

Identifying Correlations in Precessing Gravitational-Wave Signals with Machine Learning

Karen Kang Mentors: Simona Miller, Katerina Chatziioannou, Deborah Ferguson

Background Motivation

Matched Filtering, NR & Modeling Precessing BBHs

Methods

Neural Network & Mapping Algorithm

03 Results Correlation Recovery & Future Work

OI Background

Searching CBCs: Matched Filtering GW190521: Most Massive BBH Observed! Waveform Correlations: Mass and Precession

Template

Adapted from ODW 2023 tutorials

Matched-Filtering: Searching for Signal in Detector Data

Detected Data

Identify Signal

Adapted from ODW 2023 tutorials

Adapted from ODW 2023 tutorials

GWI90521 Waveform Reconstruction (LLO)

$M_{Total} = 150 M_{\odot}$

~5 cycles in the sensitive band

Motivation

Technical

Better informed

- matched-filtering searches
- NR template placement (~months)

Understand the measurability of parameters from GW signals e.g. difficult to estimate parameters when two or more parameters are degenerate

Astrophysics

GWI90521: heaviest BBH system observed

Merger-dominated waveforms

- **Precession effects** remain elusive
- Spin configurations indicative of orbital dynamics of progenitor

Intermediate-Mass black boles (IMBHs)

How well can we measure spin parameters of highly massive BBHs from detected GW signals?

Modeling Precessing BBH Z direction θ_{γ} $\overrightarrow{a_1}$ • $\overrightarrow{a_1}, \overrightarrow{a_2}$ spin vectors $\overrightarrow{a_2}$ m_2 m_1 ψ_{12}

- \hat{L} orbital angular momentum
- m_1, m_2 component masses

* a_1, a_2 denotes the magnitude [0,1]

• θ_1, θ_2 polar angle between \hat{L} and $\overrightarrow{\mathbf{a_1}}, \overrightarrow{\mathbf{a_2}}$

Mass ratio

Symmetric mass ratio

Mass Ratios

100

$$q = \frac{m_1}{m_2} \quad q \ge 1$$
$$\eta = \frac{q}{(q+1)^2} \quad 0 \le \eta \le 0.25$$
Equal ma

Effective Spin and Precession

Leading order spin effects on inspiral phasing

 $\chi_{\rm eff} = -$

mass-weighted average of the component spins aligned with \hat{L}

$$\chi_p = \max\left(a_1 \sin\theta_1, \frac{4q}{4}\right)$$

mass-weighted average in-plane spin

 $= \frac{qa_1 \cos\left(\theta_1\right) + a_2 \cos\left(\theta_2\right)}{q+1} \quad -1 \le \chi_{eff} \le 1$

 $\frac{q+3}{+3a}qa_2\sin\theta_2\right) \quad 0 < \chi_p < 1$

Adapted from Chandra ODW 2023

 $\chi_{\rm eff} > 0$

- $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ aligned with \hat{L}
- \rightarrow BHs inspiral to closer separation
- → longer, stronger GWs

 $\chi_{\rm eff} < 0$

 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ anti-aligned with \widehat{L} → shorter, weaker GWs

$$\chi_p \neq 0$$

 $\vec{a_1}, \vec{a_2}$ misaligned with \hat{L}

- \rightarrow orbital precession
- \rightarrow GWs with modulating amplitude and phase

02 Methods

- **Mismatch**: metric for waveform degeneracies
- learning

• Predicting mismatches with machine

• **Recipe** for mapping the parameter space

14

Calculating Waveform Mismatches

 $\mathcal{MM} = 1 - \max_{t,\phi} \mathcal{O}\left[h_1, h_2\right]$

 $\left\langle h_1 \mid h_2 \right\rangle = 2$

$$\equiv 1 - \max_{t,\phi} \frac{\left\langle h_1 \mid h_2 \right\rangle}{\sqrt{\left\langle h_1 \mid h_1 \right\rangle \left\langle h_2 \mid h_2 \right\rangle}}$$

$$2\int_{f_0}^{\infty} \frac{h_1^*h_2 + h_1h_2^*}{S_n} df$$

Calculating Waveform Mismatches

 $\langle h_1 | h_2 \rangle = 2 \int_{f_0}^{\infty} \frac{h_1^* h_2 + h_1 h_2^*}{S_n} df$

