first
predicted in 1916 by GR. GWs have a property called polar-
ization, which describes the orientation of the ripples. Just
as electromagnetic waves have different polarizations (linear,
circular, or elliptical), GWs can also have different polariza-
tions. GWs have two transverse polarization modes: plus-
polarization (h+) and cross-polarization (h+). The terms plus
and the cross will be collectively known as the linear polar-
ization basis. They stretch and compress the space-time in the
two directions orthogonal to the direction of propagation[7].
h+ is like the stretching and squeezing of space-time in GWs
with a 45-degree angle. The impact on test particles in a hx

GWs would be similar to that of a regular polarized GWs but
with a 45-degree rotation.

C. Gravitational Wave Detectors

Nowadays, gravitational waves can be detected by grav-
itational waves observatories[8], including Advanced LIGO
(aLIGO)[9], VIRGO[10], and Kagra[11], which already have
conducted three observing runs[12–14] in total. Figure 1
shows the configuration of the laser interferometer at the heart
of the LIGO detectors and the laser mirrors (test masses) on
their quadruple-pendulum suspensions. Since the two arms
have the same nominal length, the split laser beams will have
destructive interference at the output port when joined at the
beam splitter, and the detector will register no signal. When
GWs pass through the detector, the arms will be stretched or
compressed, resulting in length differences. The interference
pattern will then be partially constructive such that a weak
signal can be detected at the output port.

Figure 1. Interferometer configuration (Left) and test mass setup
(Right).
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D. Eccentric Binaries

When two massive objects move in an eccentric orbit,
they generate GWs waveforms that encode the eccentricity
- eccentric waveforms. The eccentricity of these waveforms
reflects the extent of orbit deviation from a perfect circle.
For a quasi-circular orbit (since eccentricity = 0), there are
fifteen parameters (sixteen for BNS) to determine GWs,
including the masses of the two mergers, the spin of the two
mergers in three different directions (x, y, and z directions for
both compact objects), source distance, sky location (right
ascension and declination), coalescence time, coalescence
phase, inclination and polarization (and tidal deformability
for BNS), in which eccentricity is not one of the parame-
ters. Since GWs are dominantly quadrupolar radiation, the
frequencies of GWs (fGW ) are doubled that of the orbital
frequencies (forb). Our detectors cannot detect GWs when
fGW is lower than 20Hz. The problem is that the orbit could
be eccentric initially but become less eccentric or nearly
circular when the two sources are getting close with an orbital
frequency higher than 20Hz. If the eccentricity is high at
fGW = 20Hz, it is predicted to approach zero by the time
forb = 50Hz.

BBHs are common in the universe. BBH systems may
form through common evolution in isolation (first column of
Fig 2). Another possibility is dynamical capture, in which the
binary system is formed by capturing other massive objects
(second column in Fig. 2). Other formation mechanisms are
predicted as well. We do not know which of these formation
mechanisms are dominant for systems that merge in the LIGO
frequency band.

In GWs astrophysics, it is important to investigate eccen-
tric gravitational waveforms as they can offer valuable in-
formation about the formation characteristics of BBH. Sev-
eral studies[15, 16] have been conducted on eccentric grav-
itational waveforms based on the standard approach and a
novel method suggested[17], which uses parameter estima-
tion. These investigations offer new perspectives into the char-
acteristics of these waveforms and their possible uses in exam-
ining the cosmos.

E. BBH Formation in Isolation and Dynamical Capture

One of our primary goals is to understand how compact bi-
nary systems form. One possibility is the BBH Formation in
Isolation, in which a binary system evolves together, under-
goes Roche lobe overflow and a common envelope stage that
tightens the binary orbit through dynamical friction. One of
the stars will directly turn into a black hole. If a common en-
velope occurs, the giant envelope will surround the orbit of
the system. Thermal energy is transferred to the envelope and
may trigger the ejection of the envelope. Once the ejection
of the envelope occurs, the massive star will directly turn into
a black hole, leading to the inspiral of the two black holes
and merging into a single one at the end. This BBH forma-

tion and merger is a common evolution in which the orbit is
quasi-circular, with eccentricity close to zero. Another pos-
sibility is BBH formation in dense star clusters (e.g., at the
center of galaxies or in globular clusters) through dynamical
capture. The binary massive star system undergoes a similar
process as the BBH formation in isolation unless another mas-
sive BH is captured by the cross-section area of the two stars,
ejecting the massive stars out of the original orbit and forming
a new BBH system.[18] Since the new-coming BH removed
some orbital energy from the initial orbit, the orbit is highly
eccentric. This process is called the dynamical capture. The
probability of dynamic capture is related to the capture cross-
section. Another scenario of BBH Formation by dynamical
capture is when a fast-moving BH is being captured by an-
other BH. Figure 2 shows the evolution of the three BBH for-
mation mechanisms. There are three of the many examples of
BBH formation. Other examples also exist and contribute to
BBH capture or formation. The study of eccentric GWs pro-
vides valuable information to determine which form of BBH
system dominates. We also want to look for dynamic cap-
ture with a very small cross-section such that the time of the
merger is within seconds.

