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ABSTRACT3

Binary binary hole (BBH) spins provides important insights on the formation environments, evolu-4

tionary history, and dynamics of these objects, which could be of interest of the broader astrophysics5

community (Mandel & Farmer 2022). We would like to better measure signals for highly massive6

(total mass > 100M⊙, primary mass≲ 500M⊙), highly spinning BBH systems, which are subject to7

spurious measurements due to their very short duration and low bandwidth (Abbott et al. 2020).8

The astrophysical parameters of gravitational wave (GW) sources are extracted from match filtering9

observed signals to templated waveforms. The waveforms which include the most underlying physics10

are those generated with numerical relativity (NR). However, different parameters of NR simulation,11

such as mass and spin, can lead to extremely similar waveforms. In such cases, the analysis pipeline12

will not be able to distinguish potential sources. We are interested in constructing a neural network to13

study the correlations between different parameters of waveforms with spin precession and to identify14

potential ways to break such degeneracies. The results produced by this network would inform us the15

measurability of spin parameters from inferred waveform signals.16

1. INTRODUCTION17

GW190521 (M ∼ 150⊙) is the heaviest BH binary detected to date and one of the few BBHs measured to be highly18

precessing. It is the first strong observational evidence of intermediate-mass BH (IMBH), which is believed to be19

the missing link for explaining the formation of supermassive BHs (Abbott et al. 2020). The detected waveform is20

dominated by the merger phase where effects of precession remain elusive. In the upcoming LIGO’s fourth observing21

run (O4) as well as in the advent of the space-based Laser-Interferometer Space Antenna (LISA) and the ground-based22

Einstein Telescope (ET), we expect to observe large sample of events similar to GW190521 as a result of increased23

detector sensitivity. Spin configurations are indicative of the compact progenitor’s orbital dynamics and therefore help24

illuminate the formation channels of BH mergers in the pair-instability (PI) mass gap and aid population modeling25

of BBHs (Abbott et al. 2020; Mandel & Farmer 2022). We would like to respond to signals from such systems with26

maximal accuracy, which requires a thorough phenomenological understanding of the measurability of spin parameters27

from inferred waveforms.28

2. OBJECTIVES29

The objective of the project is to identify degeneracies in the parameter space for highly massive, precessing BBH30

systems using machine learning. I will 1) determine whether a certain set of parameters can be recovered from detected31

waveform, 2) investigate the correlations between degenerate parameters, and 3) quantify and produce visualizations32

of such correlations. Understanding the degeneracies and correlations between spin measurements will inform us as to33

which spin paramameters are actually independently measurable in GW data.34

3. BACKGROUND & APPROACH35

3.1. Theoretical Modeling36

My project will be largely based on the neural network mismatch prediction presented in (Ferguson 2023). The37

model is currently trained on the SXS GW catalog. For this project, I will make use waveform model NRSur7dq4, which38

is the only model calibrated to numerical simulations of precessing BH binaries. The network predicts the mismatch39

of the GW emitted by two BBH systems with initial input parameters λ = η,a1,a2, consisting of the symmetric mass40

ratio η41
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η = m1m2/ (m1 +m2)
2

0 ≤ η ≤ 0.25

and the dimensionless spin vectors a1,a2, which are 3-dimensional vectors with x, y, z components.

a =
J

m2
0 < a < 1

The model defines a mismatch metric MM to assess how different a resulting waveform is from an existing waveform.
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h1, h2 are the frequency domain strain of the waveforms, and Sn is the one-sided power spectral density of the detector.42

MM is normalized to 1 with MM = 0 corresponding to two identical waveforms. The mismatch is computed on a43

flat noise curve at fref , where the spin vectors are defined. The existing network is able to identify degenerate regions44

in the parameter space with l = 2,m = 2 modes for systems of Mtot = 1M⊙, corresponding to fref = 1840 Hz. I45

will be adjusting the frequency cutoff to adapt the network specifically to highly massive, precessing BBHs with fewer46

observable cycles.47

3.2. Degeneracy Mapping48

Since it is difficult to infer component spin parameters from GW, we use χeff , χp to characterize the signal detected.

The effective inspiral spin χeff is the mass-weighted average of the components of the BBH’s spins aligned with the

system’s angular momentum

χeff =
m1a1 cos (θ1) +m2a2 cos (θ2)

m1 +m2
−1 ≤ χeff ≤ 1

The effective precession spin can be modeled with a single parameter χp, which is defined to be the mass-weighted

in-plane spin component that contributes to precession of the orbital plane at some (arbitrary) instant during the

inspiral phase (Schmidt et al. 2015).

χp = max

(
a1 sin (θ1) ,

4m2
2 + 3m1m2

4m2
1 + 3m1m2

a2θ2

)
0 < χp < 1

Expectedly, characterizing an extremely complex GW waveform with few parameters results in degeneracy in the49

parameter space (i.e. MM ≪ 0.2). Fig. 1 provides a visualization of the degeneracies between the parameters χeff50

and η in the case where BH spins are aligned with the orbital angular momentum.51

I will be making similar plots with different parameters and reference data point. If time permits, I will investigate52

whether such degeneracies are broken at higher/different modes.53

4. WORK PLAN54

Before arrival: Start background reading on project.

Download required software and libraries

Familiarize myself with the mismatch-prediction model by Ferguson (2023) and understand

working principles of the APIs used (TensorFlow and Keras).

Week 1-2: Orientation; Reproducing existing results

Write plotting routines.

Week 3-4: Modify framework for higher mass systems; report I

Week 5-8: Experiment with different parameters; report II

Automate algorithm (Hessian) for identifying degeneracies in parameter space.

Week 9-10: Follow-up with interesting results; final report

55

56
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Figure 1. Mismatch between reference binary (black dot) and other binaries throughout the parameter space plotted as
χeff vs. η. From left to right, reference simulation has η = 0.1, 0.16, 0.25. From top to bottom, reference has χeff = −0.5, 0, 0.5.
Figure from Ferguson (2023)
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