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The first detection of gravitational waves from binary neutron stars on the 17th of August,
2017, (GW170817) heralded the arrival of a new messenger for probing neutron star astrophysics.
One of the many spectacular outcomes of GW170817 was the first constraints on neutron star
equation of state from gravitational wave observations. A significant amount of computing time and
resources were used to obtain these first constraints. However, as observations of binary neutron
star coalescence become more routine in the coming observing runs, there is a need to significantly
improve the analysis speed and flexibility. Here, we present a rapid approach for inferring the neutron
star equation of state based on normalising flows. We demonstrate that, using the same input data,
our approach, ASTREOS, produces consistent with the results presented in Abbott et al. but will only
require O(0.1)s to generate neutron star equation of state curves. Furthermore, ASTREOS allows for
non-parametric equation of state inference. This rapid analysis will not only feed into neutron star
equation of state studies but can potentially feed into future alerts for electromagnetic follow-up
observations of binary neutron star observations. Additionally, we discuss the implications this rapid
analysis, especially in the context of other rapid Bayesian inference frameworks such as Dingo and
VItamin.

Introduction.— On 17 August 2017, during the sec-
ond advanced detector observing runs, the advanced
LIGO [1] and Virgo [2] observatories detected the first
gravitational wave (GW) signal from the coalescence of
two neutron stars (NSs) [3]. During the 3rd observing
run the global network made a second GW observation
consistent with a signal from a binary neutron star col-
lision [4]. In addition, a further two signals likely com-
ing from the mergers between pairs of neutron stars and
black holes have been reported [5]. These detections have
provided a new opportunity to probe matter in extreme
conditions such as those in the interior of these stars [6].
To date there have been 90 definitive GW event detec-
tions with the vast majority being the merger of binary
black holes (BBHs) [7]. However, the effect on matter for
merging systems containing one or more NSs are signifi-
cantly different to those of BBHs as tidal effects have to
be taken into account when modelling the waveform.

It is the deformation that each star’s gravitational field
induces on their partner that accelerates the decay of the
inspiral and imprints itself on the emitted GW. GWs
provide information on the star’s tidal interactions via a
neutron star’s tidal deformability, Λ. This dimension-
less quantity measures the change of a neutron star’s
quadrupole moment in response to an external tidal field
which, in turn, allows us to place effective constraints
on the star’s equation of state (EOS). As GW detec-
tors steadily improve in sensitivity and therefore increase
their rate of detection, we expect to detect many more
NS interactions [8] undoubtedly leading to more accurate
measurements of the neutron star EOS.

The EOS is assumed to be universal in the sense that
there is a single relationship between pressure and energy
density within a neutron star that all such stars obey.

Each star is free to have its own independent gravita-
tional mass and associated tidal deformability governed
by the EOS and the corresponding prior range of allowed
masses. Therefore accurate measurements of the neutron
star EOS requires the combination of data from multi-
ple neutron star interactions. A fully Bayesian approach
was conducted and was shown in the literature. The work
was expanded when Markov chain Monte Carlo simula-
tions were used to fit a model that follows the piece-wise
polytropic parametrisation of the equation of state.

Recent advances in machine learning (ML) have been
successfully applied to GW data analysis [9]. These in-
clude parameter estimation [10–13], waveform modelling
[14, 15] and searches [16–18]. The motivation behind
using ML to either supplement or replace existing al-
gorithms is that, once trained the ML algorithm can
run at a significant fraction of the computational cost
and/or time. It is also naturally more flexible and can
account for hard-to-model or un-modelled components of
the analysis.

In this letter, we describe an ML approach to pro-
vide posterior distributions describing the neutron star
EOS using as input, standard parameter estimation data
products (posterior samples) on the gravitational masses
and the tidal deformabilities of the components within
a binary neutron star (BNS) system. Such inputs are
generated as standard as part of the data release associ-
ated with detected BNS events, e.g., [19]. The output of
our Normalising-Flow[20, 21] based analysis is an ensem-
ble of non-parametric neutron star EOSs describing the
relationship between pressure and energy density within
neutron stars in addition to correlated samples of cen-
tral densities/pressures and maximum permitted neutron
star densities. Hence, once trained, the Normalising-
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Flow acts as a rapid functional generator of plausible
neutron star EOSs.

Method.— A Normalising-Flow (or Flow) is a genera-
tive ML model that learns to transform the probability
density of a set of data to a simpler “latent” distribu-
tion via a series of invertible mappings. A normalising
flow (NF) has the advantage over other generative models
(Generative Adversarial Networks [22], Variational Auto-
Encoders [23]) as it predicts the probability density func-
tion of the training data explicitly. At the training stage,
a conditional Flow model learns to map samples x in the
data space X and y in the conditional data space Y to a
point z in latent space Z such that the following function
holds:

pX|Y(x|y) = pZ|Y(f(x|y)|y)
∣∣∣∣det(∂f(x|y)

∂xT

)∣∣∣∣, (1)

where f is the bijective mapping f : X → Z and
∂f(x|y)/∂xT is the Jacobian of f at x. For the best
practical use we choose transforms whose Jacobian de-
terminants are easy to compute. In this work we use
a real non-volume preserving (Real NVP) Normalising-
Flow [24] which is defined by its use of stacked coupling
transforms. As the learned transforms are invertible,
samples can be drawn from pX|Y by sampling from pZ|Y
and applying the inverse transform f−1. Further details
on NFs, their different types and their inner works please
see [20, 21].