Figure 2. Following Michela Mapelli et al., BBH Formation in Isola-
tion (Left) and by Dynamical Capture (Right)[18]. Another scenario
of BBH Formation by Dynamical Capture (Middle).

F. Matched-filtering

Matched-filtering[19], with PyCBC[20–22] search pipeline
is a technique that can detect numerous possible GWs candi-
dates from a given period with similar shapes. It can detect
signals from stationary Gaussian noise by sliding the template
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waveforms across the data and calculating the SNR.

Figure 3. A figure visualizing the process of matched-filtering.

Suppose n(t) is the stationary Gaussian noise process,
Sn(f) is the one-sided power spectral density (PSD) given
by

⟨ñ(f)ñ∗(f ′)⟩ = 1

2
Sn(|f |)δ(f − f ′), (1)

the matched-filtering output of a data stream is

x(t0) = 2

∫ ∞

−∞

s̃(f)h̃∗
template(f)

Sn(f)
df (2)

which may only contain noise s(t) = n(t), or signal with
noise s(t) = n(t) + h(t) where h(t) is the signal. De-
note htemplate(t) as the filter template. Since there are un-
known parameters (amplitude, coalescence phase, and binary
com[anion masses) in the waveform, the ”best match” un-
known phase ϕ0 has to be found by maximizing x(t0) over
ϕ0. x(t0) is defined as

x(t0) = xre(t0)cos2ϕ0 + xim(t0)sin2ϕ0, (3)

where xre,im can be found by using Eq. 2 with ϕ0 = 0.
Therefore, the maximum value can be found using the equa-
tion

x2(t0)|ϕ̂0maximum = x2
re(t0) + x2

i,(t0) (4)

at 2ϕ̂0 = arg(xre + ixim). The modulus of complex filter
output then gives the maximum:

z(t0) = xre(t0) + ixim(t0) (5)

= 4R
∫ ∞

0

s̃(f)(h̃∗
template(f))0

Sn(f)
e2πift0df, (6)

where (h̃∗
template(f))0 = (h̃∗

template(f))t0=0,ϕ0=0. The nor-
malization constant for each template is calculated by

σ2
m = 4

∫ ∞

0

|h̃1Mpc,m(f)|2

Sn(f)
df, (7)

such that the Signal-to-Noise Ratio (SNR) can be calculated
afterward. The amplitude SNR of the quadrature matched-
filtering is given by

ρm(t) =
|zm(t)|
σm

. (8)

If the signal is absent, then

< ρ2m >= 2. (9)

Since for purely static and Gaussian noise, obtaining ρm >>
1 is improbable, a lower threshold on ρm is often used to iden-
tify event candidates.

For each trigger, a False-Alarm-Probability (FAP), which is
the probability that noise can produce a trigger with a ranking
statistic lnL ≥ lnL∗, will be calculated as

FAP = P (lnL > lnL∗|noise) =
∫ ∞

lnL∗
P (lnL|noise)d lnL

(10)
The lower the FAP, the more likely the trigger comes from an
actual GWs signal.

G. Bilby and Parameter Estimation

Bilby[23], an interface for performing parameter estima-
tion (PE)[24], aims to deduce parameters of CBCs wave-
forms. It uses the Bilby Markov chain Monte Carlo (BILBY-
MCMC)[25] sampling algorithm to map out the possible pa-
rameters of the waveforms.

1. Bayes Formula and Probability Density Function

Bayes Formula represents a statistical equation to deter-
mine the likelihood of a particular event happening under spe-
cific conditions. The probability of an event A given a condi-
tion B is given by

P (A | B) =
P (A ∩B)

P (B)
. (11)

The probability of B given A is given by

P (B | A) =
P (B ∩A)

P (A)
=

P (A ∩B)

P (A)
. (12)

By substituting Equation 12 into Equation 11, we get

P (A | B) =
P (B | A)P (A)

P (B)
, (13)
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which is the Bayes Formula.

The probability Density Function (PDF), or the posterior
probability, is the probability of an event given a condition. In
GWs PE, it is used to find out the probability that the estimat-
ing parameters θ can describe the data d by

P (θ | d) = P (d | θ)P (θ)

P (d)
, (14)

where P (d | θ) is called the likelihood, P (θ) is called the
prior, P (d) is called the evidence. It is challenging to find the
probability that θ can describe d in reality but easy to find the
probability that d can describe the data θ. One can calculate
P (θ | d) using PDF.

