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ABSTRACT

Binary binary hole (BBH) spins provide unique and important insights into the formation environ-

ments, evolutionary history, and dynamics of these objects. We would like to gain a better understand-

ing of merger-dominated signals for highly massive highly spinning BBH systems, which are prone to

spurious measurements due to their very short duration and low bandwidth. Astrophysical parameters

from gravitational wave (GW) sources are extracted by match-filtering signals with numerical rela-

tivity (NR) waveforms templates. The degeneracies in waveforms, where dissimilar parameters yield

similar waveforms, further complicates source identification. Using machine learning, we can visualize

these degeneracies in the 14-dimensional BBH parameter space and develop models to quantify pa-

rameter correlations. We also propose enhancing existing mismatch-prediction neural networks with

higher order modes and precession effects, thereby refining our ability to model these degeneracies.

The results produced by this network will inform us about the measurability of spin parameters from

inferred waveform signals of highly massive, precessing BBHs.

1. INTRODUCTION

GW190521 (M ∼ 150⊙) is the heaviest BH binary

detected to date and one of the few BBHs measured to

be highly precessing. It is the first strong observational

evidence of intermediate-mass BH (IMBH), which is be-

lieved to be the missing link for explaining the forma-

tion of supermassive BHs (Abbott et al. 2020). The

detected waveform is dominated by the merger phase

where effects of precession remain elusive. In the up-

coming LIGO’s fourth observing run (O4) as well as

in the advent of the space-based Laser-Interferometer
Space Antenna (LISA) and the ground-based Einstein

Telescope (ET), we expect to observe large sample of

events similar to GW190521 as a result of increased de-

tector sensitivity. Spin configurations are indicative of

the compact progenitor’s orbital dynamics and therefore

help illuminate the formation channels of BH mergers

in the pair-instability (PI) mass gap and aid popula-

tion modeling of BBHs (Abbott et al. 2020; Mandel &

Farmer 2022).

We would like to respond to signals from such sys-

tems with maximal accuracy, which requires a thorough

phenomenological understanding of the measurability of

spin parameters from inferred waveforms.

2. OBJECTIVES

The objective of the project is to identify degeneracies

in the parameter space for highly massive, precessing

BBH systems using machine learning. I will 1) deter-

mine whether a certain set of parameters can be recov-

ered from detected waveform, 2) investigate the correla-

tions between degenerate parameters, and 3) quantify

and produce visualizations of such correlations. Un-

derstanding the degeneracies and correlations between

spin measurements will inform us as to which spin para-

mameters are actually independently measurable in GW

data.

3. BACKGROUND & APPROACH

3.1. Theoretical Modeling

My project will be largely based on the neural network

mismatch prediction presented in (Ferguson 2023).

The model is currently trained on NR waveforms from

the SXS GW catalog. The network predicts the mis-

match of the GW emitted by two BBH systems with

initial input parameters λ = η,a1,a2, consisting of the

symmetric mass ratio η

η = m1m2/ (m1 +m2)
2

0 ≤ η ≤ 0.25 (1)

and the dimensionless spin vectors a1,a2, which are

3-dimensional vectors with x, y, z components.

a =
J

m2
0 < a < 1

The model uses a mismatch metric MM to evaluate

how different a waveform , generated by specific initial
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parameters, is from a preexisting waveform. Mathemat-

ically, it’s represented as:

MM = 1−max
t,ϕ

O [h1, h2] ≡ 1−max
t,ϕ

⟨h1 | h2⟩√
⟨h1 | h1⟩ ⟨h2 | h2⟩

where we take the normalized inner product of the fre-

quency domain strains h1, h2 , optimized over time and

phase, to be the overlap of two waveforms,

⟨h1 | h2⟩ = 2

∫ ∞

f0

h∗
1h2 + h1h

∗
2

Sn
df

and Sn the one-sided power spectral density of the detec-

tor. The metric MM is normalized to 1, with MM = 0

representing two completely identical waveforms. In the

existing network, the mismatch is computed on a flat

noise curve at fref using PyCBC and LALSimulation. It

is trained with with l = 2,m = 2 modes for systems of

Mtot = 1M⊙, corresponding to fref = 1840 Hz. Since

the frequency of the emitted gravitational wave scales

inversely with the total mass of the system, heavy bi-

naries merge at lower frequencies, which leaves fewer

cycles in the sensitive band of ground-based detectors.