Our aim is to use a conditional Flow to approx-
imate a function that maps source parameters y =
(m1,m2,Λ1,Λ2) to an associated set of EOS informa-
tion x parameterised by a principle component analy-
sis (PCA) decomposition, two values of central density
and a maximally allowed central density. We refer to
these latter 3 quantities as auxiliary parameters and we
call our analysis package ASTREOS.
The training of ASTREOS and indeed most Normalising-

Flows involves the process of learning a forward mapping
from the training data (the EOS and auxiliary parame-
ters) conditional on labels (the NS component masses and
tidal deformabilities) to a zero-mean unit-variance un-
correlated multi-dimensional Gaussian with dimensions
equalling that of the training data. Once trained, we
can use ASTREOS to perform the inverse mapping from
a single condition label y and a randomly drawn loca-
tion z from the latent space distribution, to an EOS and
corresponding auxiliary values x. As we can continually
draw random points from the latent space to produce
EOS data using the same conditional labels, there will
naturally be variation in the output EOS data. This is
encoded in the Flow output distribution pX|Y(x|y). The
variation within this distribution is representative of the
degeneracy inherent within EOS inference based on sin-
gle estimates of component masses and tidal deforma-
bilities. A single value of y maps to a distribution of
plausible EOSs all consistent with the input conditional
data and the prior distribution represented by the train-
ing data. We repeat this process over a set of mass and

tidal deformability samples drawn from the joint poste-
rior p(y|h), where h is the GW strain data for a particular
BNS event. By doing this we are able to marginalise over
the correlated uncertainties in y due to the GW detector
noise and other correlations between these and other GW
parameters. Hence our final result is

p(x|h) =
∫

pX|Y(x|y)p(y|h) dy

≈ 1

N

N∑
j=1

pX|Y(x|yj)
∣∣
yj∼p(y|h) (2)

where N is the number of posterior samples used as input
to the trained Flow. In practice, rather than evaluating
this function directly, samples of x are drawn from p(x|h)
by drawing equal numbers (usually only one) of samples
of x from pX|Y(x|yj) for each value yj .

Equation-of-State data.— We simulate 105 phe-
nomenological neutron star EOSs to train the Flow
model. To accommodate the analysis within limited com-
putational resources, we generated the EOSs from a 3-
piece polytropic neutron star EOS-family widely used in
the literature [25]. Each EOS contains a low-density crust
as described by the SLy4 EOS but at higher densities be-
haves as a piece-wise polytrope with transition densities
at 1014.7 g cm−3 and 1015 g cm−3 (CHECK the values!).
We empirically choose the polytropic indices and their
distributions in such a way that the variation in our EOS
training set closely follows the prior data-set used in [3].
Within our training set each EOS consists of energy

density pre-computed on a fixed grid of 256 pressure val-
ues. As a preprocessing step we remove densities lower
than 634 Kg/m3 as it is only necessary to learn the high
density and varying regions. For each EOS there exists
a distribution of possible neutron star masses. We define
the lower bound of this range to be 1M⊙ up to a maxi-
mum possible mass allowed by the EOS. We sample m1

and m2 on this range over a uniform prior distribution
ensuring m1 > m2 and in addition, retain the maximum
possible mass Mmax allowed by the EOS. The EOS and
masses then define the central densities of each star in
the binary, the tidal deformabilities, and the maximum
energy density of the EOS.
In order to reduce dimensionality of the problem, en-

suring stable and fast training, we use a PCA repre-
sentation [26] of the energy-density to reduce the EOS
energy-density as a function of pressure, to 8 principle
components. The data space X is therefore reduced to
11 dimensions (8 PCA components plus the 3 auxiliary
parameters). As a final preprocessing step both EOS and
auxiliary components are standardised separately by re-
moving the mean and scaling to have unit variance. Fur-
ther, the tidal deformability values are represented by
their natural logarithms before input to training.
We use an implementation of Normalising-Flows called