The likelihood is the probability of the condition given the
event. In GWs PE, the likelihood L(d | θ) is the probability
of d with the given θ. For each frequency, L(di | θ) is given
by

L(di | θ) =
2∆f

πSn(fi)
exp

(
−2∆f

(d(fi)− h(fi, θ))
2

Sn(fi)

)
,

(15)
where d(fi) is the data, h(fi, θ) is the signal, d(fi)− h(fi, θ)
is the noise. The total L(d | θ) is given by

ln (L(d | θ)) =
∑
i=1

lnL(di | θ), (16)

The prior is the probability of the event without any
information. In GWs PE, it can be seen as the ”degree of
believe” that θ is true.

The evidence is the probability of the condition without any
information. It usually uses to compare the event with differ-
ent data.

2. Bilby Markov chain Monte Carlo Parameter Estimation

BILBY-MCMC algorithms use a sequential stepping pro-
cess to generate correlated samples from the target distri-
bution. Specifically, applying the Metropolis-Hastings algo-
rithm facilitates the production of samples from the target den-
sity. A random draw from the prior distribution P (θ) is uti-
lized to initialize the chain, and then the Metropolis-Hastings
algorithm is iterated to generate a chain θi containing m sam-
ples. Typically, these samples in the chain exhibit correla-
tion by selecting a subset of m

τ samples, where τ is the auto-
correlation time (ACT) of the chain. To obtain independent
samples, one can select a subset by sampling every τ steps
from the chain of samples. The algorithm is being iterated un-
til the stopping criteria are reached. The stopping criteria are
given by

nsamples ≥
m− nburn

γτ
, (17)

where nburn represents the number of samples discarded to
eliminate the chain initialization, while γ ≤ 1 denotes a thin-
ning factor.

H. Likelihood Ratio and GWs Searching

In GWs PE, the likelihood ratio Lr given by

Lr =
P (θ | s)
P (θ | n)

=
P (θ | s)

P (θ | (d− s))
, (18)

where s is the signal, d is the data, and n = d− s is the noise.
L is the probability ratio of θ describing the (best-fit) signal
to θ describing the residue after subtracting the signal from
the data noise. In GWs searching, the match value cannot
be used to determine the match between the GWs signal in
the data and the template waveform due to noise. Therefore,
the likelihood ratio Lr can be computed by replacing θ with
template waveforms t. The likelihood ratio Lr is denoted by

Lr =
P (t | s)
P (t | n)

=
P (t | s)

P (t | (d− s))
. (19)

The Lr in searching is the probability ratio of the template
waveform describing the signal to the template waveform de-
scribing the noise. The larger the Lr, the more likely the sig-
nal is present in the data.

I. Rate of Change of Eccentricity

According to a study[26], the time average of the rate of
change of eccentricity of the orbit is given by:〈

de

dt

〉
= −304eG3m1m2(m1 +m2)

15c5a4(1− e2)5/2

(
1 +

121e2

304

)
.

(20)
Using this equation, we can evolve the eccentricity of eccen-
tric BBH orbit as it inspirals and approaches merger.

II. OBJECTIVE

The research aims to evaluate the properties of existing
and newly-developed GWs waveforms that incorporate the
effects of non-zero eccentricity in the binary orbit. The result
of eccentricity on GWs waveforms and their detectability in
LIGO has been shown in past studies[27],[28]. The existing
data will be analyzed to compare eccentric and non-eccentric
waveforms, and more detailed studies regarding this parame-
ter will be conducted. This research will also analyze existing
data and compare eccentric and non-eccentric waveforms to
achieve these goals. This will provide insights into the effects
of eccentricity on the waveform, which will then be used to
conduct more in-depth studies on this parameter.

During the research period, eccentric waveforms are being
studied in the following aspects:
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1. Do the eccentric waveforms pass a set of Sanity checks
in which they look reasonable and have proper limiting
behavior?

2. Comparison between eccentric and non-eccentric wave-
forms.

3. Is it possible to find the eccentric waveform using a
quasi-circular waveform in our template bank?

4. Find out the minimum eccentricity with which the ec-
centric waveform cannot be distinguished from a regu-
lar waveform.

5. By investigating their differences, try to distinguish ec-
centric waveforms and precessing waveforms.

6. How does the eccentricity evolve with time as the bi-
nary system approaches merger?

7. What do eccentric waveforms look like in the time and
frequency domain?

8. Develop a framework to calculate the eccentricity value
when constructing parameter estimation.

9. How can eccentric waveforms be searched with param-
eter estimation?

Since current research regarding eccentric gravitational
waveforms only considers small eccentricity, studying eccen-
tricity in gravitational waveforms, regardless of its magnitude,
is crucial as it can provide a more comprehensive understand-
ing of the behavior of compact binary systems in a broader
range of eccentricities. This research can shed light on the
physics behind the inspiral and merger of binaries with higher
eccentricities, which can lead to the detection of more GWs
signals from such systems. Moreover, it can help improve our
existing models for the dynamics of compact binaries, which
can lead to more accurate parameter estimation and GWs de-
tection. Studying high eccentricities can also help us under-
stand the astrophysical processes responsible for producing
such systems and their implications for cosmology and astro-
physics. Therefore, this research can have a significant impact
on understanding the universe and the properties of compact
objects such as neutron stars and black holes.