I will be adjusting the frequency cutoff to adapt the

network specifically to highly massive, precessing BBHs

with fewer observable cycles (currently mass = 100M⊙,

we might use 150 for the training data since we are

interested in 190521-like systems). To account for ef-

fects of precession, I will be computing mismatches be-

tween these waveforms using PyCBC, which requires opti-

mization over both time and coalescence when the sys-

tem is phase-on. We will make use waveform model

NRSur7dq4, which is the only model calibrated to nu-

merical simulations of precessing BH binaries, includ-

ing the full six-dimensional spin degrees of freedom and

higher harmonics (Biscoveanu et al. 2021; Varma et al.

2019). The waveforms will be split randomly into train-

ing, development, and test sets with ratios of 0.8/0.1/0.1

respectively following how the network was trained pre-

viously.

3.2. Degeneracy Mapping

Since it is difficult to infer component spin parame-

ters from GW, we use χeff , χp to characterize the signal

detected. The effective inspiral spin χeff is the mass-

weighted average of the components of the BBH’s spins

aligned with the system’s angular momentum

χeff =
m1a1 cos(θ1) +m2a2 cos(θ2)

m1 +m2
− 1 ≤ χeff ≤ 1

(2)

The effective precession spin can be modeled with a

single parameter χp, which is defined to be the mass-

weighted in-plane spin component that contributes to

precession of the orbital plane at some (arbitrary) in-

stant during the inspiral phase (Schmidt et al. 2015).

χp = max

(
a1 sin (θ1) ,

4m2
2 + 3m1m2

4m2
1 + 3m1m2

a2θ2

)
0 < χp < 1

(3)

The GWwaveforms for systems with precession effects

have richer morphology.

Expectedly, characterizing an extremely complex GW

waveform with few parameters results in degeneracy in

the parameter space (i.e. MM ≪ 0.05). Fig. 9a pro-

vides a visualization of the degeneracies between the pa-

rameters χeff and η in the case where BH spins are

aligned/anti-aligned with the orbital angular momen-

tum, and figure shows the degeneracy when precession

is included.

4. CURRENT PROGRESS

Since the data set is high dimensional, I started with

experimenting various methods to visualize degeneracy

correlations in 2 dimensions. Once I got a good grasp

on manipulating the data, I started testing different in-

terpolation schemes and statistical models (See Prelim-

inary Results for details) to identify the degeneracy in

the parameter space. I have been working with non-

precessing GW waveforms and correlations with two pa-

rameters (η and χeff). As of now, I have a working code

prototype that can “walk” through the degenerate re-

gion of the 2D parameter space by applying Bayesian

Gaussian Mixture Model / Principal Compoenent Anal-

ysis to the data points. I have tested the script in 3

Dimensions (q, a1, a2). It seems that the correlation re-

covered is consistent with the expected correlation in 2D

(η and χeff); however, the recovered path in 3D does not

span the 2D parameter space.

We initially planned to use SXS catalog NR wave-

forms to compute mismatches for higher order modes

and thought we had a code that worked by aligning in-

clination of the coalescence and then optimizing over

phase to maximize the overlap. Nonetheless, there turns

out to be errors executing the code with some systems.

In the interest of time, we opt for using surrogate model

NRSur7dq4, which would allow us to control most vari-

ables and avoid sources of errors, to generate training

data for the updated network. If time permits, we hope

to get preliminary results on running the updated net-

work with 190521 posteriors.

5. METHOD OUTLINE

To identify the correlations in the BBH parameter

space, we design an algorithm that finds local variance

with respect to the injected reference simulation. Given
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the local variance, algorithm would decided on the place-

ment of the next injection to re-generate the parameter

space with respect to the updated injection and recal-

culate the variance.

5.1. Model Selection

We evaluated various statistical models for discerning

correlations within the parameter space (detailed in 6).

Notably, the Gaussian Mixture Model (GMMGaussian

Mixture Model (GMM)) and Principal Component

Analysis (PCAPrincipal Component Analysis (PCA))

emerged as the most suitable due to their capability

to pinpoint ’principal directions’ of movement. This

is achieved either by computing the eigenvectors and

eigenvalues of the covariance matrix (in GMM) or by

transforming data points along principal components

(in PCA). We verified the effectiveness of these meth-

ods on dummy 2D data, supplemented with a Gaussian

value in the third dimension, using a defined covariance

matrix and mean with noise introduced. The fits are

shown in Fig. 2. Fig. 1a and 1b show that the re-

sults from the two methods are consistent (near identi-

cal) for n components = 1 for GMM and n components

= 2 for PCA in a two-dimensional parameter space.

5.2. Walker Algorithm

The algorithm is outlined as Degeneracy Mapping

Walker with functions outlined in 1a.