GLASFLOWS [27] based on NFLOWS [28] which is written for
PYTORCH [29]. We train the flow for 5000 epochs with a
batch size of 1000 and an initial learning rate of 0.0002
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FIG. 1. Generated posterior (blue bands) of pressure p as
a function of energy density ρ sampled from ASTREOS and
posteriors taken from GW170817 analysis (grey lines). Gen-
erated central densities and maximum density cumulative dis-
tributions from ASTREOS and training upper and lower priors
(black). Each of the generated data is the result of a learned
inverse mapping from a randomly drawn point in a standard
Gaussian base distribution and conditional values taken from
LIGO analysis. The dark, light and lightest shaded regions
correspond to the 95%, 50% confidence intervals respectfully.
Top and side panel shows the generated posterior cdfs on ρc,1,
pc,1 (green), ρc,2, pc,2 (orange), ρmax, pmax (black). Central
pressure cdfs are plotted as dotted lines in the side panel.

which is gradually decayed to zero using cosine anneal-
ing together with Adam [30] as the optimiser. There
are 5 residual blocks per transform each containing 128
neurons and there are 11 transforms. We use Batch Nor-
malisation between each coupling transform as described
in [24] and optimise hyper-parameters using the ”weights
and bias” package [31]. Data is split between 80% train-
ing and 20% validation and on a NVIDIA Tesla V100-
PCIE-32GB training requires O(12) hours.
Results.— We demonstrate the effectiveness of our

model by analysing the GW170817 event using posterior
samples available from Gravitational Wave Open Science
Center [32]. The accompanying paper for this release [6]
shows that by explicitly assuming both progenitors were
NSs, tighter constraints can be placed on the EOS and
mass and tidal deformability parameters. This inher-
ently defines a correlation between tidal deformabilities
and assumes that both NSs are in a ground state equi-
librium and share the same universal EOS. To perform
GW170817 EOS inference using ASTREOS we used as in-
put the posterior samples of m1,m2,Λ1,Λ2 from [19] to
represent the conditional y component in the Flow. We
draw one latent space sample from pZ|Y for each instance
of y and apply the Flow to obtain the PCA reduced ba-
sis representation of the EOS and each star’s associated

central densities and EOS maximum permitted density,
stored within x. We repeat this process according to
Eq. 2 to build up an ensemble of samples of x from the
final EOS posterior p(x|h). It takes O(0.1)s to generate
and convert 2500 parameter estimation (PE) samples to
renormalise EOS curves. Our main GW170817 result is
compared to that of [6] in Fig. 1 where we show EOS
confidence intervals on pressure as a function of energy-
density. We also compare cumulative probability curves
for pressure and energy-density for each NS and similar
curves for the corresponding maximum allowed pressures
and energy-densities of the inferred EOS.

In order to further verify our results we employ a cir-
cular argument that tests whether the EOSs and auxil-
iary parameters generated by the Flow are indeed con-
sistent with the specific m1,m2,Λ1,Λ2 inputs fed into
the Flow. To be clear, each input can map to a family
of allowed EOSs and auxiliary parameters, but any such
output, when used as input to an EOS solver should re-
turn the original specific masses and tidal deformabili-
ties. In performing this test we sample 6 locations in the
m1,m2,Λ1,Λ2 space spanned by the posterior samples
from GW170817 [19] specifically ensuring a representa-
tive spread in the m1,m2 space. For each of these loca-
tions we generate 100 instances of EOSs and auxiliary
parameters using ASTREOS. Component masses and tidal
deformabilities are then computed for each EOS instance
using a Tolman-Oppenheimer-Volkoff (TOV) solver. Fig-
ure 2 shows the joint distributions of recovered masses
and tidal deformabilities in reference to the original val-
ues. Typical variation seen across the GW170817 poste-
rior space is ∼ ±0.1M⊙ and ∼ ±10 in component mass
and tidal deformability respectively.

Conclusions.— In this Letter we have for the first time
demonstrated that neural networks can accurately infer
neutron star EOS curves conditioned on prior measure-
ments of component masses and tidal deformabilities.
The analysis also provides estimates of the central densi-
ties of the stars and maximally allowed energy density of
the EOS. Once trained, the network can rapidly gener-
ated these curves at 50000 generations per second mean-
ing that EOS posteriors can be built almost immediately
after a GW PE run. As the training regime is completely
model independent and solely based on expansive train-
ing data priors, this model is flexible enough to run on
various events without the costly need to retrain. Fur-
ther to this, the analysis can be easily modified to handle
neutron star-black hole (NSBH) systems [5, 7]. Due to
the quick and flexible generative properties of this analy-
sis, further constraints on a universal EOS can be found
by combining independent BNS and NSBH events hier-
archically. For super low latency results, this work can
be coupled to existing rapid ML PE codes [10, 12].

This document has LIGO DCC preprint number:
LIGO-P2300288-v3.
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FIG. 2. Recovered component masses and tidal deformaibilites from integrating the TOV equations on flow generated EOS. We
take six sets of masses and tidal deformabilites from GW170817 posteriors (grey crosses/dotted lines) and use them to generate
100 EOS’s each with ASTREOS. These curves are then solved with the TOV equations and the outputs plotted as probability
distributions over mass and tidal deformability. Each set is assigned a different colour and we plot the 95% CI over mass and
tidal deformability from GW170817 posterior (dotted pink).
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