III. METHODS

To conduct this study, simulated eccentric waveforms
with different magnitudes of eccentricity will be generated.
To identify apparent differences, these waveforms will
be compared to standard quasi-circular waveforms using
matched-filtering and sanity checks. The study of eccentric
waveforms involves using waveform overlap with standard
waveforms. By comparing them, we can quantify the wave-
forms using parameter estimation, ensuring that eccentricity
is considered when generating or detecting GWs signals.

The next step involves performing an injection study to
simulate the GWs search process. GWs waveforms with
random eccentricity will be injected into random noise. The
simulation will search for the waveforms and find out the
estimated eccentricity of the signal using Bilby.

The injection study will allow researchers to understand
better the properties of eccentric waveforms and how they
differ from regular waveforms. This information can then be
used to improve the detection of GWs from eccentric sources,
such as binary systems with large eccentricities.

After that, more parameters besides eccentricity will be
randomized before injecting into random noise. BILBY-
MCMC will be used to estimate all the unknown parameters
of the injected waveforms. With sufficient testing and correct
results, the simulation will be applied to actual data.

I will study eccentric waveforms by the following steps in
short:

1. Generate eccentric and non-eccentric waveforms

2. Compare the waveforms

3. Quantify the waveform overlaps

4. Compute and plot the match in both the time and fre-
quency domain

5. Repeat Steps 1 to 4 for similar eccentricity

6. Repeat Steps 1 to 4 for precessing waveforms to deter-
mine whether eccentric waveforms can be distinguished
from precessing waveforms

7. Construct a 1D simulation that search for the signal
with random eccentricity, which is injected into random
Gaussian noise

8. Calculate the likelihood between the injected signal and
the best-matched template waveform

9. Construct a 2D and 3D simulation similar to Step 7 with
two and three unknowns, respectively

10. Construct a search pipeline that can be used for search-
ing eccentric waveforms in real data

11. Construct a PE to estimate the eccentricity and other
parameters of GWs events in the simulation

12. Apply the simulation to real data

IV. TIMELINE

During the first half of the research period, the newly-
developed waveform, TEOBResumS, was studied and
reviewed to check for its precision in simulating zero ec-
centric GWs waveforms and eccentric GWs waveforms. A
TEOBResumS waveform model reviewing Python Jupyter
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Figure 4. Timeline of the project.

notebook with codes and plots is being written. The notebook
works as a preliminary waveform model review.

A simulation is under construction to inject eccentric
waveforms into a random Gaussian noise and to search for the
waveforms and their eccentricity value by matched filtering
and PE using BILBY-MCMC to study detectability. Since the
TEOBResumS waveform model is not included in the Bilby
libraries, the Bilby libraries are being modified.

In the coming second half of the research period, the accu-
racy of the TEOBResumS waveform model and the reviewing
notebook will be finalized by comparing it with the Simulat-
ing eXtreme Spacetimes (SXS) templates[29, 30]. The injec-
tion study simulation will be completed with numerous tests.
Multi-parameter searching and PE will also be constructed in
the simulation. Once the simulation conforms to a sure accu-
racy, it will be applied to real LIGO GWs data throughout the
four observing runs.

V. PROGRESS UPDATE

Eccentric waveforms are the key to this research. Generally,
there are three different major GWs models of waveforms,
the post-Newtonian template[31], the SXS templates, and the
TEOBResumS templates[32, 33]. In the template bank of
the post-Newtonian GWs model, eccentric waveforms gen-
erated do not contain merger and ringdown. Only templates
from SXS and TEOBResumS can be eccentric. TEOBRe-
sumS templates are new and are currently not used for data
analysis in LIGO. However, eccentric waveforms from SXS
are limited. To generate waveforms with variable eccentrici-
ties for my search, it is necessary to review the precision of
the TEOBResumS templates.

A. Eccentricity Evolution Investigation

According to a study[26], the time average of the rate of
change of eccentricity of the orbit is given by:〈

de

dt

〉
= −304eG3m1m2(m1 +m2)

15c5a4(1− e2)5/2

(
1 +

121e2

304

)
.

(21)
Using this equation, we can evolve the eccentricity of eccen-
tric BBH orbit as it inspirals and approaches merger.

Equation 20 is being reviewed and verified by simulating
the merger process between two BH. The simulation shows
that the higher the initial eccentricity, the smaller the inspiral
time between them, shown in Figure 5. Figure 6 also shows
a similar result, with the y-axis being the orbital separation
between the two BH. From Figure 7, with a high initial ec-
centricity of the orbit (ε0 = 0.9), the orbital separation drops
significantly when the ε ≥ 0.7 and ε ≤ 0.1. The orbital sepa-
ration drops slowly when the eccentricity of the orbit is at the
range 0.1 < ε < 0.7. These plots indicate that it is possi-
ble to estimate the initial eccentricity ε0 of the orbit when the
eccentricity of the orbit at fGW = 20Hz is measured.

