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Binary black hole (BBH) spins provide unique and important insights into the formation en-
vironments, evolutionary history, and dynamics of these objects. We would like to gain a better
understanding of the merger-dominated gravitational-wave (GW) signals from highly massive highly
spinning BBH systems, which are prone to spurious measurements due to their very short duration
and low bandwidth. Astrophysical parameters are extracted from GW signals by match-filtering with
numerical relativity (NR) waveform templates. The degeneracies in waveforms, where dissimilar pa-
rameters yield similar waveforms, further complicates source identification. Using machine learning,
we visualize these degeneracies in the seven-dimensional BBH intrinsic-parameter space and develop
models to quantify parameter correlations. We also propose enhancing existing mismatch-prediction
neural networks with higher order modes and precession effects, thereby refining our ability to model
— and thus appropriately account for — these degeneracies in highly massive, spinning systems.

I. INTRODUCTION

GW190521 (M ~ 1500) is the heaviest BH binary detected to date and one of the few BBHs measured
to be highly precessing. It is the first strong observational evidence of intermediate-mass BH (IMBH),
which is believed to be the missing link for explaining the formation of supermassive BHs [1]. The detected
waveform is dominated by the merger phase where effects of precession remain elusive. In the ongoing LIGO’s
fourth observing run (O4) as well as in the advent of the space-based Laser-Interferometer Space Antenna
(LISA) and the ground-based Einstein Telescope (ET), we expect to observe large sample of events similar
to GW190521 as a result of increased detector sensitivity. Spin configurations reveal insights into the orbital
dynamics of compact progenitors and therefore help illuminate the formation channels of BH mergers in the
pair-instability (PI) mass gap and aid population modeling of BBHs.[1, 2].

To effectively extract astrophysical information from these signals, it is essential to understand phenomeno-
logically how the GW waveform varies based on BBH parameters, especially for highly massive, precessing
systems. Due to the inverse mass-frequency relationship, GW signals from massive binaries would leave
few cycles in the LIGO sensitive band. Inherent degeneracies, when multiple parameters produce similar
waveforms, further complicates data interpretation. We aim to respond to signals from such systems with
maximal accuracy, which requires a thorough understanding of the measurability of spin parameters from
detected waveforms. Spin parameters, in particular, which are traditionally derived from the inspiral phase,
are poorly constrained for these merger-dominated signals [3]. There is evidence, however, that the merger-
phase can contain some information about the preceding orbital dynamics [4]. In light of the existing gaps
in our understanding of how precession imprints GW signals, if LIGO purports the detection of significant
precession effects, it is crucial to evaluate how parameter degeneracies could be skewing our measurements
and interpretation.

In this paper, we outline our method of systematically mapping correlations in the BBH waveform param-
eter space. We evaluate the degeneracy between waveforms with the mismatch metric MM [5, 6], defined
as:

MM =1- Htl%xo [h1, ko] =1 — max (ha | o) (1)
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where we take the normalized inner product of the frequency domain strains hi, hy , optimized over time



and phase, to be the overlap of two waveforms,

A

0
under S, the one-sided power spectral density of the detector. The metric MM is normalized to 1, with
MM = 0 representing two completely identical waveforms. We identify the correlations between BBH
parameters by studying the regions in the waveform parameter space that have low mismatches between
each other.

Quasi-circular BBHs are distinctively characterized by their component masses and spin vectors. However,
since BBH simulations in vacuum are scalable by the total mass, we only need to utilize the mass ratio ¢, or
symmetric mass ratio, 7, to describe the system:
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The BBH waveform parameter space is this seven-dimensional, with parameters A = 7, a1, ag, consisting of a
scalar and two three-dimensional vector quantities with x,y, z components. The z-axis denotes the direction
of the system’s orbital angular momentum L. By excluding the poorly-measured spin azimuthal angles, we
can reduce the parameter space to five dimensions by parameterizing the spin vectors ay, az in terms of spin
magnitudes ay,as and tilt angles 61,05 (azimuthal tilt angle relative to L), as illustrated in Fig.1.
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FIG. 1: Configuration of precessing binary black holes relative to the orbital angular momentum L along z.

