
Draft version July 8, 2023
Typeset using LATEX default style in AASTeX631

Identifying Correlations in Precessing Gravitational-Wave Signals with Machine Learning

Karen Kang,11

Advisors: Simona Miller, Katerina Chatziioannou2

3

1Amherst College Amherst, MA 01002, USA4

ABSTRACT5

Binary binary hole (BBH) spins provides important insights on the formation environments, evolu-6

tionary history, and dynamics of these objects, which could be of interest of the broader astrophysics7

community (Mandel & Farmer 2022). We would like to better measure signals for highly massive8

(total mass > 100M⊙, primary mass≲ 500M⊙), highly spinning BBH systems, which are subject to9

spurious measurements due to their very short duration and low bandwidth (Abbott et al. 2020).10

The astrophysical parameters of gravitational wave (GW) sources are extracted from match filtering11

observed signals to templated waveforms. The waveforms which include the most underlying physics12

are those generated with numerical relativity (NR). However, different parameters of NR simulation,13

such as mass and spin, can lead to extremely similar waveforms. In such cases, the analysis pipeline14

will not be able to distinguish potential sources. We are interested in constructing a neural network to15

study the correlations between different parameters of waveforms with spin precession and to identify16

potential ways to break such degeneracies. The results produced by this network would inform us the17

measurability of spin parameters from inferred waveform signals.18

1. INTRODUCTION19

GW190521 (M ∼ 150⊙) is the heaviest BH binary detected to date and one of the few BBHs measured to be highly20

precessing. It is the first strong observational evidence of intermediate-mass BH (IMBH), which is believed to be21

the missing link for explaining the formation of supermassive BHs (Abbott et al. 2020). The detected waveform is22

dominated by the merger phase where effects of precession remain elusive. In the upcoming LIGO’s fourth observing23

run (O4) as well as in the advent of the space-based Laser-Interferometer Space Antenna (LISA) and the ground-based24

Einstein Telescope (ET), we expect to observe large sample of events similar to GW190521 as a result of increased25

detector sensitivity. Spin configurations are indicative of the compact progenitor’s orbital dynamics and therefore help26

illuminate the formation channels of BH mergers in the pair-instability (PI) mass gap and aid population modeling of27

BBHs (Abbott et al. 2020; Mandel & Farmer 2022).28

We would like to respond to signals from such systems with maximal accuracy, which requires a thorough phe-29

nomenological understanding of the measurability of spin parameters from inferred waveforms.30

2. OBJECTIVES31

The objective of the project is to identify degeneracies in the parameter space for highly massive, precessing BBH32

systems using machine learning. I will 1) determine whether a certain set of parameters can be recovered from detected33

waveform, 2) investigate the correlations between degenerate parameters, and 3) quantify and produce visualizations34

of such correlations. Understanding the degeneracies and correlations between spin measurements will inform us as to35

which spin paramameters are actually independently measurable in GW data.36

3. BACKGROUND & APPROACH37

3.1. Theoretical Modeling38

My project will be largely based on the neural network mismatch prediction presented in (Ferguson 2023). The39

model is currently trained on the SXS GW catalog. The network predicts the mismatch of the GW emitted by two40

BBH systems with initial input parameters λ = η,a1,a2, consisting of the symmetric mass ratio η41
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η = m1m2/ (m1 +m2)
2

0 ≤ η ≤ 0.25 (1)42

and the dimensionless spin vectors a1,a2, which are 3-dimensional vectors with x, y, z components.

a =
J

m2
0 < a < 1

The model defines a mismatch metric MM to assess how different a resulting waveform is from an existing waveform.

MM = 1−max
t,ϕ

O [h1, h2] ≡ 1−max
t,ϕ

⟨h1 | h2⟩√
⟨h1 | h1⟩ ⟨h2 | h2⟩

where

⟨h1 | h2⟩ = 2

∫ ∞

f0

h∗
1h2 + h1h

∗
2

Sn
df

h1, h2 are the frequency domain strain of the waveforms, and Sn is the one-sided power spectral density of the detector.43

MM is normalized to 1 with MM = 0 corresponding to two identical waveforms. The mismatch is computed on a flat44

noise curve at fref , where the spin vectors are defined. The existing network is able to identify degenerate regions in45

the parameter space with l = 2,m = 2 modes for systems of Mtot = 1M⊙, corresponding to fref = 1840 Hz. Since the46

frequency of the emitted gravitational wave scales inversely with the total mass of the system, heavy binaries merge47

at lower frequencies, which leaves fewer cycles in the sensitive band of ground-based detectors. I will be adjusting the48

frequency cutoff to adapt the network specifically to highly massive, precessing BBHs with fewer observable cycles.49

To account for effects of precession, I will make use waveform model NRSur7dq4, which is the only model calibrated50

to numerical simulations of precessing BH binaries, including the full six-dimensional spin degrees of freedom and51

higher harmonics (Biscoveanu et al. 2021; Varma et al. 2019). The waveforms will be split randomly into training,52

development, and test sets with ratios of 0.8/0.1/0.1 respectively following how the network was trained previously. I53

will be computing mismatches between these waveforms using PyCBC, which requires optimization over both time and54

coalescence when the system is phase-on.55

3.2. Degeneracy Mapping56

Since it is difficult to infer component spin parameters from GW, we use χeff , χp to characterize the signal detected.57