Figure 5. Change of eccentricity of the orbit in time.



7

Figure 6. Change of orbital separation in time.

Figure 7. Change of orbital separation in the eccentricity of the orbit.

B. TEOBResumS Waveforms Model Reviewing Notebook

The notebook includes the following tests:

• Individual tests1

– Test for the upper limit of eccentricity in which
the waveform can be generated

– Test for the behavior of the waveform with differ-
ent eccentricities

– Test for the total mass of the compact binaries to
ensure the waveform varies smoothly

– Test for the mass ratio of the compact binaries to
ensure a smooth waveform can be generated

1 Link to the Reviewing Notebook 1

– Test for the aligned spin of compact binaries to
ensure a smooth waveform can be generated

– Test for extreme cases of eccentricity, masses, and
mass ratio

• Waveform Comparison and Matches23

– Comparison between Eccentric TEOBResumS
and Non-eccentric TEOBResumS waveforms

– Comparison between Aligned-spin TEOBRe-
sumS and Eccentric TEOB waveforms

– Comparison between Eccentric TEOBResumS
and Eccentric SXS waveforms

– Comparison between Eccentric TEOBResumS
and Eccentric TaylorF2Ecc

– Comparison between Eccentric TEOBResumS
and Eccentric EccentricFD

– Comparison between align spin TEOBResumS
and align spin IMRPhenomXPHM waveforms

– Comparison between Eccentric TEOBResumS
and Precessing IMRPhenomXPHM waveforms

1. Test for the upper limit of eccentricity in which the waveform
can be generated

Figure 8 shows that a GWs waveform with initial eccen-
tricity ε0 = 0.99982 at fGW = 20Hz gives a reasonable
plot. However, the waveform becomes abnormal when the
ε0 reaches 0.99984, shown in Figure 9. Therefore, we can
conclude that the upper limit of eccentricity, which can be in-
putted, is 0.99982. Waveforms with eccentricity higher than
0.99982 may fail.

Figure 8. GWs waveform with ε0 = 0.99982 in the time domain
(left) and in the frequency domain (right).

2 Link to the Reviewing Notebook 2
3 Link to the Reviewing Notebook 3

https://jupyter.ligo.caltech.edu/hub/user-redirect/lab/tree/public_html/git_repo/2023LIGOSURFProject/TEOBResumSWaveformStudy/ReviewNotebook/ReviewingNotebook1.ipynb
https://jupyter.ligo.caltech.edu/hub/user-redirect/lab/tree/public_html/git_repo/2023LIGOSURFProject/TEOBResumSWaveformStudy/ReviewNotebook/ReviewingNotebook2.ipynb
https://jupyter.ligo.caltech.edu/hub/user-redirect/lab/tree/public_html/git_repo/2023LIGOSURFProject/TEOBResumSWaveformStudy/ReviewNotebook/ReviewingNotebook3.ipynb
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Figure 9. GWs waveform with ε0 = 0.99984 in the time domain
(left) and in the frequency domain (right).

2. Test for the behavior of the waveform with different
eccentricities

By observing the waveforms with ε0 from 0.0 to 0.9, the
higher the eccentricity of the waveform, the sine wave col-
lapses with more spikes. Figure 10 shows the waveforms in
both the time and frequency domain. Waveforms with eccen-
tricity fluctuate before the merger, with vigor depending on
the eccentricity. Figure 11 shows how the sine wave collapse
when ε0 is high compared to when ε0 is low.

Figure 10. GWs waveform with different ε0 in the time domain (left)
and in the frequency domain (right).

Figure 11. GWs waveform comparison between ε0 = 0.9 and ε0 =
0.1 (left) and between ε0 = 0.7 and ε0 = 0.2(right).

3. Test for the total mass of the compact binaries to ensure the
waveform varies smoothly

According to the plots, the waveform behaves reasonably
by observing with bare eyes. Figure 12 shows two plots with

the waveforms with ε0 = 0.0 and total mass from 10M⊙ to
100M⊙ and 110M⊙ to 200M⊙ in the time domain, while Fig-
ure 13 shows in the frequency domain. Figure 14 shows two
plots with the waveforms with ε0 = 0.9 and total mass from
10M⊙ to 100M⊙ and 110M⊙ to 200M⊙ in the time domain,
while Figure 15 shows in the frequency domain.

Figure 12. Waveforms in the time domain with ε0 = 0.0 and to-
tal mass from 10M⊙ to 100M⊙ (left) and from 110M⊙ to 200M⊙
(right).

Figure 13. Waveforms in the frequency domain with ε0 = 0.0 and
total mass from 10M⊙ to 100M⊙ (left) and from 110M⊙ to 200M⊙
(right).