Calculating Waveform Mismatches

$$\mathcal{MM} = 1 - \max_{t,\phi} \mathcal{O}\left[h_1, h_2\right]$$

Maximize over time and phase of coalescence

> $h_1^*h_2 + h_1h_2^*$ $\left\langle h_1 \mid h_2 \right\rangle = 2$ Identical **One-sided**

Normalized inner product of frequency domain strains

 $0 \leq \mathcal{MM} \leq 1$

Predicting Mismatches Using mismatch.prediction Network

Ferguson (2022)

$[\eta, a_{1x}, a_{1y}, a_{1z}, a_{2x}, a_{2y}, a_{2z}]$

OUTPUT

 $\lambda = \eta, \overrightarrow{a_1}, \overrightarrow{a_2}$

- Trained on SXS catalog
- Calculates mismatches using l = 2, m = 2 modes

Predicting Mismatches Using mismatch.prediction Network

Ferguson (2022)

$[\eta, a_{1x}, a_{1y}, a_{1z}, a_{2x}, a_{2y}, a_{2z}]$

OUTPUT

 $\lambda = \eta, \mathbf{a_1}, \mathbf{a_2}$

- Trained on SXS catalog
- Calculates mismatches using l = 2, m = 2 modes

M M

To study spin parameter space of highly massive, precessing BBHs

- Trained on NRSur7dq4 Detector frame mass $270M_{\odot}$ Distance 5000 Mpc
- Includes higher order modes (HOMs)

Generating **Parameter Space**

1. Pick reference point $\lambda = [0.16, 0, 0, 0, 0, 0, 0]$

In the q, a_{1z}, a_{2z} space, x = (4,0,0)

Generating Parameter Space

1. Pick reference point

2. Uniformly sample points in the parameter space

Generating Parameter Space

Pick reference point
 Uniformly sample points

 in the parameter space

 Galculate mismatch of

 sampled point w.r.t.
 reference

O. Pick starting injection

1. Generate parameter space

~ 10000 pts

O. Pick starting injection

1. Generate parameter space

2. Identify degenerate region

O. Pick starting injection

- 1. Generate parameter space
- 2. Identify degenerate region

3. Find directions to map to (locally)

- 1. **Principle Component Analysis (PCA)**: principle component with greatest variance
- 2. **Bayesian Gaussian Modeling (BGM)**: eigenvector of covariance matrix with largest eigenvalue

O. Pick starting injection

- 1. Generate parameter space
- 2. Identify degenerate region New point!

3. Find directions to map to (locally)

- 1. **Principal Component Analysis (PCA)**: principle component with greatest variance
- 2. **Bayesian Gaussian Modeling (BGM)**: eigenvector of covariance matrix with largest eigenvalue

O. Pick starting injection

- 1. Generate parameter space
- 2. Identify degenerate region New point!

3. Find directions to map to (locally)

Preliminary Results + Future Work

 η

$\lambda = [0.16, 0, 0, 0, 0, 0, 0]$

Vary mass ratio, χ_{eff}	0.8
$\eta = 0.1, 0.16, 0.25 \iff q = 7.87, 4, 1$ $\chi_{\text{eff}} = -0.5, 0, 0.5$	$\begin{array}{c} 0.4\\ 8\\ 0.0\\ 0.0\end{array}$
$a_{1z} = -0.50, a_{2z} = -0.50, q = 7.87$ $a_{1z} = 0.00, a_{2z} = 0.00, q = 7.87$ $a_{1z} = 0.50, a_{2z} = 0.50, q = 7.87$	-0.4
$a_{1z} = -0.50, a_{2z} = -0.50, q = 4.00$ $a_{1z} = 0.00, a_{2z} = 0.00, q = 4.00$ $a_{1z} = 0.50, a_{2z} = 0.50, q = 4.00$	10 8
$a_{1z} = -0.50, a_{2z} = -0.50, q = 1.00$ $a_{1z} = 0.00, a_{2z} = 0.00, q = 1.00$ $a_{1z} = 0.50, a_{2z} = 0.50, q = 1.00$	6 ち 4

	Starting Injections	
q = 7.87	$a_{1z} = -0.50, a_{2z} = -0.50, q = 4.00$	$a_{1z} = -0.50$, $a_{2z} = -0.50$, $q = 1.0$
= 7.87	$a_{1z} = 0.00$, $a_{2z} = 0.00$, $q = 4.00$	$a_{1z} = 0.00$, $a_{2z} = 0.00$, $q = 1.00$
= 7.87	$a_{1z} = 0.50$, $a_{2z} = 0.50$, $q = 4.00$	$a_{1z} = 0.50$, $a_{2z} = 0.50$, $q = 1.00$

