LIGO Converter Design Common Mode Board Functionality

Daniel Sigg and Marc Pirello

LIGO Hanford Observatory

Some Meeting September, 2023

1

G2301965-v1

Concepts

- □ Basic Features: see <u>G2201990</u>
- Build on Analog Devices' Quad Channel, Low Latency, Data Acquisition and Signal Generation Module <u>CN0585</u> and <u>CN0584</u>.
 - ➤ 4 channel input (16-bit) & 4 channel output (16-bit)
 - ➢ Will support 2²³ Hz (~8.4 MHz) sampling clock
 - > ADC: <u>ADAQ23876</u> (could upgrade to 18-bit with <u>ADAQ23878</u>)
 - ➢ DAC: <u>AD3552R</u>
 - ➢ Quoted input-to-output latency: 250ns (running at 15MSPS);
 ~500ns maybe more realistic for us → 18 degrees phase loss at 100kHz
- □ Will have to think about whitening filters
 - > SNR 91.5dB (ADAQ23878) \rightarrow ~100nV/ \sqrt{Hz} @ ±10V input
 - ➢ How much is needed? Switching?
- □ Integration with RTCDS: same as DAQ (albeit not at full rate)

Concepts (2)

- □ Chassis located in field rack?
 - ➤ Remote PCIe, e.g., Adnaco <u>RA3-01</u> (has a minimum order of 50)
 - > Power supply synchronized to GPS. Is this enough?
 - Would need separate timing interface fiber
 - Could connect directly to computer through fiber
- □ Support chassis to chassis interconnects?
 - Current common mode servo feeds back to mode cleaner servo
 - Could use gigabit links over fiber, e.g., <u>Aurora protocol</u> (simple point-to-point serial)

□ Support RF demodulation?

- ➢ For example LTC2107 sampling at 2²⁸ Hz (~134 MHz).
- > Under sample for frequencies > 2^{27} Hz.
- > SNR 79.5 dBFS \rightarrow ~10nV/ \sqrt{Hz} @ ±1.2V input
- Delay small < 60ns, but processing time needed for demodulation</p>
- Stability of demodulation phase?

Concepts (3)

□ FPGA:

- ➤ XC7A200T-2
 - ✤ 740 DSP slices
 - ✤ up to 16 gigabit receivers, PCIe Gen 2
- > XCAU25P-2
 - ✤ 1200 DSP slices
 - ✤ 12 gigabit receivers, PCIe Gen 3
 - Could move up to even bigger chips KU3P/KU5P with 1368/1824 DSP slices
- ➢ For testing could use Opal Kelly XEM8310 development board
- > More recent GHz-converters use gigabit receivers
- > Older GHz-converters use 8 or 16 parallel LVDS lanes + clock & sync

Proposed R&D: Develop 2 Prototypes

Fast 100kHz servo board

- > Target application: common mode board and similar
- Sampling rate around 8MHz
- > 4-8 inputs & 2-4 outputs
- Includes switchable whitening
- Fiber gigabit links to other chassis
- □ RF receiver with integrated demodulation,
 - Target application: wavefront sensors, slower servos (<<10kHz BW)</p>
 - Sampling rate for RF front-end >100MHz
 - Sampling rate after demodulation 1-8 MHz
 - ➢ Up to 6 RF inputs (4 RF signals + 2 demodulation signal)
 - Optional 2-4 lower frequency outputs
 - Fiber gigabit links to other chassis

Support R&D

□ Remote PCIe over fiber

- Test Adnaco RA3
- Direct fiber receiver possible? Adnaco PCIe clock is 101MHz!
- □ Fiber point-to-point links
 - Protocol & gigabit/SFP solution
 - ➤ Latency
 - Clock: can we use 2^N clock?

□ RF Demodulation

- Local demodulation signal numerically generated in the FPGA
 - Phase stability of timing system good enough?
 - Requires re-sampling and resynchronization?

□ Chassis power

Noise injection & ground contamination