In order to map correlations within the BBH waveform parameter space, we make use of the neural network
mismatch_prediction presented in Ferguson [7] (detailed in Section ITIT C) to rapidly predict mismatches
between waveforms; see Eq. (1). Then we apply “walker algorithm” that systematically explores the degen-
erate regions, i.e. low mismatch values, in some chosen degrees of freedom, and interpret the path taken by
the walker. The rest of the paper is organized as follows. In Section II, we establish preliminary background
on effective waveform parameters, known degeneracies, and the neural network used for parameter space
generation. Then we present in Section IIT the mapping algorithm we developed for identifying parameter
correlations, followed by preliminary results in Section IV, which includes mapping in two, three, and five
degrees of freedom, verifying the effectiveness of our method.



II. BACKGROUND
A. Effective Spin Parameters

It is difficult to infer component spin parameters from GW signals; we instead use “effective” spin pa-
rameters, Yes and Xp, which show up in waveforms to leading order. The effective inspiral spin x.g is the
mass-weighted average of the components of the BBH’s spins aligned with the system’s angular momentum

mayaq cos(01) + maas cos(6
Xeff = —— (61) + maas cos(ds) —1<xer <1 (3)
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The effective precession spin can be modeled with a single parameter x,, which is defined to be the mass-
weighted in-plane spin component that contributes to precession of the orbital plane at some (arbitrary)
instant during the inspiral phase [8].
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In terms of the mass and spin parameters, we can rewrite x, as

5 4+3q 7
Xp = max ( a’%z + a%y, m agr + a§y> (5)

For more massive systems, where the merger and ringdown phases contribute significantly to the signal, the
GW waveforms exhibit more complex morphologies, especially in systems with precession effects that result
in waveforms of modulating amplitudes.

B. Spin-Mass Degeneracy

The xof —n degeneracy is well-established and falls out naturally from the Post-Newtonian (PN) waveform
expansion [9-11]:

Y15 = (TMF)"3y
where xo = (xz,1 — Xz,2) /2 and
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Previous studies have shown that the linear relationship
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is better measured than the effective spin and reduces waveform degeneracies resulting from the mapping
between (n,1) and (g, xes )[12]. Fig. 2 provides a visualization of the degeneracies between the parameters
Xeft and 7 in the case where BH spins are aligned/anti-aligned with the orbital angular momentum, with
varying mass mass ratios. We use this linear degeneracy to verify the effectiveness of our mapping algorithm
— when the correlation in the parameter space is projected onto the xegq — 7 plane, it should (at least
approximately) follow this linear form.
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FIG. 2: Mismatch between waveform of reference binary (black dot) and of other binaries throughout the
parameter space plotted as Xeg vs. 1. From left to right, the reference simulation has n = 0.1,0.16, 0.25.
From top to bottom, the reference has x.g = —0.5,0,0.5. Adapted from Fig. 11 in Ferguson [7].

C. Generating Waveform Parameter Space with Neural Network
1. Network Overview

In the existing mismatch_prediction network, the mismatch is computed on a flat noise curve at fiof =
1840 Hz using PyCBC [13] and LALSimulation[l4]. The original network is trained on a total number of
1885 waveforms, split randomly into training, development, and test sets with ratios of 0.8/0.1/0.1, using
I =2, m = 2 modes to simplify phase alignment for mismatch calculation. The starting frequency fj is set at
20 Hz to include 95% of waveforms in the SXS public catalog, corresponding to a detector frame mass of 100
Mg . The network consists of 15 hidden layers, each with 56 nodes, chosen from models in TensorFlow and
Keras library to achieve lowest development error.It was trained using an Adam optimizer with a learning
rate of 0.001 for 1000 epochs and batch size of 16.

The network architecture is visualized in Fig. 4. For a comprehensive discussion and detailed analysis of
the network’s accuracy and other specifications, refer to Ferguson [7].