Vary Component Spins

$$q = 2 \qquad \theta_1 = \theta_2 = 0$$

$$\chi_{1} = \chi_{2} = 0.10$$

$$\chi_{1} = \chi_{2} = 0.15$$

$$\chi_{1} = \chi_{2} = 0.20$$

$$\chi_{1} = \chi_{2} = 0.25$$

$$\chi_{1} = \chi_{2} = 0.30$$

$$\chi_{1} = \chi_{2} = 0.35$$

$$0.30$$
 0.15
 0.15
 0.00
 0.3
 0.00
 0.3
 0.2
 0.2
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2

Horizontal/vertical lines→not well measured

Diagonal Lines \rightarrow correlation

Vary Component Spins

$$q = 2 \qquad \theta_1 = \theta_2 = 0$$

$$\chi_{1} = \chi_{2} = 0.10$$

$$\chi_{1} = \chi_{2} = 0.15$$

$$\chi_{1} = \chi_{2} = 0.20$$

$$\chi_{1} = \chi_{2} = 0.25$$

$$\chi_{1} = \chi_{2} = 0.30$$

$$\chi_{1} = \chi_{2} = 0.35$$

$$0.30$$
 \overline{S}
 0.15
 0.00
 0.3
 0.00
 0.3
 0.2
 0.2
 0.1
 0.1
 0.4
 0.4
 0.4
 0.2
 0.2
 0.2
 0.2
 0.2
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4

q

Vary Component Spins

$$q = 2 \qquad \theta_1 = \theta_2 = 0$$

$$\chi_1 = \chi_2 = 0.10$$

$$\chi_1 = \chi_2 = 0.15$$

$$\chi_1 = \chi_2 = 0.20$$

$$\chi_1 = \chi_2 = 0.25$$

$$\chi_1 = \chi_2 = 0.30$$

$$\chi_1 = \chi_2 = 0.35$$

$$0.30$$
 $\overline{5}$
 0.15
 0.00
 0.00
 0.3
 0.00
 0.3
 0.2
 0.2
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2

 a_1 a_2 q

Future Work

- Fix issues mapping points on boundaries
- Map correlations for high mass systems using the new network
 - Compare results
- Test mapping GW190521 maximum posterior region draws
- Analyze correlations
 - Decide whether spin parameters can be wellmeasured (under what circumstances)
 - Derive analytic expressions ($\chi_{eff} \eta$ alike) for reappearing correlations

Acknowledgements **National Science Foundation** LIGO Laboratory **Caltech SFP** Katerina, Simona, and Deborah Alan & Derek Everyone in LIGO SURF! :)

Questions?

Theory of Matched Filtering

Define inner product between two functions of time a(t), b(t) as $\frac{\widetilde{a}^*(f)\widetilde{b}(f) + \widetilde{a}(f)\widetilde{b}^*(f)}{S_h(f)}$ $\int_0^\infty df \frac{\widetilde{a}^*(f)\widetilde{b}(f)}{S_h(f)} \bigg| \, .$

$$\langle a \mid b \rangle \equiv 2 \int_{0}^{\infty} df$$
$$= 4 \operatorname{Re} \left[\int_{0}^{\infty} df \right]$$

Where $\tilde{a}(f)$ is the Fourier Transform of a(t)

 $\widetilde{a}(f) \equiv$

$$\int_{-\infty}^{\infty} dt e^{i2\pi ft} a(t)$$

 $f_{low} = 20Hz, f_{ref} = 1840Hz$

	Published	Updated
Waveforms	SXS Catalog	NRSur7dq4
Modes	l = 2, m = 2	All modes
Mass ratios	$0.0826 \le \eta \le 0.25$	$0.1224 \le \eta \le 0.25$
Detector Frame Mass	92M _☉	270M _☉

Training Data

Updating Network: High Mass Systems

 a_{2z}

Parameter Space Coverage

Published

Updated

Modeling Spread of Distribution: 2D Example

Distribution

How do we find these vectors?