The effective inspiral spin χeff is the mass-weighted average of the components of the BBH’s spins aligned with the58

system’s angular momentum59

χeff =
m1a1 cos (θ1) +m2a2 cos (θ2)

m1 +m2
−1 ≤ χeff ≤ 1 (2)60

The effective precession spin can be modeled with a single parameter χp, which is defined to be the mass-weighted61

in-plane spin component that contributes to precession of the orbital plane at some (arbitrary) instant during the62

inspiral phase (Schmidt et al. 2015).63

χp = max

(
a1 sin (θ1) ,

4m2
2 + 3m1m2

4m2
1 + 3m1m2

a2θ2

)
0 < χp < 1 (3)64

The GW waveforms for systems with precession effects have richer morphology.65

Expectedly, characterizing an extremely complex GW waveform with few parameters results in degeneracy in the66

parameter space (i.e. MM ≪ 0.2). Fig. 3a provides a visualization of the degeneracies between the parameters χeff67

and η in the case where BH spins are aligned with the orbital angular momentum.68

I will be making similar plots with different parameters and reference data point. If time permits, I will investigate69

whether such degeneracies are broken at higher/different modes.70
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APPENDIX71

WORK PLAN: UPDATED 07/07/202372

Before arrival: Start background reading on project. Download required software and libraries. Familiarize

myself with the mismatch-prediction model by Ferguson (2023) and understand the working

principles of the APIs used (TensorFlow and Keras).

Week 1-2: Orientation; Reproducing existing results. Write plotting routines. Investigate algorithms

for identifying degeneracies in parameter space: Hessian (failed), KDE (in progress).

Week 3-4: Trip to LHO; report I.

Finish KDE plots and test Gaussian mixture for mapping out the parameter space.

Week 5-8: Compute mismatches for existing waveforms; report II. Prepare training data to retrain the

network on high mass, precessing systems. Recover χeff relationship from the parameter

space after smoothing. Map out degeneracies with precessing systems.

Week 9-10: Follow-up with interesting results; final report.

73

74

A. MISMATCH.PREDICTION75

The training data for the published model at https://github.com/deborahferguson/mismatch prediction consists of76

BBH systems with symmetric mass ratios 0.0826 ≤ η ≤ 0.25 and spin magnitudes 0 ≤ a1, a2 ≤ 0.9695 in various77

directions. For this project, we sample points in the parameter space where the mass ratio 1 ≤ 1
q ≤ 10 with q ≡78

m2/m1,m2 ≤ m1 and 0 ≤ a1, a2 ≤ 1. At this stage of the project, we have not added in effects of procession79

(χp = 0) and are considering systems where spin vectors are aligned or antialigned with the orbital angular momentum80

(a1x = a1y = a2x = a2y = 0). By setting the secondary mass of the system to 1, we have from equations 2, 381

η =
q

(q + 1)2
(A1)82

χeff =
qa1 + a2
q + 1

(A2)83

B. VISUALIZING DEGENERACIES84

In the simplest case that we are considering, MM is an output from three input variables (q, a1, a2) when a reference85

point (q′, a′1, a
′
2) is chosen in the three-dimensional parameter space. To map out the degeneracies, we sample 10,00086

random points in the parameter for each reference point and assign a color map to the mismatch values associated87

with each point, as shown in fig. 1. By changing the coordinate system of the parameter space, we observe the88

approximate linear relationship between χeff and η as expected in fig. 2. In fig. 3, we were able to recreate the features89

of the degeneracy plot from (Ferguson 2023) subjected to differences in color scheme and figure scaling. We further90

experimented by varying the reference points along the line where the χeff and η are most degenerate. The resulting91

plot is shown in fig. 4, which maps very similar space. We further experimented with visualizing the degeneracies92

via fixing χeff and varying the initial mass and spin parameters in fig. 5. Mapping out contour lines on which the93

mismatch value is constant in the parameter space would be a reasonable direction to proceed.94

C. IDENTIFYING CORRELATIONS95

Initally, we attempted to identify the degeneracies in the parameter space by computing the eigenvalues of Hessians96

at each point. However, since the parameter space consists of discrete points, there is too much noise about the97

associated Hessian from interpolation. We then instead applied kernel density estimation (KDE) to smooth out the98

discretized parameter space by using PESummary. We set weights = MM and method = "Reflection" to account99

for the boundary conditions of the parameter space. The results for reference simulation at η = 0.16, χeff = 0 are100

shown in fig. 6. As the KDE function only provides a visualization of the correlations, we plan to fit the injected101

simulations to a gaussian mixture model next, which would enable us to quantify the correlations between parameters.102

https://github.com/deborahferguson/mismatch_ prediction
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Figure 1: Scatter plot visualization of the three-dimensional parameter space with respect to reference simulation

with q = 1, a1 = a2 = 0.

Figure 2: Mismatch between reference simulation at η = 0.25, χeff = 0 and sampled simulations throughout the

parameter space.
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(a)

(b)

Figure 3: Mismatch between waveform of reference binary (black dot) and of other binaries throughout the parameter

space plotted as χeff vs. η. From left to right, the reference simulation has η = 0.1, 0.16, 0.25. From top to bottom,

the reference has χeff = −0.5, 0, 0.5. The original plot from Ferguson (2023) is shown in the figure above, and the

recreation of the plot is shown below. Each subplot in the figure below is interpolated using the nearest method in

scipy.interpolate.griddata.
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Figure 4: Reference simulations chosen at χeff = −0.25, 0, 0.25 and η = 0.1, 0.16, 0.2 along the line χeff = 4.934η−0.757

where the two parameters are approximately degenerate.
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Figure 5: Mismatch between waveform of reference binary (black dot) and of other binaries throughout the parameter

space plotted as a1 vs. η while fixing the effective spin. From left to right, the effective spin is fixed at χeff = −0.5, 0, 0.5.

From top to bottom, reference has η = 0.1, 0.16, 0.25.
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