Algorithm 1 Degeneracy Mapping in n-Dimensional

Parameter Space based on GMM Eigendecomposition

1: Initialization:
2: Set initial point as start from given or default values
3: Set initial threshold and define bounds for the space
4: Initialize lists: eigenvalues, eigenvectors, points, steps
5: Set max iterations if required
6: while start is within bounds do
7: Display current reference point
8: Get parameter space using external function
9: filtered data ← FilterData(threshold, data)

10: fitted model ← FitModel(filtered data)
11: direction ← DetermineMovement(fitted model)
12: Propose a new point in the parameter space based on

direction
13: if proposed point is within bounds then
14: Update start
15: else
16: Exit loop
17: end if
18: Calculate and display predicted mismatches
19: if mismatch crosses threshold or max iterations

reached then
20: Exit loop
21: end if
22: end while

(a)

(b)

Figure 1: Comparisons of GMM and PCA results. (a)

Eigenvectors. (b) Eigenvalues.

Since I used GMM for writing the first working pro-

totype of the walker algorithm in 2D, I will continue to
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Figure 2: Comparison between modeling the distribution with PCA (top) and GMM (bottom): principal components

in black arrows, scaled for best visualization, means and covariance plotted as ellipse.

use GMM in higher dimensions for consistency unless

the method fails.

Algorithm 1a Supporting Procedures for the Main Al-

gorithm

1: procedure FilterData(threshold, data)
2: Use threshold to filter data points
3: while sample size below criteria and threshold not

exceeded do
4: Adjust threshold and re-filter
5: end whilereturn filtered data
6: end procedure
7: procedure FitModel(data)
8: Fit Gaussian Mixture Model on data
9: Save model’s mean to global list return fitted model

10: end procedure
11: procedure DetermineMovement(Model)
12: Calculate and order eigenvectors and eigenvalues of

Model’s covariance
13: Construct direction vector from primary eigenvectors

return direction vector
14: end procedure

6. PRELIMINARY RESULTS

Using the iterative walker algorithm, we are able to

map out the degenerate spaces based on the path taken

by the walker. Fig. 3 shows the path calculated in 2D

η, χeff space and see fig. for the complete record of the

evolution of the parameter space and the fitted Gaussian

in Fig. 15.

Figure 3: Path calculated by the walker algorithm for

starting reference point at λ = [0.25,0,0,0,0,0,0].

The background data points are simulations with re-

spect to the starting reference point.

It is worth noting that in the 2-dimensional case, we

are able to compute the the step to take by taking the

direction of the largest eigenvector and the means of the

Gaussian coincides with the injected simulation. The

same method would fail when additional degrees of free-

dom is added— the changes in the parameter space can

no longer be captured by a single eigenvector. Instead,

we combined the primary eigenvectors (discarding the

smallest eigenvector) to calculate the direction vector.
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We successfully identified a path that appears credible

in three dimensions in Fig. 4, 5. To verify that the

path aligns with the χeff vs. η correlation, we reverse

plotted three points (table 1) calculated from the two-

dimensional parameter space.

Figure 4: Path calculated by walker in 3D

(q, a1, a2) with starting reference simulation at λ

= [0.16,0,0,0,0,0,0].Two possible directions exist

when walking along the combined eigenvectors: positive

and negative.In the plot, we only display the negative

direction.

λ η χeff q a1 a2

1 0.16 0.0 4.0 0 0

2 0.14881366 -0.066 4.497 0 -0.361

3 0.139 -0.124 4.972 0 -0.740

Table 1: Simulation Points for η, χeff, and q, a1, a2. We

set a1 = 0 and calculate a2 based on χeff . This is not the

best practice, and I plan to redo this after submitting

this preliminary result in my report.

We found that although the correlations in three di-

mensions align with the theoretical χeff , η relation, it is

difficult to characterize a transformed 2D space as the

walker path does not span the space effectively (Fig. 6

). Fig. 6 shows the paths plotted in two dimensions.

We can observe that the paths plotted from degener-

ate starting reference simulation have similar topologies,

subject to scaling, rotation, and translation, which is

likely related to how the parameters are transformed

into the χeff , η space. We would be addressing this

issue with the remaining time of the program and hope-

fully generalize to higher dimensions so that we can fully

characterize the spin parameters of BBH (including pre-

cession, see Fig. 8b, 11 for what the space looks like).