Model the spread with vectors

Recall: Eigenvectors in Linear Algebra

Eigenvalues λ are roots to the characteristic equation

$$\det\left(\lambda\mathbf{I}_n-\mathbf{A}\right)=0$$

If λ is an eigenvalue of **A**, then there exist non-zero $\mathbf{x} \in \mathbb{R}^n$ such that

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

x is an eigenvector of **A** with corresponding eigenvalue λ

Recall: Eigenvectors in Linear Algebra

Eigenvalues λ are roots to the characteristic equation

$$\det\left(\lambda\mathbf{I}_n-\mathbf{A}\right)=0$$

If λ is an eigenvalue of **A**, then there exist non-zero $\mathbf{x} \in \mathbb{R}^n$ such that

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

x is an eigenvector of **A** with corresponding eigenvalue λ

Principal Component Analysis (PCA) & Bayesian Gaussian Modeling (BGM)

BGM

Fitting Gaussian to 2D distribution

Apply Bayes' Theorem $p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathbf{x}) = \frac{\mathbf{p}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \cdot \mathbf{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathbf{p}(\mathbf{x})}$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{2\pi |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Data $\mathbf{x} = [\mathbf{x}, \mathbf{y}]$, mean $\boldsymbol{\mu} = [\mu_x, \mu_y]$, covariance $\boldsymbol{\Sigma}$

PCA

Let data **X** be an $n \times p$ matrix, # features string $(x_{11} \ x_{12} \ \dots \ x_{1p})$ $x_{21} \ x_{22} \ \dots \ x_{2p}$ $\vdots \ \vdots \ \ddots \ \vdots$ $x_{n1} \ x_{n2} \ \dots \ x_{np}$

Principal Component Analysis (PCA) & Bayesian Gaussian Modeling (BGM)

BGM

Fitting Gaussian to 2D distribution

Apply Bayes' Theorem $p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathbf{x}) = \frac{\mathbf{p}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \cdot \mathbf{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}{\mathbf{p}(\mathbf{x})}$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{2\pi |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Data $\mathbf{x} = [\mathbf{x}, \mathbf{y}]$, mean $\boldsymbol{\mu} = [\mu_x, \mu_y]$, covariance $\boldsymbol{\Sigma}$

Eigen-Decomposition(ED)

$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$

$$\Sigma = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{yx} & \sigma_y^2 \end{bmatrix} = \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \mathbf{e_1} \\ \mathbf{e_2} \end{bmatrix}$$

PCA

Let data **X** be an $n \times p$ matrix, # features still $(x_{11} \ x_{12} \ \dots \ x_{1p})$ $x_{21} \ x_{22} \ \dots \ x_{2p}$ $\vdots \ \vdots \ \ddots \ \vdots$ $x_{n1} \ x_{n2} \ \dots \ x_{np}$

Singular Value Decomposition (SVD) $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$

For principal components $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n, \ \tilde{\mathbf{x}}_i = \mathbf{X}\mathbf{v}_i$ with variance σ_i^2 (n = 2)

Verifying Effectiveness

n_samples = 10000
Gaussian values adjusted by
noise factor within range [-1, 1].

PCA-BGM Fit Comparisons

PCA-BGM Fit Comparisons Ctd.

$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$

For principal components $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n, \tilde{\mathbf{x}}_i = \mathbf{X}\mathbf{v}_i$ with variance σ_i^2 (n = 2)

$$\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathbf{T}}$$
$$\Sigma = \begin{bmatrix} \sigma_{x}^{2} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{y}^{2} \end{bmatrix} = \begin{bmatrix} \mathbf{e_{1}} & \mathbf{e_{2}} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}$$

 $\sigma_i^2 \sim \lambda_i$

 $\tilde{\mathbf{x}}_{\mathbf{i}} \sim \mathbf{e}_{\mathbf{i}}$

	0.8	
Vow Moce Dation	0.6	
vary mass hauos	$\stackrel{-}{\succ}$ 0.4	
050	0.2	
$a_{1z} = a_{2z} = 0.50$	0.0	
$a_{1x} = a_{2x} = a_{1y} = a_{2y} = 0.2$	0.60	۵ ۹ ۸٫۹٫۸٫
1λ $\Delta\lambda$ $1y$ Δy	0.56	
	\approx 0.52	
q = 1.00	0.48	
q = 2.00		
q = 3.00	2.4	
— <i>q</i> = 4.00	ϕ 1.6	
q = 5.00	0.8	
q = 6.00	0.8	
7 00	2.0	
q = 7.00	1.5	and the second se
q = 8.00	$\hat{\boldsymbol{\Theta}}$ 1.0	
q = 9.00	0.5	

0

0.0