Figure 14. Waveforms in the time domain with ε0 = 0.9 and to-
tal mass from 10M⊙ to 100M⊙ (left) and from 110M⊙ to 200M⊙
(right).
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Figure 15. Waveforms in the frequency domain with ε0 = 0.9 and
total mass from 10M⊙ to 100M⊙ (left) and from 110M⊙ to 200M⊙
(right).

The larger the total mass, the lower the frequency, right be-
fore the binary gets into a merger, which is expected. When
the total mass is 800 solar masses, the binary is near the
merger state when the GWs frequency is at 20Hz, which the
complete waveform can hardly be detected with our current
detectors. Figure 16 and Figure 17 show how the waveform
when the total mass reaches the upper limit with ε0 = 0.0 and
ε0 = 0.9, respectively. Therefore, we can conclude that the
upper limit of the total mass is 800M⊙.

Figure 16. Waveforms with ε0 = 0.0 and total mass 800M⊙ in the
time domain (left) and in the frequency domain (right).

Figure 17. Waveforms with ε0 = 0.9 and total mass 800M⊙ in the
time domain (left) and in the frequency domain (right).

4. Test for the mass ratio of the compact binaries to ensure a
smooth waveform can be generated

According to the plots, the waveform behaves reasonably
by observing with bare eyes. Figure 18 shows two plots with
the waveforms with ε0 = 0.0 and mass ratio from 1 to 7 and

8 to 14 in the time domain, while Figure 19 shows in the fre-
quency domain. Figure 20 shows two plots with the wave-
forms with ε0 = 0.9 and mass ratio from 1 to 7 and 8 to 14
in the time domain, while Figure 21 shows in the frequency
domain.

Figure 18. Waveforms in the time domain with ε0 = 0.0 and mass
ratio from 1 to 7 (left) and from 8 to 14 (right).

Figure 19. Waveforms in the frequency domain with ε0 = 0.0 and
mass ratio from 1 to 7 (left) and from 8 to 14 (right).

Figure 20. Waveforms in the time domain with ε0 = 0.9 and mass
ratio from 1 to 7 (left) and from 8 to 14 (right).

Figure 21. Waveforms in the time domain with ε0 = 0.9 and mass
ratio from 1 to 7 (left) and from 8 to 14 (right).
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The plots also show that the waveform observes typically
with bare eyes. With no eccentricity, the mass ratio can be
set to 10000. However, if the eccentricity of the waveform is
0.9, the waveform fails with a mass ratio of 1000. Figure 22
shows the waveform with ε0 = 0.0 and mass ratio 1000, while
Figure 23 shows that with ε0 = 0.9 and mass ratio 100.

Figure 22. Waveforms with ε0 = 0.0 and mass ratio 1000 in the time
domain (left) and in the frequency domain (right).

Figure 23. Waveforms with ε0 = 0.9 and mass ratio 1000 in the time
domain (left) and in the frequency domain (right).

5. Test for the aligned spin of compact binaries to ensure a smooth
waveform can be generated

According to the plots, TEOBResumS can generate aligned
spin waveforms up to 1.0. Figure 24 shows two plots with
the waveforms with ε0 = 0.0 and spin from 0.0 to 0.5 and
0.6 to 1.0 in the time domain, while Figure 25 shows in the
frequency domain. Figure 26 shows two plots with the wave-
forms with ε0 = 0.9 and spin from 0.0 to 0.5 and 0.6 to 1.0
in the time domain, while Figure 27 shows in the frequency
domain. From the plots, the waveforms vary smoothly and in
a reasonable way. This proves the compatibility of TEOBRe-
sumS to aligned-spin waveform generating.

6. Test for extreme cases for eccentricity, masses, mass ratio, and
aligned spin

The extreme cases for maximizing the eccentricity, masses,
mass ratio, and aligned spin are tested. By testing, the maxi-
mum combination is ε0 = 0.999, total mass = 450M⊙, mass
ratio = 45, and aligned spin = 1.0, as shown in Figure 28. Pa-
rameters higher than these values may lead to the failure of
the waveform.

Figure 24. Waveforms in the time domain with ε0 = 0.0 and aligned-
spin from 0.0 to 0.5 (left) and from 0.6 to 1.0 (right).

Figure 25. Waveforms in the frequency domain with ε0 = 0.0
aligned-spin from 0.0 to 0.5 (left) and from 0.6 to 1.0 (right).

Figure 26. Waveforms in the time domain with ε0 = 0.9 and aligned-
spin from 0.0 to 0.5 (left) and from 0.6 to 1.0 (right).

Figure 27. Waveforms in the frequency domain with ε0 = 0.9
aligned-spin from 0.0 to 0.5 (left) and from 0.6 to 1.0 (right).

C. Waveform Comparison and Matches

A simple matching model is being constructed to do wave-
form overlapping and match calculating between pairs of ec-
centric waveforms and non-eccentric waveforms and pairs of
eccentric waveforms and precessing waveforms in both the
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Figure 28. Waveforms with ε0 = 0.999, mass ratio 100 and total
mass 450M⊙ in the time domain (left) and in the frequency domain
(right).

time domain and frequency domain. The simulation uses
waveforms with different eccentricities to overlap and cal-
culate the match. After calculating the matches, graphs of
the match against the eccentricity of the testing waveform are
plotted.