2. Parameter Space Generation

We sample uniformly over the generation parameters n and spin vectors aj,as and use the network to
predict the mismatch between the reference waveform of specified parameters and the waveform resulting
from randomly picked generation parameters. When mapping correlations, we generate a parameter space
of N = 10,000 points. Since we are mapping within the “degenerate region” of the parameter space, we
adjust the mismatch threshold to include about 1 — 2% of the total number of points.
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FIG. 4: Diagram showing input (features array of two systems A = {n, a14, @1y, @14, G2z, G2y, a2, }) and the
output (the mismatch between waveforms) for generating the waveform parameter space using
mismatch_prediction.

3. Including Higher Order Modes (HoMs)

We updated the current network to include higher order modes using waveform model NRSur7dq4, which
is the only model calibrated to numerical simulations of precessing BH binaries, including the full six-
dimensional spin degrees of freedom and higher harmonics [3, 15]. NRSur7dq4 is trained on NR simulations
with mass ratios ¢ < 4 and spin magnitudes a;,as < 0.8. The model extrapolates to ¢ < 6 and a1,as < 1.
We randomly sampled 2000 points in the parameter space to generate waveforms for training the network.
The coverage of the parameter space is shown in Fig. 5.

Since this study is motivated by highly massive, precessing BBH systems, we adjusted the detector frame
mass to be 270 M and distance to be 5000 Pc, corresponding to maximum posterior values of GW190521.
Following the same training routine from the published model, the current network for GW190521-like
systems has a training error of 0.0081 and a development error of 0.0131, both at a lower value than the
original network. The error in the updated high-mass network is shown in Fig. 3b. This reduction in error
is likely due to the shorter duration of the waveforms, as almost all of of the true mismatch values fall under
0.6. Since we are using models to train the network, the coverage of the parameter space is more uniform
compared to the SXS catalog, which may also contribute to the lower uncertainty.

In this paper, we use the original published network trained on SXS catalog waveforms to generate
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FIG. 5: Coverage of the parameter space by NR waveform models in training (brown), development (pink),
and test sets (blue).

the waveform parameter space [7]. We plan to train a low-mass network using phenomenological model
IMRPhenomXPHM including HoMs, and run analysis across all three networks trained on different detector
frame masses to compare correlation recovered.



IIT. MAPPING ALGORITHM
A. Object-Oriented Approach: BBH, ParamerterSpace, MapDegeneracyND

Our approach leverages an object-oriented architecture, primarily structured around three central classes:
e BBH: represents an individual binary black hole (BBH) system.

— Attributes: Intrinsic properties such as mass ratios (¢, n), spin vectors, and spin angles. Effective
parameters such as e, Xp

— Instantiation: Parameters can be specified directly A = {n, a14, @1y, @12, G2s, a2y, a2, } or gener-
ated randomly.

e ParameterSpace: consists of BBH objects

— Instantiation: Randomly samples parameter space of chosen dimensions to initialize BBHs and
calculate the mismatch at each point with respect to reference simulation

— Visualization: Produces 2D/3D plots for visualizing the degeneracies in the parameter space

e MapDegeneracyND: runs mapper in continuously generated ParameterSpace until termination condition
is reached.

— Instantiation: initializes with reference simulation and mapping controls like fit method, sample
size, and mismatch threshold masks.

— Functional Flow: Constructs the ParameterSpace and statistically models the space to identify
regions of degeneracy.

— Execution: Runs the core loop that progressively navigates the parameter space based on set
conditions and statistical fits.

B. Algorithm Outline

We assessed a range of statistical models to identify correlations within the parameter space. Notably,
the Bayesian Gaussian Modeling (GMM) and the Principal Component Analysis (PCA) proved to be the
most effective. We are able to directly identify the direction of the largest spread of distribution, which
corresponds to the least variance. The Bayesian Gaussian Fitting achieves this through eigen-decomposition
of the covariance matrix, while the Principal Component Analysis transforms data points along the principal
components using singular-value decomposition (SVD). Despite the procedural differences in finding this
direction, the two methods yield comparable results (see Appendix B).

Since it requires the full features array A = {1, a1z, a1y, a1z, G2z, a2y, a2.} to generate mismatch of a
waveform in a given parameter space, we add in a K-nearest neighbor (KNN) approximation when choosing
the next point along the principal direction: we regenerate the parameter space take steps along the mapping
direction, each step (proposed point) is ranked through KNN, and we regenerate the parameter space using
the highest-ranking (closest) point along the direction.