Figure 5: 3D walker path for degenerate simulations to

λ =[0.16,0,0,0,0,0,0]

Figure 6: 3D walker path transformed to χeff vs. η 2D

parameter space
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Figure 7: 2D projection of 3D walker paths: reference points chosen at along the 2D degeneracy line with starting

reference simulation at λ = [0.16,0,0,0,0,0,0]
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APPENDIX

WORK PLAN: UPDATED 08/04/2023

Before arrival: Start background reading on project. Download required software and libraries. Familiarize

myself with the mismatch-prediction model by Ferguson (2023) and understand the working

principles of the APIs used (TensorFlow and Keras).

Week 1-2: Orientation; Reproducing existing results. Write plotting routines. Investigate algorithms

for identifying degeneracies in parameter space: Hessian (failed), KDE (in progress).

Week 3-5: Trip to LHO; report I. Finished KDE plots (failed) and tested Gaussian Mixture Model for

mapping out the parameter space. Experimented with Principal Component Analysis and

binning data. Mapped out degeneracy contours for the binned data.

Week 6-8: Compute mismatches for existing waveforms; report II. Compare methods accuracy in

recovering correlations. Verify correlation recovered in 3D with 2D.

Prepare training data to retrain the network on high mass, precessing systems. Test meth-

ods with precessing systems in 2,2 mode.

Week 9-10: Follow-up with interesting results; clean up scripts!! ; final report.

A. MISMATCH.PREDICTION

The training data for the published model at https://github.com/deborahferguson/mismatch prediction consists of

BBH systems with symmetric mass ratios 0.0826 ≤ η ≤ 0.25 and spin magnitudes 0 ≤ a1, a2 ≤ 0.9695 in various

directions. For this project, we sample points in the parameter space where the mass ratio 1 ≤ q ≤ 10 with q ≡
m1/m2,m2 ≤ m1 and 0 ≤ a1, a2 ≤ 1. By setting the secondary mass of the system to 1, we have from equations 1, 2

η =
q

(q + 1)2
(A1)

χeff =
qa1 + a2
q + 1

(A2)

In terms of the mass and spin parameters, we can rewrite the effective precession parameter χp as

χp = max

(√
a21x + a21y,

4 + 3q

4q2 + 3q

√
a22x + a22y

)
(A3)

We have not yet included in effects of procession (χp = 0) and are considering systems where spin vectors are aligned

or antialigned with the orbital angular momentum (a1x = a1y = a2x = a2y = 0) in the data analysis process. Unless

indicated otherwise, the degeneracy visualization plots are generated by uniformly sampling over q, a1z, a2z. A key

challenge we encounter in this project is that our modeling of the effective spin parameter χeff and the symmetric mass

ratio η is not uniform, due to the nature of our sampling in terms of the spin magnitudes a1, a2 and mass ratio q.

These parameters represent ‘physical’ characteristics of the binary black hole (BBH) systems, but their transformation

into the derived quantities η and χeff introduces non-uniformities in the distribution of the latter, which impacts the

reliability of using density-based data analysis methods such as kernel density estimate.

B. VISUALIZING DEGENERACIES

In the simplest case that we are considering, MM is an output from three input variables (q, a1, a2) when a reference

point (q′, a′1, a
′
2) is chosen in the three-dimensional parameter space. To map out the degeneracies, we sample 10,000

random points in the parameter for each reference point and assign a color map to the mismatch values associated

with each point, as shown in fig. 8a. When precession is added, we are able to plot the distributions shown in fig. 8b.

https://github.com/deborahferguson/mismatch_ prediction


8

(a) Simulations without precession (aligned spins only)

(b) Simulations with precession

Figure 8: Visualizations of the three-dimensional parameter space with respect to reference simulation with q =

4, a1 = a2 = 0 or λ = [0.16,0,0,0,0,0]. Reference simulation indicated with gold star.
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B.1. Mass-Effective Spin Degeneracy

By transforming the coordinate system of the parameter space, we observe the approximate linear relationship

between χeff and η as expected. In fig. 9, we were able to recreate the features of the degeneracy plot from (Ferguson

2023) subjected to differences in color scheme and figure scaling. We further experimented by varying the reference

points along the line where the χeff and η are most degenerate (See appendix A. of Ng et al. (2018)). The resulting

plot is shown in fig. 10, which maps very similar space.

(a) (b)

Figure 9: Mismatch between waveform of reference binary (black dot) and of other binaries throughout the parameter

space plotted as χeff vs. η. From left to right, the reference simulation has η = 0.1, 0.16, 0.25. From top to bottom,

the reference has χeff = −0.5, 0, 0.5. The original plot from Ferguson (2023) is shown on the left, and the recreation

of the plot is shown on the right. Each subplot in the figure below is interpolated using the nearest method in

scipy.interpolate.griddata.