1. Comparison between Eccentric TEOBResumS and
Non-eccentric TEOBResumS waveforms

Figure 29 shows the waveforms of eccentric TEOBResumS
with different ε0 and non-eccentric TEOBResumS wave-
forms. Figure 30 and 31 shows the waveforms of eccentric
TEOBResumS with ε0 = 0 and non-eccentric TEOBResumS
waveforms with mass ratio 1 and 15, respectively. The plots
show that the eccentric TEOB waveform with ε0 = 0 is pre-
cisely the same (match values are 1 in both time domain and
frequency domain) as the non-eccentric TEOB waveform with
mass ratios 1 and 15. This proves the compatibility between
eccentric TEOB and non-eccentric TEOB waveforms.

Figure 29. Eccentric TEOBResumS with different eccentricity and
Non-eccentric TEOBResumS waveforms in the time domain (left)
and frequency domain (right).

2. Comparison between Aligned-spin TEOBResumS and Eccentric
TEOB waveforms

Figure 32 shows the waveforms of eccentric TEOBResumS
with ε0 = 0.2, and spin 1 and spin2 equal 0.2 in both the
time and frequency domain. Figure 33 shows the waveforms
of eccentric TEOBResumS with ε0 = 0.6, and spin 1 and

Figure 30. Eccentric TEOBResumS with ε0 = 0 and Non-eccentric
TEOBResumS waveforms with mass ratio 1 in the time domain (left)
and frequency domain (right) with match value.

Figure 31. Eccentric TEOBResumS with ε0 = 0 and Non-eccentric
TEOBResumS waveforms with mass ratio 15 in the time domain
(left) and frequency domain (right) with match value.

spin2 equal 0.6 in both the time and frequency domain. Fig-
ure 34 shows the waveforms of eccentric TEOBResumS with
ε0 = 0.8, and spin 1 and spin2 equal 1.0 in both the time
and frequency domain. According to the plots, once the spin
is added to the waveform, it differs from an eccentric wave-
form with a low match value between them. This proves that
an aligned-spin waveform is distinguishable from an eccentric
waveform.

Figure 32. Eccentric TEOBResumS with ε0 = 0.2 and aligned-spin
TEOBResumS waveforms with spin 1 = 0.2 and spin 2 = 0.2 in the
time domain (left) and frequency domain (right).

Figure 33. Eccentric TEOBResumS with ε0 = 0.6 and aligned-spin
TEOBResumS waveforms with spin 1 = 0.6 and spin 2 = 0.6 in the
time domain (left) and frequency domain (right).
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Figure 34. Eccentric TEOBResumS with ε0 = 0.8 and aligned-spin
TEOBResumS waveforms with spin 1 = 1.0 and spin 2 = 1.0 in the
time domain (left) and frequency domain (right).

3. Comparison between Eccentric TEOBResumS and SXS
waveforms

From the plots and calculated match values, most of the
waveforms generated using TEOBResumS are highly similar
to that from the SXS catalog (match value ¿= 0.85 in both
time and frequency domains). This proves the reliability of
TEOBResumS waveforms with variable eccentricity values.
Figure 35 compares BBH 1569 from the SXS catalog with
ε0 = 1.341x10−4 which is neglectable, and TEOB waveform
with the same parameters as SXS in both the time and fre-
quency domains. Figure 36 compares BBH 1373 from the
SXS catalog with ε0 = 0.2087 and TEOB waveform with the
same parameters as SXS in both the time and frequency do-
mains. Figure 37 compares BBH 1360 from the SXS catalog
with ε0 = 0.3636 and TEOB waveform with the same param-
eters as SXS in both the time and frequency domains.

Figure 35. BBH 1569 from SXS and TEOBResumS waveforms with
ε0 = 1.341 ∗ 10−4 in the time domain (left) and frequency domain
(right).

4. Comparison between Eccentric TEOBResumS and Eccentric
TaylorF2Ecc

From the plots, the TaylorF2Ecc waveforms have wave-
form modulations even when the eccentricity is zero, as shown
in Figure 38. Waveforms of it also have unreasonable fluc-
tuations at other eccentricities compared to TEOBResumS.
According to the plots, TEOBResumS waveforms are much
more reliable than TaylorF2Ecc waveforms calculated from
the Post-Newtonian method.

Figure 36. BBH 1373 from SXS and TEOBResumS waveforms with
ε0 = 0.2087 in the time domain (left) and frequency domain (right).

Figure 37. BBH 1360 from SXS and TEOBResumS waveforms with
ε0 = 0.3636 in the time domain (left) and frequency domain (right).

Figure 38. TaylorF2Ecc and TEOBResumS waveforms with ε0 = 0
in the time domain (left) and frequency domain (right).