IV. CORRELATION RECOVERY

We first verified the accuracy of the mapping algorithm in a two-dimensional setting where g — 7 degen-
eracy is well-understood. As we progressed to higher dimensions incorporating more intrinsic parameters, the
correlations in these spaces remain uncharted due to measurement challenges and the absence of analytical
solutions. To ensure our algorithm’s effectiveness in these complex scenarios, we transformed the mapper’s
path back onto the x.g — 7, checking that the correlations identified are consistent with established patterns.



FIG. 6: Path calculated by the walker algorithm for starting reference point at A = [0.16,0,0,0,0,0,0]
plotted in red. The background data points are simulations with predicted mismatch with respect to the
starting reference point.

A. Two-dimensional Analysis: Effective Spin and Symmetric Mass Ratio

We started with testing the mapping algorithm on the y.g — 1 plane. We started at n = 0.16, xex = 0
and mapped to both directions (by adding and subtracting the direction vector) until boundary is reached.
The resulting path is shown in Fig. 6, which overlaps with the linear degeneracy.

B. Three-dimensional Analysis: Mass Ratio with Aligned Spins

We then proceeded on testing the mapping with an extra dimension: using the mass ratio ¢ and aligned
component spins ai,,as,. Since Eq. 3 can be written as

_ qaiz + as.
Xeft —q 1

we would like to map the correlation between the parameters ¢, aq,, as, and verify if the projection matches
the linear degeneracy on y.g — n plane. We set the initial reference parameters the same as the nine
simulations in Fig. 2, where n = 0.1,0.16,0.25 and xe.g = —0.5,0,0.5. This is an intermediate step for
verifying the effectiveness of our mapping algorithm. We are attempting to recover the correlation between
effective parameters x.g — 77 by mapping intrinsic BBH ¢, a1,, as,. The three-dimensional mapping analysis
using mass ratio ¢ and aligned spins aq,, as, provided promising results. The mapping was able to identify
correlations that are in excellent agreement with the expected linear degeneracy on the x.s — 7 plane. Given
the success of this intermediate step, our next phase of work will focus on incorporating additional spin
parameters to better model precession effects.

C. Five-dimensional Analysis: Mass Ratio, Spin Magnitudes, and Spin Angles

Once we confirmed that the algorithm is able to map in three dimensions ¢, a1,, as., we included spin tile
angles 61, > and used spin magnitudes a1, as instead of aligned spin components. We are thus mapping in five
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degrees of freedom ¢, aq, as, 01,0s. The purpose of including spin angles stems from their typical ambiguity
in LIGO detections, making them a significant factor when aiming for a more complete understanding of
precessing waveforms; incorporating spin tilts is also crucial from an astrophysical perspective, as they shed
light on the complex interactions and evolutionary pathways of merging binary systems, providing insights
into the environments in which these systems formed and evolved. In this expanded analysis, we initiated
tests based on two sets of initial parameters: the first set with varying equal spin magnitudes with constant
mass ratios ¢ = 2 and spin angles 6; = 6 = 0 (Figs. 9 and 10), and the second set with varying mass ratios
with constant spin magnitudes (Figs. 11 and 12).

The correlations recovered from injections with different spin magnitudes seem to be shifted linearly for
different starting injections. We observe that as, 61 and as, 0> are not correlated, as expected. However,
there seems to be a strong linear correlation between ¢,60; and ¢,6s. a; seems to be correlated with other
parameters whereas as seems to be uncorrelated (horizontal and vertical plot traces). The overplot seems to
deviate from the degenerate region at the boundary of the mapping. Future work includes verying whether
this behavior comes from the mapping algorithm or is a valid correlation that does not appear in the xeg — 7
plane.

The results from injections of varying mass ratios seem more complex, though the overplot verifies that
the correlation is accurate on the y.g — 1 plane. It is worth noticing that the mapper does not span across
the xer — 717 space for more asymmetric mass ratios.