Figure 10: Reference simulations chosen at χeff = −0.25, 0, 0.25 and η = 0.1, 0.16, 0.2 along the line χeff = 4.934η −
0.757 where the two parameters are approximately degenerate. The degeneracy exhibited is globally consistent for the

points chosen with some local variations due to SNR.
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B.2. Spin Degeneracies

In precessing Binary Black Hole (BBH) systems, the parameter space spans seven dimensions, encapsulating in-

plane spins, the effective spin χeff , precession parameters χp, and the symmetric mass ratio η. At present, our focus

is on refining our algorithm to discern correlations in three or more dimensions, particularly translating the q, a1, a2
parameter space into η and χeff representations. Consequently, we have momentarily sidelined the analysis of in-plane

spins. However, preliminary observations, as illustrated in Fig. 11, suggest intriguing correlations when precession is

incorporated.

Figure 11: Parameter space with respect to reference simulation at λ= [0.16,0,0,0,0,0,0] including systems with

precession

In the no-precession case, we explored the spin degeneracies by setting a1 and varying the initial mass q and secondary

spin component a2 as illustrated in Fig. 12. The resulting parameter spaces for a1 > 0 and a1 < 0 are depicted in Figs.

13 and 14, respectively. It is easily to identify qualitatively that a positive primary spin component better constrains

the parameters.

Figure 12: Parameter space with a1z = 0
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Figure 13: Parameter space with fixed positive primary spin component
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Figure 14: Parameter space with fixed negative primary spin component
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C. IDENTIFYING CORRELATIONS

C.1. Kernel Density Estimate (KDE)

Initally, we attempted to identify the degeneracies in the parameter space by computing the eigenvalues of Hessians

at each point. However, since the parameter space consists of discrete points, there is too much noise about the

associated Hessian from interpolation. We then instead applied kernel density estimation (KDE) to characterize

discretized parameter space by using PESummary. We set weights = MM and method = "Reflection" to account

for the boundary conditions of the parameter space. As the KDE function only provides a visualization of the

correlations, we plan to fit the injected simulations to a Gaussian mixture model next, which would enable us to

quantify the correlations between parameters.

C.2. Gaussian Mixture Model (GMM)

In this section, we detail the method utilized for local estimation of a single Gaussian distribution from multidimen-

sional data through the sklearn.mixture implementation. The Gaussian Mixture Model (GMM) is a probabilistic

model representing a mixture of multiple Gaussian distributions. Through the sklearn.mixture framework, we apply

the GMM to fit data points in our BBH parameter space. The foundational assumption of this model is that the

observed data is generated from multiple Gaussian distributions. Each component of the GMM, or cluster, is defined

by its mean (µk) and covariance matrix (Σk):

p(x | µk,Σk) = N (µk,Σk) = (2π)−
D
2 |Σk|−

1
2 exp

(
−1

2
(x− µk)

⊤Σ−1
k (x− µk)

)
We used the Bayesian approach sklearn.mixture.BayesianGaussianMixture integrated in the module to coun-

teract overfitting issues, especially when a GMM with a single component is used. This is represented using Bayes’

theorem:

p(θ | d) = L(d | θ)π(θ)
Z(d)

Gaussian Mixture Models uses an Expectation - Maximization (EM) Algorithm for parameter estimation. The

likelihood function for GMM, which offers insight into the probability of observed data given our model parameters,

is expressed as:

p(X | θ) =
N∏

n=1

K∑
k=1

πk
1√

2πΣk

exp− (xn − µk)
⊤Σ−1

k (xn− µk)

2
,

L = log p(X | θ) =
∑

n = 1N log

[∑
k = 1Kπk

1√
2πΣk

exp− (xn − µk)
⊤Σ−1

k (xn − µk)

2

]
.

Here, θ encapsulates the full set of model parameters, and the function L denotes the log-likelihood, crucial for the

iterative optimization within the EM algorithm.

C.3. Principal Component Analysis (PCA)

Principal Component Analysis is an unserpervised learning method for reducing dimensionality of data. Since we

are only fitting the data to one Gaussian component, the variances calculated for the two methods are comparable.

The fundamental goal of PCA is to rotate and project the original data onto a new coordinate system such that the

largest variance by any projection of the data is placed on the first axis, labeled the first principal component. The

subsequent axis captures the next largest variance, and this continues in decreasing order for the other dimensions.

Mathematically, the principal components of PCA can be derived from the eigenvectors ei of the data’s covariance

matrix Σ :

Σei = λiei

where λi is the corresponding eigenvalue, indicating the variance captured by the ith principal component.

D. FRAMES FROM WALKER
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