Figure 39. TaylorF2Ecc and TEOBResumS waveforms with ε0 =
0.5 in the time domain (left) and frequency domain (right).

5. Comparison between Eccentric TEOBResumS and Eccentric
EccentricFD

From the plots, the EccentricFD waveforms have wave-
form modulations even when the eccentricity is zero, as shown
in Figure 41. Waveforms of it also have unreasonable fluc-
tuations at other eccentricities compared to TEOBResumS.
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Figure 40. TaylorF2Ecc and TEOBResumS waveforms with ε0 =
0.9 in the time domain (left) and frequency domain (right).

The result of this section and the previous section shows
that a more accurate eccentric waveform model is needed.
Therefore from the plots, TEOBResumS waveforms are much
more reliable than EccentricFD waveforms calculated from
the Post-Newtonian method.

Figure 41. EccentricFD and TEOBResumS waveforms with ε0 = 0
in the time domain (left) and frequency domain (right).

Figure 42. EccentricFD and TEOBResumS waveforms with ε0 =
0.5 in the time domain (left) and frequency domain (right).

Figure 43. EccentricFD and TEOBResumS waveforms with ε0 =
0.9 in the time domain (left) and frequency domain (right).

6. Comparison between align spin TEOBResumS and align spin
IMRPhenomXPHM waveforms

From the plots, the aligned spin waveforms generated with
TEOBResumS are nearly the same as that with IMRPhenonX-
PHM. Figure 44 to Figure 46 shows aligned-spin TEOB and
aligned-spin IMRPhenomXPHM on the same graph with dif-
ferent values of aligned-spin in the time and frequency do-
mains. This proves that the calculations in the aligned spin of
the TEOBResumS waveform generator are accurate.

Figure 44. IMRPhenomXPHM and TEOBResumS waveforms with
spin 1 and spin 2 equal 0.0 in the time domain (left) and frequency
domain (right).

Figure 45. IMRPhenomXPHM and TEOBResumS waveforms with
spin 1 and spin 2 equal 0.5 in the time domain (left) and frequency
domain (right).

Figure 46. IMRPhenomXPHM and TEOBResumS waveforms with
spin 1 and spin 2 equal 0.9 in the time domain (left) and frequency
domain (right).
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7. Comparison between Eccentric TEOBResumS and Precessing
IMRPhenomXPHM waveforms

Observing the plots in the time domain shows that the
amplitude modulation of precessing waveforms processes
smoothly, while the amplitude of eccentric waveforms fluctu-
ates vigorously before the merger. It would be hard to distin-
guish between precessing and non-precessing waveforms with
zero eccentricity, as shown in Figure 47 and Figure 50. How-
ever, when eccentricity involves, the match value between
precessing waveform and eccentric waveform will be lower
than that of precessing waveform and non-precessing wave-
form with zero eccentricity. The higher the eccentricity, the
lower the match between the precessing waveform and the
non-precessing waveform with zero eccentricity. This acts as
an evidence that waveforms can be able to distinguish from
precessing waveforms.

Figure 47. Eccentric TEOBResumS with ε0 = 0.0 and precessing
IMRPhenonXPHM waveforms with Sx = 0.4 and Sy = 0.4 in the
time domain (left) and frequency domain (right).

Figure 48. Eccentric TEOBResumS with ε0 = 0.6 and precessing
IMRPhenonXPHM waveforms with Sx = 0.4 and Sy = 0.4 in the
time domain (left) and frequency domain (right).

Figure 49. Eccentric TEOBResumS with ε0 = 0.8 and precessing
IMRPhenonXPHM waveforms with Sx = 0.4 and Sy = 0.4 in the
time domain (left) and frequency domain (right).

Figure 50. Eccentric TEOBResumS with ε0 = 0.0 and precessing
IMRPhenonXPHM waveforms with Sx = 0.7 and Sy = 0.7 in the
time domain (left) and frequency domain (right).

Figure 51. Eccentric TEOBResumS with ε0 = 0.8 and precessing
IMRPhenonXPHM waveforms with Sx = 0.7 and Sy = 0.7 in the
time domain (left) and frequency domain (right).

D. Future Plan

1. Eccentric Search Model

ECcentric searcH mOdel (ECHO) is a search model that
uses Bilby to generate TEOBResumS waveforms. This model
search for the signal waveform with eccentricity in random
Gaussian noise. It then uses Bilby to do PE to map out the
possible range of the eccentricity of the signal. If the range
of the eccentricity calculated is within a reasonable range, a
multi-parameter (total mass of the binary and the mass ratio)
PE will be constructed. The model is estimated to be finished
by 12th August.

2. Advanced Eccentric Search Model

Advanced ECcentric searcH mOdel (aECHO) is a search
model similar to ECHO, but real data is used. This model aims
to search for eccentric GWs from the LIGO event catalogs
from O1 to O3 and the events detected in O4. This model is
estimated to be finished by 20th August.
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