V. CONCLUSION AND FUTURE WORK

In this study, we introduced a comprehensive methodology for mapping parameter correlations in pre-
cessing binary black hole (BBH) signals, extending the neural network framework proposed in Ferguson [7].
Utilizing data from the SXS catalog [16], our model specializes in predicting the mismatch of gravitational
waveforms in the [ = 2, m = 2 modes. We confirmed the efficacy of our approach by projecting the discovered
correlations onto the y.g — 7 plane, where they align well with the known linear degeneracies. While our
results demonstrate strong agreement with y.g — 7 relation, there are observed deviations at the boundaries
of the parameter space that require further exploration.

In terms of ongoing and future work, we trained the neural network with the NRSur7dq4 waveform model
to include higher-order modes [17]. This is particularly important for understanding events similar to
GW190521, which involve high-mass, highly precessing systems. Additionally, we are in the process of train-
ing a network on the IMRPhenomXPHM [18] waveform for low-mass systems (detector frame M = 30 Mg). Our
future goals include conducting detailed analyses on events resembling GW190521 and making comparative
studies across neural networks trained on different detector frame masses.
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Appendix A: Degenerate Waveforms

In the study of binary black hole (BBH) waveforms, certain combinations of parameters may yield signals
that are nearly indistinguishable when viewed through detectors. We focus our attention on a series of

025 e
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0.1 02 01 0.2 0.1 0.2
n

FIG. 13: Reference simulations chosen at xeg = —0.25,0,0.25 and = 0.1,0.16, 0.2 along the line where
the two parameters are approximately degenerate. The degeneracy exhibited is globally consistent for the
points chosen with some local variations due to SNR.

reference simulations, as shown in Fig. 13, at various points along the line where the effective spin parameter
Xeft and the symmetric mass ratio 7 are approximately degenerate. When waveforms are degenerate, any
parameter space generated around them should exhibit a similar structure. In other words, degenerate
waveforms would map onto almost identical regions in the parameter space, assuming the effect of noise
is minimal or appropriately accounted for. However, it’s crucial to note that while the global behavior is
generally consistent, there may be local variations due to factors such as the signal-to-noise ratio (SNR). The
concept of waveform degeneracy is essential for understanding the uncertainties associated with parameter
estimation.

Appendix B: Gaussian Mixture Model (GMM)

In this section, we detail the method utilized for local estimation of a single Gaussian distribution
from multidimensional data through the sklearn.mixture implementation. The Gaussian Mixture Model
(GMM) is a probabilistic model representing a mixture of multiple Gaussian distributions. Through the
sklearn.mixture framework, we apply the GMM to fit data points in our BBH parameter space. The
foundational assumption of this model is that the observed data is generated from multiple Gaussian dis-
tributions. Each component of the GMM, or cluster, is defined by its mean (uj) and covariance matrix

13
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We used the Bayesian approach sklearn.mixture.BayesianGaussianMixture integrated in the module
to counteract overfitting issues, especially when a GMM with a single component is used. This is represented
using Bayes’ theorem:

Z(d | 0)m(0)
0|d) = ——77
o0 d) = =G
Gaussian Mixture Models uses an Expectation - Maximization (EM) Algorithm for parameter estimation.
The likelihood function for GMM, which offers insight into the probability of observed data given our model
parameters, is expressed as:

N K _1
1 (mn - Nk)TE (wn - “k)
p(x0)=1]> Tk <P 5 ,

n=1 k=1

1 exp—(w" _Hk)Tzlzl(mn_Hk)
vV 27T2k 2 '
Here, 6 encapsulates the full set of model parameters, and the function £ denotes the log-likelihood, crucial
for the iterative optimization within the EM algorithm.

L=logp(X |0)= Zn: 1V log [Zk =15,

Appendix C: Comparison of Methods

We verified the effectiveness of these methods on dummy 2D data, supplemented with a Gaussian value in
the third dimension, using a defined covariance matrix and mean with noise introduced. The fits are shown
in Fig. 15. Fig. 14a and 14b show that the results from the two methods are consistent (near identical) for
n_components = 1 for GMM and n_components = 2 for PCA in a two-dimensional parameter space.

14
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