Linking the Population of Binary Black Holes with the Stochastic Gravitational-Wave Background

Olivia Laske Mentors: Patrick Meyers and Arianna Renzini Outline

Calculate the SGWB using two methods

- Calculate the SGWB using two methods
 - Theoretical approach with precomputed mass grids and probability distributions (Gridded Method)

- Calculate the SGWB using two methods
 - Theoretical approach with precomputed mass grids and probability distributions (Gridded Method)
 - Monte Carlo integration with simulated data (Monte Carlo Method)

- Understand how different parameters affect the SGWB
 - ➢ BBH mass
 - > Merger rate

Background

Composed of overlapping unresolved waveforms

- Composed of overlapping unresolved waveforms
- Categorized into cosmological and astrophysical

- Composed of overlapping unresolved waveforms
- Categorized into cosmological and astrophysical
- Varies depending on frequency band and source

- Composed of overlapping unresolved waveforms
- Categorized into cosmological and astrophysical
- Varies depending on frequency band and source
- Currently undetectable in the LIGO frequency band

- Composed of overlapping unresolved waveforms
- Categorized into cosmological and astrophysical
- Varies depending on frequency band and source
- Currently undetectable in the LIGO frequency band
- Recent PTA results suggest SGWB detection at nHz frequencies

Constrain future searches

- Constrain future searches
- Better understand the evolution of the recent Universe
 - > Star formation, merger history, mass distribution

- Constrain future searches
- Better understand the evolution of the recent Universe
 - Star formation, merger history, mass distribution
- Eventually learn about the early Universe

Methods: Standard Priors

Standard Priors

Prior	Distribution	Parameters
mass_1	Power Law	$\alpha = -2.3$
mass_ratio	Power Law	lpha = 1.5
chi_1	0	0
chi_{-2}	0	0
${\rm theta_jn}$	Uniform	$\min = 0, \max = 2\pi$
$geocent_time$	Uniform	$\min = 0, \max = T_{-}obs$
redshift	$\propto rac{1}{1+z} \mathcal{R}(z) rac{dV_{ m c}}{dz}$	$\min = 0, \max = 10$

Standard Priors: Redshift Distribution

 $\mathcal{R}(z) = \mathcal{C}(\alpha, \beta, z_{\rm p}) \frac{\mathcal{R}_0(1+z)^{\alpha}}{1 + (\frac{1+z_{\rm p}}{1+z_{\rm p}})^{\alpha+\beta}}$ 28

 $\mathcal{R}(z) = \mathcal{C}(\alpha, \beta, z_{\mathrm{p}}) \frac{\mathcal{R}_{0}(1+z)^{\alpha}}{1 + (\frac{1+z}{1+z_{\mathrm{p}}})^{\alpha+\beta}}$ 29

 $\mathcal{R}(z) = \mathcal{C}(\alpha, \beta, z_{\rm p}) \frac{\mathcal{R}_0(1+z)^{\alpha}}{1 + (\frac{1+z_{\rm p}}{1+z_{\rm p}})^{\alpha+\beta}}$ 30

 $\mathcal{R}(z) = \mathcal{C}(\alpha, \beta, z_{p}) \frac{\mathcal{R}_{0}(1+z)^{\alpha}}{1 + (\frac{1+z}{1+z_{p}})^{\alpha+\beta}}$ 31

 $\mathcal{R}(z) = \mathcal{C}(\alpha, \beta, z_{\rm p}) \frac{\mathcal{R}_0(1+z)^{\alpha}}{1 + (\frac{1+z_{\rm p}}{1+z_{\rm p}})^{\alpha+\beta}}$ 32

Standard Priors: Merger Rate

Methods: Gridded Method

$$\Omega_{\rm GW}(f) = \frac{f}{\rho_{\rm c}} \int_0^{z_{\rm max}} dz \frac{\mathcal{R}(z)}{(1+z)H(z)} \left\langle \frac{dE_{\rm GW}}{df_{\rm r}} \right|_{f_{\rm r}=f(1+z)} \right\rangle$$

 $(G\pi)^{2/3}\mathcal{M}^{5/3}$ H(f) $dE_{\rm GW}$ 2 40

Gridded Method: H(f)

$$\Omega_{\rm GW}(f) = \frac{f}{\rho_{\rm c}} \int_0^{z_{\rm max}} dz \frac{\mathcal{R}(z)}{(1+z)H(z)} \left\langle \frac{dE_{\rm GW}}{df_{\rm r}} \right|_{f_{\rm r}=f(1+z)} \right\rangle$$

Methods: Monte Carlo Method

Monte Carlo Method

$$\Omega_{\rm GW}(f) = \frac{2}{T_{\rm obs}} \sum_{i=0}^{N} \frac{2\pi^2 f^3}{3H_0^2} \left[\frac{dE}{df}\right]_i$$
$$\frac{dE}{df} = |h_+|^2 + |h_\times|^2$$

Methods: Combined Method

Combined Method

Calculation uses the same equations as the Gridded Method

Combined Method

- Calculation uses the same equations as the Gridded Method
- Chirp masses in spectral energy density are sampled from bilby priors

Results

Used the Gridded and Monte Carlo Methods to calculate the SGWB

- Used the Gridded and Monte Carlo Methods to calculate the SGWB
- Created a third method that combined the two main methods

- Used the Gridded and Monte Carlo Methods to calculate the SGWB
- Created a third method that combined the two main methods
- Compared the spectra generated by each method

- Used the Gridded and Monte Carlo Methods to calculate the SGWB
- Created a third method that combined the two main methods
- Compared the spectra generated by each method
- Explored how BBH mass and merger rate affect $\Omega(f)$

Acknowledgements

- Mentors Patrick Meyers and Arianna Renzini
- ✤ Alan Weinstein
- Pritvik Sinhadc
- LIGO SURF Program, LIGO Lab, and Caltech
- National Science Foundation (NSF)
- Tom Callister and Arianna Renzini for their code

